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CONCERNING THE RADII OF CONVERGENCE FOR A
CERTAIN CLASS OF NEWTON-LIKE METHODS

IoAaNNIS K. ARGYROS

ABSTRACT. Local convergence results for three Newton-like methods in Banach
space are provided. A comparison is given between the three convergence radii.
Then we show that using the largest convergence radius we can pick an initial guess
from with we start the corresponding iteration. It turns out that after a finite
number of steps we can always use the iterate found as the starting guess for a

faster method, since this iterate will be inside the convergence domain of the new
method.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique
solution z* of equation '

(1) | F(z) =0,

where, F is a Fréchet differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y. We approximate * by generating
sequences given by:

Newton-Like method

(2) Ynt1 = Yo — A(yn) 'F(yn) (w0 € D), (n20),
and Modified Newton-like methods

(3) Tny1 = Zn — A(z*) 1F(z,) (z0 € D) ,(n >0),
and

4) Znt1 = 2n — A(20) 'F(2z,) (20 € D)), (n>0).
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Here A(x) € L(X,Y) (xz € D) (the space of bounded linear operators from X into Y')
is an approximation to the Fréchet-derivative F'(z) of operator F [2], [6]. A survey
on local as well as semilocal convergence theorems for Newton-like methods can be
found in [1)-[9] and the references there. Here we compare the radii of convergence
between method (2)—(4). It turns out that the radius of convergence rys of method
(3) is in general at least as large as the radii rx and ran of corresponding methods
(2) and (4). Therefore we can use slower (in general) than (2) method (3) and after
a finite number of steps N continue with faster method (2) by starting from

Yo =ZN.
This may we take advantage of the wider range of starting choices provided by

method (3) (or even (4) than the ones given by faster method (2). A numerical
example is also provided.

2. LocAL CONVERGENCE ANALYSIS

We can show the main local convergence theorem for method (2) by using Yama-
nato-type hypotheses (8], [2]:

Theorem 2.1. Let F: D C X — Y be a Préchet-differentiable operator and A(x) €
L(X,Y) be an approzimation to F'(x). Assume there exists a solution z* € D of
equation F'(z) = 0, and parameters K > 0, M >0, L >0, u € [0,1) and ! € [0,1)
such that for all z,y € D:

(5) A(e*)™ € LY, X),

(6) [ A@=") " F'(2) - F'(y)]]| < K |z ~ vl
(7) |A@") "M A(2) ~ F'(@)]]| < M ||z — 2|| + p,
(8) A" [A(z) - A < Lllz - 2| +1,
(9) 0<pu+l<l,

(10) Lry+1<1,

and

(11) U(z*,rn) ={z € X |||z —z*|| < rn} C D,
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where,

21 —1—p)
(12) TN R30I+ D)’ K+2M+ #0

Then sequence {yn} (n > 0) generated by Newton-like method (2) is well defined,
remains in U (z*,7N) for alln > 0 and converges to =* provided that yo € U(z*,rn).
Moreover the following estimates hold for alln > 0

* d a’ *
(13) Nyn+1 —z*|| < l—)—" lyn — z*|| < 3 lon—2 I,
n
where,
_ _K " x
(14) n = 5 llyn — 27| + M |lyn — 2| + 1
K
(15) a=(-§—+M>rN+u,
(16) bn=1-1— Ly, —z*|,
and
(17) b=1—1—Lry.

Proof. By hypothesis yo € U(z*,rn). Let £ € U(z*,rn). Using (8) and (10) we get
(18) |A(z*) " A(z) - A@M))| S Lllz—z*|+I1< Lr*+1< 1.
It follows by the Banach Lemma on invertible operators [6] and (18) that A(z)™! €
L(Y, X) and

1 < 1
—l-L|z—z* ~1—-1-Lrn
Let us assume y;, € U(z*,rN),k = 0,1, ...,n. It follows y,41 is well defined. In view

of (2) we obtain the approximation
(20)

i .
Ynt1 — 2" = Alyn) /0 [F'(@* + t(yn — 27)) — A(yn)l(yn — 2")dt

(19) @) 46" < 5

1
= [«4(yn)_lA(ﬂf:"‘)]{A(zf“)‘1 /0 [F'(z* + tlyn — =) — F'(yn)](yn — =*)dit

+ A 0n) — A on — )}
Using (6), (7), (12), (19) for z = yx (14)-(17) and (20) we obtain (13), and

(21) lyn+1 — v*ll < llyn —y*ll < 7N
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from which it follows
Ynt+1 € U(z*,ry) and 7}1’1{.10 Yn =T*.
That completes the proof of the theorem. O
Let us introduce a condition weaker than (6):
(22) ||A(z*)"'[F'(z) — F'(z*)]|| < Kollz — =*||, for all z € D and some Ko > 0.
Clearly,
(23) Ko <K

holds in general and TI?{E can be arbitrarily large [1], [2]. Then using the approxima-
tion

(24) Ty — T* =2, — 2% — A(x*) " F(z,)
= —A(z*) ! /01 [F'z* + t(zn — %)) — Fl(z%)] (#n — x%)dt
+ [P - A" (@n - )

instead of (20) exactly as in Theorem 2.1 we can show the corresponding local
convergence theorem for modified method (3):

Theorem 2.2. Let D, F,z* be as in Theorem 2.1. Assume together with (22) that

(25) ||A(x*)_1[A(x*) - F'(:t*)]“ <p<l
holds true.
Moreover, assume:

(26&) U(x*7 TM) cD,
where,

2(1 —
(27) S Chul ) YN

Ko

Then sequence {z,} generated by Modified Newton-like method (3) remains in
U(z*,rym) and converges to x* provided that zo € U(z*,rar). Moreover the following
estimates are true for alln > 0:

(28) lzn+1 — 2| < anllzn — 2| < allen — 2|,
where,

K
(20) an =5 llzn — 2% + 1,
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and ‘
(30) a= ?TM + p.
Let us introduce conditions
(31) |AGE")THE (2) ~ F'(=0)]]| < K1 llz ~ zoll, K120,
(32)  ||A(=*)"}[A(20) — F'(20)]|| < Mo llzo — =*[| + 1, po >0, Mp >0,
and
(33) [A@=") " A(20) — A@")]|| < Lo llzo = z*[| + ho,

for all 29,2 € D. Then using the approximation
(34)

Zny1 — T = [A(ZO)—IA(x*)]A(w*)_I{ /Ol[F'(a:* + t(zn — 2%)) — F'(20)(2n — z*)dt

1 [F(20) — A(z0)) (2 x*>}

obtained via (4) instead of (20) exactly as in Theorem 2.1 we can show the corre-
sponding local convergence theorem for method (4):

Theorem 2.3. Let D, F, z*be as in Theorem 2.1. Moreover, assume:

(35) Lormn +1lo < 1,
0<lp+po <1,

and

(36) U(z*,run) C D,

where,

(37) TMN = 201 = lo = o)

K1 + 2(Mp + Lo) )
Then sequence {z,} remains in U(z*,mpn) for all n > 0 and converges to xz* pro-
vided that 2o € U(z*,ranN). Moreover the following estimates hold for alln >0

6. B
(38) lzn1 —2*|| < % llzn — 2™ < 5 llzn — 2|l

where,

1
(39) 3, = /0 Ky ||2* + t(zn — 2%) — 20| + Mo l* — 2ol| + pio,
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(40) ¥=1-1lp— Loljz* — 2|,
(41) B = (K1 + Mp)rmn + po,
and

(42) v=1-lp— Lormun.

Clearly for a fized z5 € D

(43) Kl S Ka
(44) MO S M,
(45) po < 1,

(46) Ly < L,

and

(47) lo <!

hold in general.

By comparing (12), (27) and (37) we deduce

(48) TN ST™

and

(49) N < TMN-
Moreover if

(50) 1—1p— o <1—N

K1 +2(Mp+Lo) = Ko’
then we conclude
(51) TMN < TMm.

In the special case when A(x) = F'(z)(z € D) (Newton’s method) (12),(27) and
(37) for M =pu=1= My = pp =lp =0 give:

2
(52 RS A
(53) = —

=:K—0’
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and
2
54 T M = ———
(54) N K +2L

Let us provide a numerical example for Newton’s method:

Example 2.4. Let X =Y =R, D = U(0,1) and define function F on D by

(55) F(z)=¢€" -1
Using (42) and (43) we obtain K =e¢, L=e—1,Kg=e— 1,
2
= —— = .324947231,
TN 3 _ 2 32494723

and

™ = 2 1= 1.163953414.

We must set 7, = 1, so that U(0,7,) C D. Choose zg — % Then in view of (31) and
(33) we obtain

Kiy=e and L0=e—1.
That is, by (44) we get
- TMN =TN = .324947231.

Note that the radius of convergence due to Rheinbold [7] is given by

2

T'R=3—K.

In this case we get

2

TR = — = .24525296.

3e

That is, the radius of convergence given by (43) is the largest.
Note that in general method (2) is the fastest. In practice we can choose an

initial gives in the largest ball U(z*,7pr). After a finite number of steps N (due to
the convergence of {z,,} to z*) zx € U(z*,rxn) . Therefore we can set yo = zy and

continue approximating z* with faster method 2). More precisely let € € (0, a] and
zo € U (x,7). We must have

(56) eNry <y
or

In { ZX
(57) N> (”‘) .
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Therefore we can set

InIX
(58) N=|—2]| 11,

Ine
where, [s] denotes the integer part of real number s.

Remark 2.5. As noted in [1], [2], [4], [9] the local results obtained here can be used
for projection methods such as Arnoldi’s, the generalized minimum residual method
(GMRES), the generalized conjugate method (GCR), for combined Newton/finite
projection methods and in connection with the mesh independence principle to de-
velop the cheapest and most efficient mesh independence strategies.

Remark 2.6. The local results can also be used to solve equations of the form
F(z) = 0 (when say A(z) = F'(z)) where F’ satisfies the autonomous differential
equation [2], [6]

(59) F'(z) = T(F(z")),

where T' : Y — X is a known continuous operator. Since F'(z*) = T(F(z*)) =
T(0), we can apply our results without actually knowing the solution z* of equation
F(z) = 0. Note that in the case of 2.4 we can set T(z) = = + 1, so that condition
(59) is satisfied.

Finally we note that although Yamamoto-type [8] conditions were used in this
study the ideas/results can be extended under more general conditions introduced
by us in [1], [2]. However we leave the details to the motivated reader.
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