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COVERING COVER PEBBLING NUMBER OF A HYPERCUBE &
DIAMETER d GRAPHS

A. LOURDUSAMY ® AND A. PuNiTHA THARANI®

ABSTRACT. A pebbling step on a graph consists of removing two pebbles from one
vertex and placing one pebble on an adjacent vertex. The covering cover pebbling
number of a graph is the smallest number of pebbles, such that, however the pebbles
are initially placed on the vertices of the graph. after a sequence of pebbling moves,
the set of vertices with pebbles forms a covering of G. In this paper we find the
covering cover pebbling number of n-cube and diameter two graphs. Finally we give
an upperbound for the covering cover pebbling number of graphs of diameter d.

1. INTRODUCTION

Pcbbling, onc of the latest evolutions in graph theory proposed by Lagarias and
Saks has been the topic of vast investigation with significant observations. Having
Chung {1] as the forcrunner to familiarize pebbling into writings, many other authors
too have developed this topic. Hurlbert published a survey of pebbling results in (4]
Given a connected graph G = (V, X), where V is the set of all vertices and X is
the set of all edges, we distribute certain number of pcbbles on the vertices in some
configuration. Precisely, a configuration on a graph G is a function from V(G) to
N U {0} rcpresenting a placement of pebbles on G. The size of the configuration is
the total number of pebbles placed on the vertices. A pebbling move is the removal
of two pebbles from one vertex and the addition of one pebble to an adjacent vertex.
In pcbbling, a target vertex is selected and the aim is to move a pebble to the
target vertex. The minimum number of pebbles, such that, regardless of their initial
placcment and regardless of the target vertex, we can pebble target vertex is called
the pebbling number of G. In cover pebbling, the aim is to cover all the vertices with

pebbles, 1. e., to move a pcbble to every vertex of the graph simultaneously. The
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minimum number of pebbles required such that, regardless of their initial placement
on G, there is a sequence of pebbling moves, at the end of which, every vertex has
at lcast one pebble on it, is called the cover pebbling number of G. A set of vertices
K in G is a covering, if every edge of G has at least one end in K. A covering K
is called a minimum covering of G, if G has no covering K’ with |K'| < |K|. A
subset S of V of a graph G is an independent set if no two vertices of § are adjacent
in GG. The covering cover pebbling number, denoted by o(G), of a graph G is the
smallest number of pebbles, such that, however the pebbles are initially placed on
the vertices of the graph, after a sequence of pebbling moves, the set of vertices with
pcbbles forms a covering of G [6]. The pebbles may be placed on any of the vertices
of G. |

Different coverings may be produced for different initial configurations of pebbles,
which is one of the causes that makes this problem, a little difficult. For example.

take a cycle C4 on four vertices, namely vy, v2, v3 and vq. Place four pcbbles only

U1 Vg (& V9
4 I ] . [ ] 4
V4 V3 ' V4 Vg

Figure 1.1. An example where two different initial configurations pro-
duce different coverings |

on vy. Yor Cy on the left, after a sequence of pebbling moves, the vertices vo and vy
arc pcebbled so that the set {ve,v4} is a covering of Cy wherceas for Cy on the right, if
four pebbles are placed on vy, after a sequence of pebbling moves, the vertices v; and
vs arc pebbled so that the set {vy,v3} is a covering of Cy. This is one justification
that covering cover pebbling is nontrivial. - |

In cover pebbling, after all pebbling moves, we reach a stage, at which every
vertex of a graph has at least one pebble on it. In covering cover pebbling, after all
pcbbling moves, we reach a stage, at which the set of vertices with pebbles form a
covering of the graph G.

2. THE COVERING COVER PEBBLING NUMBER OF HYPERCUBES

The n-cube @, is defined recursively by Q; = K» and Q,, = K> x ,,_1, where

K> is the complete graph on two vertices. Thus @Q,, has 2" vertices each of which
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may be labeled ayas - - - a,,, where cach g; is either 0 or 1. Two vertices of Q,, arc
adjacent if their binary representations differ at exactly one place.

First, we find the covering cover pébbling number of (2. Fig. 2.1 shows the
2-cube appropriately labeled.

01

¢ 11

00 &— ¢ 10
Figure 2.1. Q9
Theorem 2.1. The covering cover pebbling number of Qs is 0(Q2) = 4.

Proof. A single vertex covers two edges which are incident on it. Since there are
four edges, the minimum covering C of O, is a set of two vertices and clearly the
two vertices arc opposite corners (4. e., {01, 10} or {00, 11}).

First, we will show that four pebbles, placed on one vertex, can produce a covering
of ()2, after a sequence of pebbling moves. Next, we will show that, three pebbles,
placed on one vertex, cannot produce a covering. Then we will show that three
pcbbles can produce a covering if they are placed on more than one vertex.

Suppose four pebbles are placed on a vertex, say v. Then we move a pebble to
cach of the two vertices, which arc adjacent to v and thus covering is produced. Next,
let three pebbles be placed on a vertex. Thus a pebble can be moved to one of its
adjacent vertices. So, there is an edge between the two unpebbled vertices, which
remains uncovered. Suppose three pebbles are placed on more than one vertex.
Clearly, two opposite corners can be pebbled.

So, placing all pebbles on one vertex is the worst initial configuration and in this
configuration, at least four pebbles are needed in order to cover all the edges of ().
Therefore o((Q)9) = 4. - | o

Next we consider (J3. Fig. 2.2 shows the 3-cube.
Theorem 2.2. The covering cover pebbling number of Q3 is o(Q3) = 13.

Proof. Every vertex of (J3 covers three edges, which are incident on it. Thus, to
cover all the twelve edges of 3, we need at least four vertices, such that, each of
which is non-adjacent to every other, in a covering of Q3. Clearly, the two minimum
coverings of Q3 are C) = {010, 111, 001, 100} and Cs = {011, 110, 000, 101}. Note
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010 110
011 / 4

000 100
001 / 4

Fiqure 2.2. Q3

that every vertex of Cy is adjacent to three vertices of Cy and cvery vertex of Cs is
adjacent to three vertices of (.

First. we will show that thirteen pebbles placed on one vertex can cover all the
cdges of Q3 after a sequence of pebbling moves. Next, we will show that twelve
pcbbles placed on one vertex is not cnough to produce a covering of (J5. Then we
will show that any configuration of twelve pebbles with at least two occupied vertices
can cover all the edges of ()s.

STEP 1: Supposc thirteen pebbles are placed on a vertex, say v. Without loss of
gencerality, we assume v € (. As every other vertex of (', is at a distance of two
from v, we usc twelve pebbles to pebble the other three vertices of C;. This lcaves
a pcbble on v and thus the covering C) is produced.

STEP 2: Let twelve pebbles be placed on a vertex, say v. Suppose v € C1. The
covering C) cannot be produced as we need thirteen pebbles from v for € to be
produced. Three vertices of Cy are adjacent to v but the fourth one is at a distance
of three from v and so fourteen pebbles would be needed from v to produce the
covering Cy. Thus, twelve pebbles placed on a vertex is not sufficient to producc a
covering.

STEP 3: Now, let twelve pebbles be placed on two vertices v; and ve. Suppose
vy, v9 € (1. Let v and v4 be the other two vertices of (1. Clearly either vy or v
has at least five pebbles. Since every vertex of C9 is adjacent to three vertices of
C1, there is a vertex, say w of Co, which is adjacent to vy, v2 and v3. So, we move
two pcbbles to w and hence we pebble v3. After these moves either vy or v2 has at
least five pebbles or both have at least three pebbles. Now, there is a vertex w; of
(5 adjacent to vy, vo and v4 and thus we move two pebbles to w; without making
vy or ve cmpty and so we move a pebble to v4. Thus the covering €' is produced.

Suppose v; € C) and vo € Cy and my, ms are number of pebbles placed on vy, ve

respectively. Let m; > mqy. Clearly m; > 6. If v; and vy are adjacent then there is
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a vertex, say, v of €7 which is non-adjacent to vo. As v is at a distance of two from
v1, we usc four pebbles from vq to pebble v. After this move, we keep one pebble on
v1 and move the rest to ve. As the other two unpebbled vertices of C; are adjacent
to v2, we need only four pebbles on v to pebble them. Also %‘—5 +mo > 1452155& > 4
as mg > 1. Thus the covering (' is produced. If v; and vs arc non-adjacent then
vy is at a distance of threc from v; and the other threc vertices of Cs are adjacent,
to v1. So, we pebble the three unpebbled vertices of Co using Six.pebbles on vy and
thus the covering C5 is produced in this case.
STEP 4: Let twelve pebbles be placed on three vertices vy, v9 and v3. Suppose
v1,v9,v3 € C1. We produce the covering Cy by pebbling the only unpebbled vertex,
say w, of (] as follows: If there is a vertex with at least five pebbles then we move
a pebble to w as it is at a distance of two from every other vertex of Cy. Otherwise,
there arc at least two vertices, say vy and ve, cach with at least three pebbles. We
have a vertex, say u of Cy which is adjacent to v1, vy and w and hence we move two
pcbbles. i. e., one from vy, another from vy to © and so we move a pebble to w.
Now, if v1,v9 € C; and vy € Ca. Supposc both vy and ve are adjacent to wvs
and cach of vy, vo has exactly two pebbles on it. As v; is adjacent to three vertices
of 2 we pebble an unpebbled vertex of Cy using the two pebbles on vy, Similarly
we pebble another unpebbled vertex of Cy using the two pebbles on v, We pebble
the other unpebbled vertex of Csy by using four pebbles on v4 and thus the covering
Cs is produced in this case. In all the other cases, we produce the covering C; as
follows: If v3 has only one pebble on it, then in all possible distribution of eleven
pebbles on v and vo, we pebble the other two unpebbled vertices of Cp using ecight
pcbbles without making vy, vo cmpty as in Step 3. If v3 has more than onc pebble
on 1t and if we consider the case that each of v; and vy has exactly one pebble on
it, then as there is at least one unpebbled vertex of C; adjacent to vy we pebble it
using two pebbles from vy and the other unpebbled vertex of C is at a distance of
at most three from vz and so we use at most eight pebbles to pebble it. Thus the
covering () is produced. Otherwise, either v; or v has at least two pebbles. If we
consider the worst case of having one pebble on v, two pebbles on vo then we use
two pebbles from v3 to pebble an unpebbled vertex of C; as vs is adjacent to threc
vertices of ') and so we use at most six pebbles from vy (as vy has two pebbles) to
pchble the other unpebbled vertex of C as it is either adjacent to vz or at a distance
three from vs.
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STEP 5: Now, let twelve pebbles be placed on four vertices vy, vy, v3 and v4. Suppose
vy, U2, v3 € C1 and vq € Cy. If cach of vy,v9, v3, has exactly two pebbles on it, we
produce the covering Cy as follows: Clearly, at least two pebbled vertices of C) are
adjacent to vy. We choose one, say vy, among them. Now there is an unpebbled
vertex of Oy which is at a distance of three from v,. We pebble this vertex by using
the two pcbbles on v as it is adjacent to both v9 and v3. Now, among the two
unpebbled vertices which arc adjacent to v, if one is at a distance of threc from wvs,
we pebble that vertex using the two pebbles on vy and hence the other unpebbled
vertex is pebbled by using the two pebbles on vg as vg is adjacent to that vertex. If
not, both the unpebbled vertices will be adjacent to v also and hence one is pebbled
using the two pebbles on v and the other by using the pebbles on vy and thus Cs
is produced. If at least one of vy, v9, v3 has either one or more than two pcbbles,
we produce the covering C; by pebbling the only one unpebbled vertex, say w of C}
as follows: We assume w is non-adjacent to v4. If either vy or v9 or v3 has at least
five pebbles then we are done. If there are at least two of v1, vo, v3, say v; and vs,
cach with at lcast three pebbles, then as there is a vertex, say u, of Cs adjacent to
v1, v2 and w;, we move two pebbles to u and hence we move a pebble to w. If not,
supposc cach of v1, v and vz has exactly one pebble on it, then since vy has nine
pebbles and w is at a distance of three from v4 we move a pebble to w. Among all
other cases, we consider the worst case that two of v, vo and vs, say vy and v, each
has exactly two pebbles and therefore v3 has cither three or four pebbles. Therefore
v4 has at lcast four pebbles and thus we move two pebbles to vs and now vz has
at least five pebbles. We use only four pebbles from v to pebble w and thus ] is
produced. Next, we assume that w is adjacent to v4. If v4 has at least two pebbles
then we are done. Otherwise vy has at most one pebble and therefore eleven pebbles
arc distributed on vy, vy and vs. In this case, clearly there is a vertex with at least
five pebbles or there are two vertices each with at least three pebbles and so we can
pcbble w.

Suppose vy, v9 € C7 and vy, v4 € Cy. We produce either C; or Cs in this case.
We produce the covering C; by pebbling the two unpebbled vertices, say u; and
uo of C as follows: First we assume if each of v3 and v4 has at least two pebbles.
Supp(jso u) is adjacent to vs. If uy is also adjacent to vz first we pebble uo using
the two pebbles from v3 in the case if us is non-adjacent to v4 and then we pebble
u; using the two pebbles from vy as it is adjacent to v4. Otherwise we pebble uo

using the two pebbles from v, and hence we pebble u; using the two pebbles from



COVERING COVER PEBBLING NUMBER 127

v3. Next, if cither v3 or vy, say vs, has at least two pebbles, we pebble any one of
u1, ug which is adjacent to v3 using two pebbles from v3 and the other using at most
four pebbles from vy since the other vertex is adjacent to vy and vy has already one
pchble, we add one more pebble to vy using only four pebbles from vs. If vz and vy
have exactly one pebble on each of them, then either vy or v2 or both v; and v will
contain at least three pebbles. Suppose v; contains at least three pebbles. Now, as
at lcast onc of the vertices vs, v4, say vs, is adjacent to vy, we pebble vg using two
pcbbles from vy. Now v3 contains two pebbles and v is adjacent to at least onc of
the vertices ui, ug, say u1, and so we pebble up. After this move, clearly, cither vy
or v contains at least five pebbles or both vy and v contain at least three pebbles.
Now we choose the vertex of Cy which is adjacent to v, v9 and ug and we place two
pcbbles on it and so we move a pebble to us.

STEP 6: Suppose twelve pebbles are distributed on five vertices, say v;, 1 = 1 to 9.
Without loss of gencrality we assume vy, v, v3 € Cp and v4, vs € Ca. We pebble
the other unpebbled vertex, say w, of C, as follows: Clearly w is adjacent to cither
v4 or vs or both v4 and vs. Suppose w is adjacent to v4 and is at a distance of three
from vy. If v4 has at lcast two pebbles then we are done. Otherwise if v4 18 adjacent
to a pcbbled vertex with at least three pebbles or if vs has at least four pebbles
then we are done. If vs has three pebblcs and if two vertices of Cq, say v and v,
have exactly two pebbles on each of them, then we choose either vy or v, say vq,
which is adjacent to v4 and we put one morc pebble on vy using two pebbles from
vs and then we move a pebble to v4. Now, v4 has two pebbles and so we pebble w.
If all of the above cases fail then vy will contain at least five pebbles and so we are
donc. Suppose w is adjacent to both v4 and vs and both v4 and vs contain exactly
onc pebble on each of them. Clearly, at least one of the vertices v, va, v3, say v1,
contains at least three pebbles. Also, either v4 or v or both v4 and vs are adjacent
to v1 and so we choose one of the vertices v4, vs which is adjacent to v; and we place
onc morc pebble on it and so we pebble w.

STEP 7: Suppose twelve pcbbles are distributed on six vertices v;, 7 = 1 to 6.
Without loss of gencrality we take vy, vo, v3 € Cy and vy, vs, vg € Ca. Let wy € C)
and wy, € Cy be the unpebbled vertices. First we assume w; and w» are adjacent.
Clearly w is adjacent to two pebbled vertices of Cy and ws is adjacent to two pebbled
vertices of C1. If any one of the adjacent vertices of wy has at least two pebbles, we
pebble w; and thus C; is produced. Otherwise, if any one of the adjacent vertices

of ws has at lecast two pebbles, we pebble w, and so Cs is produced. Otherwise each
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of the above four pebbled vertices has exactly one pebble on it. Clearly the other
two pcbbled vertices, one from 7 and the other from Cq, are adjacent. If onc of
them, say the one from (. has at least five pebbles then we pebble w; using four
pcbbles and thus € is produced. Otherwise both of them have exactly four pebbles
on them. So we pebble cither w; or ws. |

Supposc w; and we are non-adjacent. Clearly w; is adjacent to threc pebbled
vertices of Co and wo is adjacent to three pebbled vertices of €. Clearly there is a
vertex with at least two pebbles. Suppose there is a vertex of €7 with at least two
pcbbles then we pebble wy and thus Cs is produced.

We have shown that twelve pebbles suffice to produce a covering when initially
placed on two or more vertices. Also we have shown that twelve pebbles placed on
one vertex is insufficient to produce a covering of (3. Furthermore we have shown
that thirteen pebbles placed on one vertex is sufficient to cover all the edges of @s.

So, placing all pebbles on one vertex is the worst initial configuration and in this
configuration at least thirteen pebbles are needed in order to produce a covering of
3.

Thercfore o(Q3) = 15. | ]

Next we find 0(@Q),) in general for an n-dimensional cube. For this we usc the
definition of stacking and the illustration that how any hypercube, Q),,, can be

represented as (,’s arranged as a (Q,—2 as such in [3].

Definition 2.3 ([3]). Stacking is the idea of “stacking” all of the pebbles on one
vertex for the initial configuration. When it is said that stacking holds for a graph,
then the worst initial configuration for the graph is when all of the pebbles are

stacked on one vertex.

Theorem 2.1 shows stacking holds for (J9 and Theorem 2.2 shows stacking holds
for Q3.

Next we show stacking holds for a hypercube @Q,,. The idea used in [3] is followed
here. |

For ()4, it can be represented as four (J2’s arranged as a ()2 as shown below:

Stacking holds for ()2 and because Q4 can be represented in this manner, stacking
also holds for (). |

This idea can be expanded for all hypercubes. Q5 can be represented as (J2’s
arranged as a (J3. Since stacking holds for Q2 and Q3 then stacking holds for @s.
Similarly ()7 can be represented as (Q9’s arranged as a Q5. Stacking holds for @»
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B ~ T/

Figure 2.3.

and ()5, so stacking holds for Q7. In this way, we let £k = n — 2, then we can show
that Qr can be represented as @Q9's arranged as a QQg_», which then leads to @,
being represented as @Qo's arranged as a Q. Using this method it can be shown that

stacking holds for any @,. Thercfore, stacking is true for all hypercubes.

Theorem 2.4. The covering cover pebbling number of a hypercube @Q,, is c(Qy) =
3?'L
7]

Proof. Clearly @,, has 2" vertices and n2"1 edges and cach vertex is of degree n.
We have shown that stacking is true for Q,. So, we assumec that we place all the
pcbbles on a single vertex, say v, initially.
CASE (i): nis even. There are n vertices which are adjacent to v, ,Cg vertices which
arc at a distance of three from v, ,,Cs vertices which are at a distance of five from v,
cte., and ,,C,,_1 vertices which are at a distance of n— 1 from v. We assume all these
2"~1 vertices form a set C. Clearly C is an independent set and it is a minimum
covering of (Q,,. Therefore
377,
O-(Q'n.) =nC1-2+ nC3 - 23 + nCS ' 25 +- o+ nCp1 - 271""'1 - [?J ‘

We note that @Q,, — C is also a minimum covering of (J,, but it requires more
number of pebbles from v to produce @, — C than to produce C.
CASE (ii): n is odd. In this case, we choose in the set C; all the ,,Cy vertices which
arc at a distance of two from v, all the ~Cy vertices which are at a distance of four
from v, ctc., all the n vertices which are at a distance of n — 1 from v and finally v
also. Clearly C; is an independent set and it is a minimum covering of Q,. Thus

o an
O(Qn) =1+ nC‘Z ) 22 + nC4 ’ 24 +--+ -ncn.-—l 2" '= lEJ .
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Here also we note that @, — C; is a minimum covering of ¢J,, but it requircs morce
number of pebbles from v to produce Q,, — C; than to produce Cy. Thus the proof

is complete. [

In the next section, we discuss the covering cover pebbling number of graphs of

diameter d.

3. GRAPHS OF DIAMETER d

Definition 3.1 ([7]). Let U and W be subscts of V(G). Let w € U. Then d(u, W) =
11?‘1{1 d(u w) and d(U, W) = mm d{u, W).

Theorem 3.2. Let G be a graph of diameter 2 with n vertices (n > 3). Then
o(G) < 4n - 10.

Proof. First, we will exhibit a graph G such that o(G) > 4n — 11. Consider the
graph G defined as follows: V(G) = {vy, va, ...v,} and E(G) = v1va U E(K,-1)
where K,,_1 is the complete graph on n — 1 vertices vg, vs, ..., v,. Supposc all the
pcbbles arc placed on vertex vy. In order to cover all the edges of GG, we need to
pcbble the vertex vy and any other n — 3 vertices of K,,_,. For this we need 4n — 10
pebbles from the vertex vi. Hence o(G) > 4n — 11. Here is an example for n = 6
and d = 2.

Vg

Figure 3.1. A graph where n = 6 and d = 2 such that ¢(G) = 4n — 10

Suppose we aré given a graph G of diameter 2 on n vertices and 4n — 10 pebbles.
To prove the theorem, we will show that after a sequence of pebbling moves every
cdge of G has at least one of its ends on a vertex that contains pebbles. |

For n = 3, clearly path P is the only graph of diameter 2. Clearly two 'pebbles

can cover both the edges however the pebbles are distributed on the vertices of Ps.
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Now, we assume n > 4 and we start with a configuration ¢ of 4n — 10 pebbles. We
give a recursively defined algorithan for covering cach edge of G through a sequence

of pcbbling moves. First, to begin the algorithm, we take

co=c
Ry={veG: cv) >0}
So={v€qG: cv) >3}
To = V(G) — Ry
Qo = ¢

We will describe our algorithm by defining ci, Rk, Sk, Tk and @) recursively. At
cach step, we will need to make sure a few conditions hold to ensurce that the next
step of the algorithm may be performed. For cach k, we will insist that:
(1) For cvery v € T, U Qy, ci(v) = 0 and for cvery v € Ry, cx(v) > 0.
(2) |T| = |To| - &.
(3) Sk ={v e G: c(v) > 3}.
(4) Ry, Ty and @y arc pairwise disjoint and Rp U T U Qr = V(QG).
(5) Sk and T} arc both non-cmpty. In particular if d(Sk,Tx) = 2, then there
exists a vertex vg € S such that cp{vg) > 3.
(6) For cvery vertex g of Qy, every vertex adjacent to g has at least one pebble
on it.

(7) cx is the configuration of pebbles which can be reached from ¢ by a sequence

of pebbling moves.

For k£ = 0, only condition (5) is not immediately clear. If Ty = ¢ we are clearly done
for ¢ alrcady covers every edge of G. If Sy = ¢, we claim that c(v) > 0 at least for
n — 1 vertices. Suppose ¢(v) > 0 for at most n — 2 vertices. Each of these n — 2
vertices can have at most two pebbles. Therefore, size of the configuration ¢ is at
most (n—2)2 = 2n—4 < 4n—10 as n > 4, raising a contradiction. Therefore ¢(v) > 0
at lcast for n — 1 vertices and these n — 1 vertices can cover all the edges of G. So,
1f 54 = ¢ we are done. Therefore Ty # ¢ and Sy # ¢. Suppose d(Sp, Ty) = 2. Note
that Tp contains at least two vertices, which are adjacent to cach other, otherwise
all the cdges are covered by ¢. Suppose cy(v) = 3 for all v € Sy. Then the size of
the configuration is at most (n — 2)3 = 3n — 6 < 4n — 10 for n > 5 (as the case is
trivial for n = 4) raising a contradiction. Therefore, there exists some vg € Sp such
that co(vp) > 4.
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Suppose for some £ = m+ 1 where m < n— 2 we have defined ¢41, Rint1, Sma1

Trm+1 and (41 and the above conditions hold for £k = m + 1. We shall assume
that there is some edge which is not covered by ¢;,41. Thus |T,41] > 2, since for an
uncovered cdge both the end vertices must be in T;,41. Without loss of generality,
we assume d(S,,Ty) = 1 for all r < m.
CASE (i): d(Sm+1:Tm+1) = 1. Choose v/ € S,,,41 for which ¢,41(v") = 3 (if exists),
otherwise ¢,+1(v") > 3 and choose w' € T,,11 such that d(v',w') = 1. We move a
pebble to w’ if w' is adjacent to at least one vertex of Ty,41. Otherwise we take w’
I Qo

In the case if we pebble o' , let 42 be the configuration of pebbles resulting
from this move. We again let S,,12 = {v € G : ¢y2(v) > 3}, If now ¢pya(v’) > 38,
then Sy y9 = Spg1. Otherwise Spyo = Spt1\{v'}. We also let Thngo = T \{w'},
Rypyo = Ry U{w'} and Qi = Quy1- If |Thy2] is cither 0 or 1, we are done and
so we may assume that |Ty,4+2! > 2 and there exist two vertices in T;,42 such that
they arc adjacent to each other. Clearly the conditions 1, 2, 3, 4, 6 and 7 arc casily
scen to hold for £ = m+4-2. We claim that S, 40 # ¢. As m+1 steps are carried out so
far and in cach step at most two pebbles are used, the size of the initial configuration
is at most 2(m+1)+2-0+ (n—(m+3))2 = 2n —4 < 4n— 10 raising a contradiction.
Therefore S,,42 # ¢. Suppose d(Sy49, Ti2) = 2. We claim that there exists a
vertex vy I Spyg such that ¢pnyo(vmas) > 4. Suppose not. Then the size of the
initial configuration is at most 2(m+1)+2-0+ (n—(m+3))3 =3n—m—-7 < 4n—10
as n > 4 and k > 0, raising a contradiction. Therefore condition 5 also holds when
k=m+2.

On the other hand, if we take w' in Qmi2, we let ¢mi2 = Gms1, Smas = Sma1s
Tnsa = Tns1\{w'}, Rms2 = Rpy1 and Qpi2 = Qmar U {w'}. Clearly all the
conditions 1, 2, 3, 4, 5, 6 and 7 are easily seen to hold for £ = m + 2.

CASE (ii): d(Spm41,Tmt1) = 2. We choose v € Sp,42 for which ¢,41(v) > 3 and
w € Tin+1 such that d(v,w) = 2. We pebble w if w is adjacent to at lcast onc vertex
of Trpi1. Otherwise we take w in QQ,,49.

In the case if we pebble w, we let ¢, 19 be the configuration of pebbles resulting
from this move. We again let S;00 = {v € G : ¢pao(v) > 3} If now ¢y >
3, then Sp40 = Spt1. We also let Trio = T \{w}, Rmta = Rpyr U {w}
and Qn+2 = Qme1- If |Th42| is either 0 or 1, we are done and so we assume
that |T),42] > 2 and there exist two vertices in T}, such that they are adjaccnt
to cach other. Clearly the conditions 1, 2, 3, 4, 6 and 7 are easily seen to hold
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for k = m + 2. Clearly d(Sy42,Trmy2) = 2. So, we claim that ¢,,42(v) > 4 for
some v € Spy42. Suppose not. The size of the initial configuration is at most
m-2+4+1-44+2.-0+ (n% (m+3))3 =3n—-m-5<4n—10asm<n-—2and n > 4,
raising a contradiction. Here, note that if |S,, 2| = 1, by making ¢my3(v) = 0 after
the next move, we did not cause any edge from v to become non-covered as every
vertex adjacent to v has pebbles on it.

The a.lgorit.hm continues as long as there is some non-covered edge in G. By
condition 2, it must terminate after at most |Tp| — 1 steps, because when n—1 = |Tp),
we would have |T;,_s| = 1 and certainly there could be no non-covered edge in G.
Thus the algorithm cventually stops, having created some ¢ which covers every

cdge of G. By property 7, ¢x is reachable from ¢ by pebbling moves. L

We conclude this section by conjecturing an analogous result for graphs of diam-

cter d, along with a valid upper bound construction for the conjecturc.

Conjecture 3.3. Let G be a graph of diameter d with n vertices.

d+1
Then o(G) < [ J + (n— (d+1))2%

3

To sce that the result is reasonable, we will show that o(G) > | 22“] + (n—(d+
1))2¢ — 1 for some class of graphs with diameter d and n vertices. We construct
the following class of graphs with vertices {vy,vo,...,v,} as follows: Consider the
path P, of length d — 1 formed by the vertices vy, v9,...,vy. Connect P, to the
complete graph on (n —(d~ 1)) vertices vgi1, Ve, - - - Un 8t vg. Here is an example
for n =10, d = 5.

V10 Vg

Figure 3.2. A graph where n = 10 and d = 5 such that o(G) >
p 2441

551+ (n— (d+1))2¢

Supposc all the pebbles are placed on vertex vi. In order to cover all the cdges

of G, we need to pebble at least the vertices vy, vs,vs,. .., vq of the path and any
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other n —d — 1 vertices of the complete graph in the case if d is odd and the vertices

vy, U4, .. .,0q and any other n — d ~ 1 vertices of the complete graph in the casc if d
is even. For this we need [2dglj + (n — (d +1))2¢ pcbbles from v;. O]
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