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ON HEINZ-KATO-FURUTA INEQUALITY WITH BEST BOUNDS
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ABSTRACT. In this article we shall characterize the Heinz-Kato-Furuta inequality

in several ways, and the best bound for sharpening of the inequality is obtained by
the method in {7].

1. INTRODUCTION

Throughout this note it is to be understood that the capital letters always mean
bounded linear operators acting on a Hilbert space H into itself, and T=U | T | is
the polar decomposition of the operator T with U the partial isometry with U*U = I,
the identity operator, and | T | the positive square root of the positive operator T*T
satisfying the kernel condition N(| T |) = N(U). A conjecture about an inequality
of possitive linear operators on a Hilbert space proposed by Chan and Kwong [1]
was solved by Furuta [2] with more general form than the originally proposed, which
we commonly call the Furuta inequality in the literature. More precisely,

(i+2r)é
Theorem F ([2]). If A > B > O, then (B" APB") e > BU+28 o1 equivalently,
)0
A0 > (ArBPANYSE for allr >0, p > 1, and 6 € [0, 1].
The fact that the Furuta inequality is equivalent to the Heinz-Kato type inequality
was proved by Furuta himself in [3], which is precisely the inequality (2.1) in Theorem

2.1 below, and is called the Heinz-Kato-Furuta inequality in the literature. In this
article we shall further more characterize this inequality in several ways, and show
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that one of which is a simple Cauchy-Schwarz inequality. Finally, we shall determine
the best bound for sharpening of the Heinz-Kato-Furuta inequality.

2. MAIN RESULT

We present in this section some characterizations of the Heinz-Kato-Furuta in-
equality, and show that validity of each inequality is due to the Cauchy-Schwarz
inequality.

Theorem 2.1. Suppose that A,B> O, T =U |T |, | Tz ||<|| Az ||, and || T*y ||<||
By || for all ,y €H. Then the following are equivalent, where r,s > 0, p,q > 1,
o, B € [0,1) such that (1+ 2r)a + (1 + 25)8 > 1 (this last condition is unnecessary
if T is positive, or if T is invertible [3]), and p+ 2r # 0 # g + 2s.
(2.1) l (T ] T |(1+2r)a+(1+2s),3—1 :c,y) '2
142r)or 142s)8
< (U a7 P50z (7 o B T PS5y ) ()
( )8 1+2r)a 2
@2) (1T B 1 %) 55y, y) | (2 ( T P a7 ) )|
2r)a !l+23![3
< ((I T |2r A2P l T |2r)£_L1;2T w,x) ((l ™ |2s B2 | T |23) a2 y, y>
_ | (T | T '(1+2r)a+(l+2s)ﬂ—1 z, y) |2
for some z €H for which | T |(1+2)e+(14+2)6-1 T+ 4nd 2 are orthogonal, and
14+2r)a i .
(| T | A% | T |’r)20+27 2 is a unit vector;

(+2r)e 2 (+2r)e
@3) (=0T A% T PR < (TP A T P 5 )

142r)a
for some 2z €H for which (| T | A% | T |?")26+2 2z is a unit vector;
(2_4) | (T | T I(l+2’r)a+(1+2s)ﬁ——1 z, y) 12
< (UTPra® |7 P55, a) (| 7% 04299 y |2

Moreover, each inequality in above holds true.

Proof. (2.1)=>(2.2): The proof rests on the vector u which is defined by

ai2na
u=gz~ (o,(|T [ A% | T ) 555 z)z
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for some z € H such that | T |(1+2r)e+(1+28)6-1 Ty and z are orthogonal, and
142r)a
(| T |2 A% | T |*r)2G+3" 2 is a unit vector. Let us write

(142r)a (1+2s)8
M= (T A% | TP)5%° and N = (|7 [ B% | T 2) %%

for the convenience of computation. Then,
(u, Mz) = (z — (z, Mz)z, Mz) = (z, M2) — (z, Mz) | M}z =0,
as || MY2z ||= 1. It follows that
(a) (Mz,z)=(Mu+ (z,M2)Mz,u+ (z, M2)2) = (Mu,u)+ | (x, Mz) |%
and
(b) (T l T l(1+2r)a+(1+2s)ﬂ—1 z, y)
- (T | T l(1+2r)a+(l+2s)ﬂ-—~l U+ (:B,MZ)T | T |(1+27')a+(1+2s)ﬁ—1 z, y)
= (T | T |(F2)a+(1429)8-1 4 o) 4 (1, Mz)(z, | T |(1+20e+(1426)8-1 o)y
=(T I T |(1+2r)a+(1+2s)ﬁ-1 u,y).
Therefore,
(A Pra? | 7 Pry 582, 2) (T 12 B2 T2 o) 58y, )
—| (T |T |(1+2r)a+(1+2s)[3~1 z,y) |2
= (Mz,z)(Ny,y)~ | (T 1T |42t (429081 g ) |2
= (Ny, 9)[(Mu, u)+ | (2, Mz2) [f]— | (T | T (2t (4208-1 4y ) 2 by (a)
= (Ny,9) | (z, M2) [P +[(Ny,y)(Mu,u)— | (T | T |0+t (42871 4 ) 2]
> (Ny,y) | (z, M2) |?
= (0 e B2 7 o) Ry )| (o T A% T ) )
The inequality above is due to (b) and (2.1), so that (2.2) holds.
(2.2)=(2.3): Dividing the inequality (2.2) by the term
(Q 7 2 B2 | T Po) G50 y,9) 0,
and we arrive at the inequality (2.3).
(2.3)=>(2.4): We first assert that if (| T | A% | T |2T)%g_r2)5z is a unit vector
(same as to say that if (| T [2* A% | T |25)£21<:_g)§z is a unit vector) for some z €H,
then inequality (2.3), i.e.,

@ |47 a2 T )RR, (1 A2 | T )R )|

<l praz )Ty
implies inequality (2.4), i.e.,
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(d) | (' T |(1+2r)a+(1+2s),3 z, U*y) I
<||a T pr e 7 pry SR G 7 (04298
for all z,y €H. To this end, we may assume that A =| T | in particular, since
| Tz ||<|| Az || for all z €H, so that we may replace the operator (| T |*" A% | T |
)21(:’3;: by the operator | T |(1+2n)a and | T |(1+29)8 5 for the second component
of the inner product in the inequality (c). We may also assume without loss of
generality that A(so is | T'[) is an invertible operator. It follows from the inequality
(c) (here, we do not assume Cauchy-Schwarz inequality) that

. T [(1+25)8 U*y
K |70 g, ||||T ]|(1+2s)ﬁ Ty ”) I <[l 7|00 )

for all z,y €H for which | T |(1+25)8 U*y £ 0. But then

1T (04298 oy |2 = (U | T PO4298 vy, )
= (|77 PO+298 ) = | T (04200 |12

by a well-known relation U | T [ U* =| T* |t for t > 0 [3]. In view of assumption
| Tz ||<|| Az || for all z €H, i.e., | T |>< A2, and by Theorem F we have

(I T |2r A% l T l2r)£1p+—+2;39- Zl T l2(1+27')a
forr >0,p>1 and a € [0,1]. It follows that
|H T |(1+2r)oz T ”2 - (I T |2(1—|—2r)cx z’z)
2r)a
< (T 4% | T )55, 2)
T 2
=|la T pr a2 7 prysEES
Now, we are ready to show the desired inequality as follows.
(T (42004298 g, yry) | = (| T (4202 g, T (14299 vy |
<N T |20 g ||| T (4208 Uy |
14-2r)a
< TP A% | T Pryzeeng ||| T A48 y |,

and we have the inequality (d).
(2.4)=(2.1): The condition ||| T* | y ||<|| By || for all y €H means that | T* |><
B2. If we apply Theorem F to this, then

I ™ |2(1+2s),3§ (l T* |2s B2q I T |23)£1q+—_$sm
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for s> 0,9 > 1, and § € [0, 1]. Thus,
" " " « (1+25)8
I T (04208 y 2= (| 7% PO+298 ) < (| T 2 B2 | T* ) o550 ,y)

for all y €H, and (2.1) follows.
Finally, each inequality in above holds true since (2.3) is nothing but a Cauchy-
Schwarz inequality. The proof of the theorem is now finished. a

Corresponding to the inequality (2.4) we may add one more inequality

(2.4) l (T|T |(1+2r)a+(l+2s)ﬁ—l ,y) I2

ST (04202 g |2 (77 o B2 | T ) 5y

to Theorem 2.1. The proof of the implication (2.3)=(2.4)’=>(2.1) are quite similar
as the proof in Theorem 2.1, and we leave the it to the reader.

Before proceeding, it is noteworthy that the following statement is valid which is
a natural generalization of inequality (2.2) in Theorem 2.1, cf. [6], and, again, we
leave the proof to the reader.
Theorem 2.2. If| T |1+2)a+(1425)8-1 Ty 45 orthogonal to a set {2}, of vectors,
and {(I T | A®|T |2')%;%%‘§zi}1’l . is a set of unit vectors . Then

i=

(7 2 B2 7 20y 500y, ) [Z | (a7 Pr a2 755 2) 12]
i=1

< (TP 4% | T ) 5555 ,0) (|70 12 B | T 2 558y, )
— | (T | T [(H2)at(1429)8-1 o y) 2
for oall x,y €H, where {Ui}?zl s a sequence of vectors recursively defined by
wi=vi1— (wo, (T 7 A% |T |2T)%Pzi)zi
for whichwo=z,i=1,...,n.
It is interesting to observe that the bound of inequality is retained as in (2.2) of
Theorem 2.1 which is a special case of the above when n = 1.

3. BEST BOUNDS

Recall from the proof in Theorem 2.1 that for p,q > 1, a,8 € {0,1], and for all
z,y €H, we have

. " " " (+25)5
T (04208 ey || T (04290 y |2 (( 7 2 B2 | T [2) 530 y,y);
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and :
2ria

IIT 142 g 2< (T Pr A% | T P7) 5, ).

Since

| (T | T [(1+2r)et(+20)8-1 5 oy | | (| T [(1H+20)e+ (142008 5 ey |

=l (I T |(1+2r)a xal T |(1+2s)ﬁ U*y) I’
we arrive at
(*) I (T | T l(1+2r)a+(1+2s)ﬂ—1 .’L‘,y) |$”| T |(1+2r)a z |”” T* ’(1+23)[3 y ” .

From above consideration (*) is obviously a better inequality than inequality (2.1)
in Theorem 2.1, and so we are going to find its bounds next. Of course, the former is
also a special case of the latter which is obtained by letting A =| T | and B =| T* | .
Before finding bounds of the inequality (*) we require the next crucial lemma which
we proved in our previous paper [7]. Let us state the results without proof.

Theorem 3.1 ([7]). For any x and y in a pre-Hilbert space we have
B lzlPly-€1?-|(@y—&) P=l= 1Py~ (zy)

1 2 2
<— s lly—pe |*ly—vz |
ek

for any real numbers £, u, and v for which u # v.
Moreover, if (u — v)(z,y — px) is a nonzero real number, then inequality (3.1)
becomes equality if and only if

vop=———"|ly—pz|?.
(w,y—uw)|

Theorem 3.2. If r,5 > 0, and o, B € [0,1] such that (1 + 2r)a + (1 + 25)8 > 1.
Then for x,y € H we have
(32) T4 2| T [4298 gy g | T (420 g |2

— | (| T | g, | T (1F208 oy — g | T |AF20)e ) 2
= T (020 g 2| T 04298 2 | (7 | T (42042981 g ) 2
< |,U+V|—2. I |(l+2s)ﬂ Uy —u|T |(1+2r)a r ”2

T gty — oy | T (04202 g |2

for any real numbers €, u, and v for which u # v.
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Moreover, if (u—v)(| T |20 g | T |(142)8 (g — | T |12 1) 45 0 nonzero
real number, then inequality (3.2) becomes equality if and only if

V—pu= % I“ T |(1+25)ﬁ U*y - I T |(1+2r)a T "2’
where a = (| T [(A+20a g | T [(+29)8 *gy — | T |a+20a g,
Proof. From the foregoing all we have to do is replacing z by | T |(1127) g, and y
by | T |(1+23)ﬁ U*y in Lemma 3.1. 0

In Theorem 2.1 we see that inequality (2.2) is evidently a sharpening of inequality
(2.1), and naturally we are interested in determining bounds of the sharpening.
Recall that inequality (*) may be obtained by substituting A =| T | and B =| T* |
in the inequality (2.1) of Theorem 2.1. Here, we likewise let A =|T | and B =| T* |
in the inequality (2.2) of Theorem 2.1, and write it in the form
(**) | () T 20+ z) |2
s || T* |(+28)8 4 |2 (T |(1+2r)a T "2|” T |(1+2S)B y "2
—|(T|T |(1+2r)a+(1+23)ﬁ——1 z,y) 12]

Then (**) is a better inequality than inequality (2.2) of Theorem 2.1. Because of
the equivalence of (2.1) and (2.2) in Theorem 2.1, and that of (*) and (**), we shall
consider bounds of inequality (**). We will show that the bound in (**) is indeed
the best of the bounds that could be obtained from a class of squares of ratios of
shifted norm of vectors to the number shifted by the same amount. More precisely,
we have

Theorem 3.3. For any real number § # 0, r,s > 1, and o, € [0,1] such that
(14+2r)a+(1+25)8 > 1, we have

1
(33) |” T+ |(1+23)ﬂ

—|(T|T |(1+2r)a+(1+23)ﬂ—1 ,y) |2]

” "2[||| T |40 g 2] T (208 y |2

1 *
< 5_2 "| T |(1+2s)ﬂ U*y — 5 l T |(1+2r)a z "2

for all z,y €H with | T* |11298 o £ 0. Moreover, if (T | T |(1+2r)e+(1426)8-1 4 o))
is a nonzero real number, then equality holds if and only if

5 =“| ™ l(1+2s)ﬁ y "2 /(T | T |(1+2r)a+(1+23)ﬂ—1 z, y)_

Proof. Since ||| T* |(1429)8 y ||=||| T |(1+29)8 U*y || as was mentioned before, and
if we put | T |42 g — ¢ and | T |(1t29)8 U*y = b for the convenience of



100 C.-S. LIN

computation, then, in short we are going to show inequality

i b||2“| a [P b2 = | (T | T [+t (42081 gy |2 ]< b~ éda |2

holds. Now,

T 16— dai? —8%[ll a |2 & |17 — | (T | T [(+2)e+ (42981 g gy 12)
=[|b1* [Il b I|* ~28Re(a,b) + 6 || a ||*] — %[ a |1*]| & |I”

_ I (T I T |(1+2r)a+(1+2s)ﬁ—1 z, y) ’2]
= 6% | (T | T |2t (429081 4 ) 2 _26Re(a,b) || b2 + [ b ||*
2 [0 (T | T |(H2n)et(428-1 4 oy | — | B |22 > 0,

because Re(a,b) =Re(T | T |A+2r)ot+(1428)8-1 & o) and Re(u,v) <| (u,v) | holds
true for any vectors u and v. Hence, the desired conclusions follow easily. O

In conclusion we mention that although the inequality (2.1) in Theorem 2.1 was
proved in [3] by using the Furuta inequality, the next proof is much simpler and
direct. We first assume that conditions in Theorem 2.1 hold. Replace z by U |
T |0+21)e g and y by | T* |(+29)8 y in the Cauchy-Schwarz inequality [ (z,y) <]
z |||l y || for z,y €H (and the equality holds if and only if 2 and y are proportional).
Then,

' (T | T I(1+2T)a+(1+23)3_1 x,y) |2

< (I T POH202 g, g)(| T* [P4208 y, )

< ((I T |2r A2p I T l2r)(1+2r)a/(p+2r)x’ 55)((! T* |2s B2 I T* l2s)(1+2s)ﬁ/(q+2s)y’ y)-

The last inequality is due to Theorem F, of course. The first inequality becomes
an equality if and only if U | T [(1+27)e g and | T* |(1+25)8 y are proportional.

On the other hand, we may use a different replacement to get the same result.
Replace z by | T |(+27)@ g and y by U* | T* |(1+2908 o which is | T |(1+29)8 U*y in
the Cauchy-Schwarz inequality. Then,

[ (T|T '(1+2r)a+(1+2s)ﬂ—1 ,y) |2

< (l T |2(1+2r)a :L‘,(I})(l T |2(1+23)[3 U*y, U*y)

< ((I T |2r A2 l T |2r)(l+2r)a/(p+2r)x, 93)(' T |2(1+2s)B U*y, U*y).

The first inequality becomes an equality if and only if | T |(1+27)@ z and U* |
T |(1+28)8 4 are proportional.
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