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SOLUTION AND STABILITY OF AN EXPONENTIAL TYPE
FUNCTIONAL EQUATION

YouNG WHAN LEE?, GWANG Hul KiMP AND JAE HA LEE®

ABSTRACT. In this paper we generalize the superstability of the exponential func-

tional equation proved by J. Baker et al. [2], that is, we solve an exponential type
functional equation

fae+y)=af(2)f(y)
and obtain the superstability of this equation. Also we generalize the stability of
the exponential type equation in the spirt of R. Ger[4] of the following setting :

flz+y)
a®¥ f(x) f(y)

-1 <6

1. INTRODUCTION

In 1940, S. M. Ulam gave a wide ranging talk in the Mathematical Club of the Uni-
versity of Wisconsin in which he discussed a number of important unsolved problems
([22]). One of those was the question concerning the stability of homomorphisms :

Let G be a group and let G be a metric group with a metric d(-, -).
Given € > 0, does there exist a § > 0 such that if a mapping h : G; — G2
satisfies the inequality d(h(zy), h(z)h(y)) < 0 for all z, y € G, then
there exists a homomorphism H : G; — G3 with d(h(z), H(z)) < € for
all z € G417

In the next year, D. H. Hyers [5] answered the Ulam’s question for the case of
the additive mapping on the Banach spaces G1,Gy. Thereafter, the result of Hyers
has been generalized by Th. M. Rassias [15]. Since then, the stability problems of

various functional equations have been investigated by many authors (see 11,3,4,6-
13,16-21})).
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In particular, J. Baker, J. Lawrence and F. Zorzitto in [4] introduced the stability
of the exponential functional equation in the following form : if f satisfies the
inequality | f(xz+y) — f(z)f(y)| < €, then either f is bounded or f(z+y) = f(z)f(y).
This is frequently referred to as Superstability. |

In this paper, we will investigate the solution and the superstability of the expo-

nential type functional equation

(1) | flx+y)=a™f(z)f(y),

which is a generalization of the superstability of the exponential functional equation
given by J. Baker et al.[2]. And also we obtain stability in the sense of R. Ger [4].

2. SOLUTION OF THE EQUATION (1)

| 22
Proposition 1. f(x) = a2 is a solution of the equation (1). In particular, this f
is the unique continuous solution with f(1) = /a = f(-1).

:.."2
Proof. 1t is trivial to show that f(x) = a7 is a solution of the equation (1). Let

g be any continuous solution of the equation (1) and g(1) = v/a = g(--1). Then
2 n2
g(2) = g(1+1) = ag(1)g(1) =a7. If g(n) = a’F, then

g(n+1) =a"g(n)g(1) =a™-a'7 - a? =a 2

nz . LY
An induction argument implies that g(n) = a2 for every nonnegative integer n.
2

And similarly g(—n) = a7 for every positive integer n. Also we have

g (%)2 =g(1)-a”

1 )2 1 )2
Thus g(3) = a2 If g(5=) = a2 for some nonnegative integer n, then

L L]
W

= as.

1 2 1 1 1
g 2n+l :g .z_n- ) m:am

(1)2

1 1 . .
and so g(QTlﬂ-) = (a2*2)2 = ¢~ 2z . Also an induction argument implies that
142 :

9(2%,) = a2z for all nonnegative integer n. Note that for every positive integer m,
m = ao2¥ + a;2! + .o+ 4+ ax2*, where a; = 0 or 1 for each i = 0,1,--- ,k. We may



EXPONENTIAL TYPE FUNCTIONAL EQUATION 171

assume that a; =1 for all: =1,2,--- , k. Then for any positive integer n,
my 142 -2k
() =s(————)
1 ol ... 42k 1 2ly..gok
:g(iﬁ)g( on ) ey
1y 2!\ (22 2\ 7 2k 2
o(Re(E ) o(3) TLot
i=0
(F)?
= qa 2

m 2

Similarly, g(5%¢) = a %~ for all positive integer m and n. Now let r be any real

number. For each € > 0 we can choose an integer n with §1_g < 2" and also choose an
integer m such that

m < 2"(r+¢€) <m+1.

Then we have

m+1 1 m
on T gngn “TTE
Thus for any real number r > 0, there exist an integer m and a positive integer n

such that

r—e=r+4+e—2e<

m
l—é;; — T'l < €.
oy
By the continuity of g, we have g(r) = a= for every real number r. Thus f(z) = g(x)

for every real number z. L]

3. SUPERSTABILITY OF THE FUNCTIONAL EQUATION (1)

J. Baker, J. Lawrence and F. Zorzitto 2] proved the superstability of Cauchy’s
exponential equation

flz+y) = f(z)fy).
That is, if the Cauchy difference f(z + y) — f(x)(y) of a real-valued function f
defined on a real vector space is bounded for all x, y, then f is either bounded or
exponential. Their result was generalized by J. Baker [1] : let § be a semi-group

and let f be a complex-valued function defined on § such that

|f(zy) — f(z)f(y)| <&

for all z, y € S, then f is either bounded or multiplicative.
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Theorem 2. Let § > 0 anda > 1 be given. Let f : (0,00) — (0, 00) be an unbounded
function (in particular, f(m) > max(2,2v/8) for some positive integer m) such that

(2) |z +y) —a™f(z)f(y)| <9
forall z,y € (0,00). Then .
Sl +y)=a¥f(2)f(y)
for all z,y € (0,00) .
Proof. If we replace x and y by m in (2), simultaneously, we get
|f@m) — o™ f(m)?| < 6.
An induction argument implies that for all m > 2
f(nm) —a™a®™ - al D™ f(m)"|

(3) < § 4 o™ ™ f(1m)§ + oD (=2 £ ()25

+ oo g M g(n=2m? [ g2m® g yn=25

Indeed, if the inequality (3) holds, we have

F((n+ ym) — a™ a®™ @™ f ()|
<|f((n+1)m) — ™™ f(nm) f(m)

n lf(nm) _ am2a2m2 o a(nul)mzf(m)n‘anmzf(m)
<&+ anmzf(m)é + anmza(nml)mzf(m)Qa

g B anmza(n—l)m? .. a2m2f(m)n—15

for all n > 2. By (3) with a > 1, we get
f(um) o

am—1)m? ,(n—2)m?2 _ . a2m2am2f(m)n

1 1 1
= (f(m)” T T f(m)2)5

1 1 1 24
S he g )= <

for all positive integer n. Since f(m)™ — oo and

2 2

TV TP
ammIm g n=2m® L g2 amT 00 as n— 00, f(nm) — o0 as n— oo.
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Then for any z,y € (0,00) we have

Fnm)|f(@ +y) — o™ (@) ()

< "™ () f (@ + ) — flom + 2+ y)| =

nm{x+y)
1
anm{z+y)

+ | f(nm + z + y) — a® f () f(y + nm)|

a®¥

+1f{y +nm) — ¥ f(y) f(nm)| f(z) -

qynm

and so

|f(z+y) —a™f(z)f(y)l
< 26 a™3 f(x)
= f(nm)arm@ty) © f(nm)a¥y™m

-3 {)
as n — 00. Thus it follows that

flz +y) =a™f(z)f(y)
for any z,y € 0, 00). 0

Suppose that H, : (0,00) x (0,00) — (0,00) be monotonically increasing (in
both variables) homogeneous mapping, for which H,(tz,ty) = tPHy(x,y) holds for

some p > 1, and for all ¢t,z,y € (0,00). For examples H,(z,y) = azP + by? for
(Z, baxay E (0,00)

Theorem 3. Let a > 1 be given. If f : (0,00) — (0,00) satisfies the functional
mnequality

@ +y) - (@) )| < Hylz,y),
then either f(x) = o(zP) asx — oo or f(z+y) = a™ f(x) f(y) for every x,y € (0, 00).
Proof. By the same method as the proof of Theorem 2, we have
f(n) = a™a? - oD ()
< Hy((n — 1), 2) + Hy((n ~ 2)z,2) f(2)a D
+ Hy((n - 3)z,2)f(z)?al" V" a2
+ -+ + Hp(x, z) f(z)" 2a%" ... g(P 27

for all positive integer n > 2 and z > 0. Since a > 1, we get
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f(nx) “1H (za:,a:) iPH,(x,x)
f(:tf)na‘”za,z‘”z cee a(n—l)mz — 1’ < ; fzzm)i—#l | Z f(:; i+1
HP(:U::C) .

= Ti@) Z f(w

for any positive integer n > 2 and z > 0. Assume that f(z) # o(2P) as x — o0,

that is, there exist some a > 0 and a sequence {x;} in (0,00) such that zx — oo

as k — oo and f(zg) > axi? > 1 for sufficiently large k. Then -f(%—; < —— and
k) (amk)

prast —(—‘2—)— converges. We can then let the series > ., 'JTZP_F converge to a value

less than 5 I}; (( x) =) by taking sufficiently large k. Thus for some sufficiently large k
and any n > 2, we have

f(nzy) <]
Flap)n [T} otk 2
Since ™ I}E’égfk) — 0 and F:?;ll a’®° 5 00 as n — oo, we have

f(nzy)
n? Hp(zy )
flz) [135) @'k
anp| Tk ,:Bk)

~—1| <

B | o=

anp(xksmk)
and so Finze) 0 as n — oo.

Now let x,y > 0 be given. If k is sufficiently large, we have

fnzi)| f(x+y) — a™ f(z) f(y)]
< |a"™ @Y f(nzy) f(z + y) — f(nay, + = +y)|

anmk(a:—i-y)
1
FUf (s +2 4 4) ~ a0 @)y + et
a”™¥
+1f(y + nak) — a¥ f(y) f (nxy)| fgf)mc

< CiHp(z + y,nzg) + CoHp(z,y + nxg) + CgHb(y,' nTk)
< (C1+ Co + C3)Hy(nag, nxy) = (Cy + Ca + C3)nP Hp(zk, Tk )

for some Cy,Cy,C3 > 0 and sufficiently large n. Thus

(C1 + Ca + C3)nP Hy(xy, -’Bk)
f(nzk)

as n — 00. - - L]

|flz+y) —a™f(z)f(y)] <
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4. STABILITY OF THE EQUATION (1)

R. Ger {4] introduced a stability for the exponential equation in the following
type :

i (x + y)
f@)fly)

Now we prove the stability of the equation (1) in the sense of Ger.

1} <.

Theorem 4. Let 0 < § <1 and a > 1 be given. If a function f : (0,00) — (0, 00)
satisfies the inequality

f(r+y)
a™¥ f(x) f(y)

Jor all z,y € (0, 00), then there exists a function F : (0,00) — (0,00) such that

(4)

_1~<5

F(z +y) = a™F(x)F(y)

for all x,y € (0,00) and

F(x)
f(=)

- 1| <4
for all x € (0, 00).
Proof. If we define a function G : (0, 00) — (0, 00) by
G(z) = In f(z)
for all z > 0, then the equality (4) may be transformed into
IG(x+y) —Ina®™ — G(z) — G(y)| < In(1 + ) =6

for all z,y > 0. Replacing y by x and dividing by 2, we get

z2 0
(5) ‘G(Q:c) —lna? - Gx)| < =
2 2
for all x > 0. We use induction on n to prove
G(2™x) 2 2 9.2 on—2 2 ~. 1
(6) \ s —In(@7 -a” -a™ -0 ) — G(x) Sezé‘f

1=1
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for all x > 0. On account of (5), the inequality holds for n = 1. Suppose that
inequality (6) holds true for some n > 1. Then (5) and (6) imply |

21’1—}—1 22 o
OO n@¥ - - G(a)
G(2n+1$) 1 (22)2 (2:1:)2 271—2(2:5)2 G(Q.L')
< YES) ~——-2-ln(a 2 .a e q ) — 5
G(2x) 52 (AR
+ 5 —lna? — G(x) 592_1 50

which ends the proof of (6). For any x > 0 and for every positive integer n we define
G(znﬂj) 2 2 22 2”“2:1:2) |
2™ '

mln(a%a‘ .a‘ IR ¢ A
Let m,n > 0 be integers with n > m. Then it follows from (6)

|Pr(z) — Pm(7)|

P, (x) =

—m—2
1 G(Qn_m(2m$)) n 2é(2m )
— L T L 2m
am oan—m In 7;=l _ll a G( .’B)
<é % — 0
i=m-+1

as m — oo. Therefore, the sequence {P,(x)} is a Cauchy sequence, and we may

define a function L : (—o00,00) — (—00,00) by

L(z) :== lim Py(x)

and .
A AR
F(z) := el® = lim = f(2z)>
n—oo a7a$2 a2$2 . agn-—2$2
for all x > 0. Thus
Flx+y)
a*VF(z)F(y)

2
2 5

1 4 2 —2 .2 2 2 —2,.2
li f(2rz + 2"y " a T a% a® .. a2 " aTav a ... oY
= lim

e a:ryf(an)zA“f(2ny)§%ag%wa(w+y)2a2(‘”+y)2 - 2" (@ ty)?

1

- o)

M | e (gra) (27
and 1
o[ f@etay) 7P N
=0 < L??“wvf(znsc)f(zny)] = (1+9)
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for all z,y > 0 and for every positive integer n. Therefore we have
F(z +y) = a™F(x)F(y)

for all z,y > 0. We can easily see from (4) that

-8 < L2 14 5
a’z f(x)
for all x > 0. Note that for all x > 0 and for every positive integer n
f(@2ra)™
2
a-2—a$2 . agn—2$2 f(l')
1
f(2rz) 7 f@lo)m T
(1273 flan 1)t (@) T f(on )T
f(2x3)

(a®)3 f(z)

Thus we have
1
(1 _ 5)%+-2—1g++§%‘f < 5 f(2n$)2n < (1 4 5)%4“515-}" +§lﬁ'
a%amz . azn-2$2 f(.I‘)
and so
1-6< I;((T’)) <1456
T |
for all x > 0. ]
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