GENERALIZED VECTOR VARIATIONAL-LIKE INEQUALITIES WITH CORRESPONDING NON-SMOOTH VECTOR OPTIMIZATION PROBLEMS

BYUNG-SOO LEE

ABSTRACT. In [1], Mishra and Wang established relationships between vector variational-like inequality problems and non-smooth vector optimization problems under non-smooth invexity in finite-dimensional spaces. In this paper, we generalize recent results of Mishra and Wang to infinite-dimensional case.

1. Introduction

In [3], Yang discussed relationships between a solution of a vector variational inequality and a Pareto solution or a properly efficient solution of a vector optimization problem. He also showed that a vector variational inequality is a necessary and sufficient optimality condition for an efficient solution of the vector pseudolinear optimization problem in finite-dimensional spaces.

In 2006, Mishra and Wang [1] established relationships between vector vatiational-like inequality problems and non-smooth vector optimization problems under non-smooth invexity in finite-dimensional spaces. They also identified the critical points, the weakly efficient points and the solutions of the non-smooth weak vector variational-like inequality problems under non-smooth pseudo-invexity assumptions in finite-dimensional spaces.

This paper deals with the infinite-dimensional case of Mishra and Wang's results in [1].

2. Preliminaries

Throughout this paper, X and Y are normed vector spaces, K is a nonempty

Received by the editors November 6, 2007 and, in revised form April 14, 2008...

²⁰⁰⁰ Mathematics Subject Classification. 49J40.

Key words and phrases. vector variational-like inequality, non-smooth vector optimization problem, strictly invex function, invex function, pseudo-invex function.

subset of X and $\eta: K \times K \to K$ is a function. Two norms $\|\cdot\|_X$ in X and $\|\cdot\|_Y$ in Y are used as $\|\cdot\|$ together. We denote $\langle\cdot,\cdot\rangle$ the canonical duality in the product $K^* \times K$, that is $\langle w^*, x \rangle = w^*(x)$ for $x \in K$ and $w^* \in K^*$, the topological dual of K.

Definition 2.1. A function $f: K \to Y$ is said to be Lipschitz near $x \in K$ if for some $\alpha > 0$

$$||f(y) - f(z)|| \le \alpha ||y - z||$$

for $y, z \in N_x$, the neighborhood of x, and locally Lipschitz on K if it is Lipschitz near any point x of K.

Definition 2.2. If a function $f: K \to Y$ is Lipschitz near $x \in K$, then the generalized derivative (in the sense of Clarke) of f at $x \in K$ into the direction $v \in K$ is given by

$$f^{\circ}(x,v) := \overline{\lim_{\substack{y \to x \ y \in K}}} \frac{\|f(y+tv)\| - \|f(y)\|}{t},$$

and the Clarke's generalized gradient of f at $x \in K$ is defined as

$$\partial f(x) := \{ w^* \in K^* : f^{\circ}(x, v) \ge \langle w^*, v \rangle \text{ for all } v \in K \}.$$

Remark 2.1. For any $v \in K$,

$$f^{\circ}(x,v) = \sup_{w^* \in \partial f(x)} \langle w^*, v \rangle.$$

Definition 2.3. A set K is said to be *invex at* $u \in K$ with respect to η if $u + t \cdot \eta(x, u) \in K$ for $x \in K$, $t \in [0, 1]$. K is said to be *invex with respect to* η if it is invex at every point of K.

Definition 2.4. Let K be a nonempty closed and invex subset of X and $f: K \to Y$ be a non-differentiable function.

(i) f is strictly-invex with respect to η if

$$||f(x)|| - ||f(u)|| > \langle w^*, \eta(x, u) \rangle$$

for $x, u \in K$ and $w^* \in \partial f(x)$.

(ii) f is invex with respect to η if

$$||f(x)|| - ||f(u)|| \ge \langle w^*, \eta(x, u) \rangle$$

for $x, u \in K$ and $w^* \in \partial f(x)$.

(iii) f is pseudo-invex with respect to η if

$$||f(x)|| - ||f(u)|| < 0$$
 implies $\langle w^*, \eta(x, u) \rangle < 0$

for $x, u \in K$ and $w^* \in \partial f(x)$.

Definition 2.5. Let K be an open subset of X and $f: K \to Y$ be a function.

(i) A point $\bar{x} \in K$ is called an efficient (Pareto) solution, if there exists no $y \in K$ such that

$$||f(y)|| \le ||f(\bar{x})||,$$

(ii) A point $\bar{x} \in K$ is called a weakly efficient (Pareto) solution, if there exists no $y \in K$ such that

$$||f(y)|| < ||f(\bar{x})||.$$

In this paper, we consider the following three problems;

- (1) Non-smooth vector optimization problem (VOP) of finding min ||f(x)|| subject to $x \in K$.
- (2) Vector variational-like inequality problem (VVLIP) for non-smooth case of finding a point $y \in K$ such that there exists no $x \in K$ satisfying

$$\langle w^*, \eta(x, y) \rangle \le 0$$
 for $w^* \in \partial f(y)$.

(3) Weak vector variational-like inequality problem (WVVLIP) for non-smooth case of finding a point $y \in K$ such that there exists no $x \in K$ satisfying

$$\langle w^*, \eta(x, y) \rangle < 0 \quad \text{for} \quad w^* \in \partial f(y).$$

3. Main Results

In this section, we generalize the results of Mishra and Wang [1] and extend the results given by Ruiz-Carzon et al. [2] to the non-smooth case.

Theorem 3.1. Let a function $f: K(\subset X) \to Y$ be locally Lipschitz on K and invex with respect to η . If $y \in K$ solves VVLIP, then it is an efficient solution to the non-smooth VOP.

Proof. If y is not an efficient solution to the non-smooth VOP, then there exists an $x \in K$ such that $||f(x)|| - ||f(y)|| \le 0$. Since f is invex with respect to η ,

$$\langle w^*, \eta(x, y) \rangle \le 0$$
 for $w^* \in \partial f(y)$,

which shows that y is not a solution of VVLIP.

Theorem 3.2. Let a function $\eta: K \times K \to Y$ satisfy $\eta(x,y) + \eta(y,x) = \bar{0}$, the zero vector of X, for $x, y \in K$. Let a function $f: K(\subset X) \to Y$ be locally Lipschitz on

K and strictly-invex with respect to η . If $y \in K$ is a weakly efficient solution for VOP, then it solves VVLIP.

Proof. If y does not solve VVLIP, then there exists an $x \in K$ such that

$$\langle w^*, \eta(x, y) \rangle \le 0$$
 for $w^* \in \partial f(y)$.

Since f is strictly-invex with respect to η ,

$$||f(y)|| - ||f(x)|| > \langle w^*, \eta(y, x) \rangle$$
 for $x, y \in K$ and $w^* \in \partial f(y)$.

So by the condition on η , we have

$$||f(x)|| - ||f(y)|| < \langle w^*, \eta(x, y) \rangle \le 0 \text{ for } w^* \in \partial f(y).$$

Hence

$$||f(x)|| - ||f(y)|| < 0,$$

which means that y is not a weakly efficient solution for VOP.

Remark 3.1. Since an efficient solution is weakly efficient, if we replace a weakly efficient solution with an efficient solution in the condition of Theorem 3.2, we have the same result.

Theorem 3.3. Let K be an invex subset of X. If $y \in K$ is a weakly efficient solution for VOP, then y solves WVVLIP.

Proof. Let $y \in K$ be a weakly efficient solution for VOP. Then there exists no $x \in K$ such that

$$||f(y + t\eta(x, y))|| - ||f(y)|| < 0, \quad 0 < t < 1$$

from the invexity of K. Hence

$$f^{\circ}(y,\eta(x,y)) = \overline{\lim_{t\downarrow 0}} \frac{\|f(y+t\eta(x,y)\| - \|f(y)\|}{t} \leq 0.$$

Consequently, there exists no $x \in K$ such that

$$\langle w^*, \eta(x, y) \rangle < 0 \quad \text{for} \quad w^* \in \partial f(y),$$

which means that y solves the WVVLIP.

Theorem 3.4. Let $f: K(\subset X) \to Y$ be locally Lipschitz on K and pseudo-invex with respect to η . If $y(\in K)$ solves the WVVLIP, then it is a weakly efficient solution to VOP.

Proof. If y is not a weakly efficient solution to VOP, then there exists an $x \in K$ such that ||f(x)|| < ||f(y)||. Hence

$$\langle w^*, \eta(x, y) \rangle < 0$$
 for $w^* \in \partial f(y)$

from the pseudo-invexity of f with respect to η . So y is not a solution to WVVLIP.

Theorem 3.5. Let $f: K(\subset X) \to Y$ be locally Lipschitz on K and strictly-invex with respect to η . If $y(\in K)$ is a weakly efficient solution to VOP, then it is also an efficient solution to VOP.

Proof. Suppose that y is not an efficient solution to VOP, then there exists an $x \in K$ such that $||f(x)|| \le ||f(y)||$. Since the non-smooth function f is strictly-invex with respect to η , we have

$$0 \ge ||f(x)|| - ||f(y)|| > \langle w^*, \eta(x, y) \rangle$$
 for $w^* \in \partial f(y)$.

Consequently, y does not solve WVVLIP. Hence y is not a weakly solution to VOP by Theorem 3.4.

Remark 3.2. Our results generalize and extend the results of Mishra and Wang [1] to the infinite-dimensional case.

REFERENCES

- 1. S.K. Mishra & S.Y. Wang: Vector variational-like inequalities and non-smooth vector optimization problems. *Nonlinear Analysis* **64** (2006), 1939-1945.
- 2. G. Ruiz-Garzon, R. Osuna-Gomez & A. Rufian-Lizana: Relationships between vector variational-like inequality and optimization problems. *Eur. J. Oper. Res.* **157** (2004), 113-119.
- 3. X.Q. Yang: Vector variational inequality and vector pseudolinear optimization. J. Optim. Theory Appl. 95 (1997), 729-734.

DEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY, BUSAN 608-736, KOREA Email address: bslee@ks.ac.kr