# SOLUTION AND STABILITY OF AN EXPONENTIAL TYPE FUNCTIONAL EQUATION

Young Whan Lee<sup>a</sup>, Gwang Hui Kim<sup>b</sup> and Jae Ha Lee<sup>c</sup>

ABSTRACT. In this paper we generalize the superstability of the exponential functional equation proved by J. Baker et al. [2], that is, we solve an exponential type functional equation

$$f(x+y) = a^{xy} f(x) f(y)$$

and obtain the superstability of this equation. Also we generalize the stability of the exponential type equation in the spirt of R. Ger[4] of the following setting :

$$\left| \frac{f(x+y)}{a^{xy}f(x)f(y)} - 1 \right| \le \delta.$$

#### 1. Introduction

In 1940, S. M. Ulam gave a wide ranging talk in the Mathematical Club of the University of Wisconsin in which he discussed a number of important unsolved problems ([22]). One of those was the question concerning the stability of homomorphisms:

Let  $G_1$  be a group and let  $G_2$  be a metric group with a metric  $d(\cdot, \cdot)$ . Given  $\epsilon > 0$ , does there exist a  $\delta > 0$  such that if a mapping  $h: G_1 \to G_2$  satisfies the inequality  $d(h(xy), h(x)h(y)) < \delta$  for all  $x, y \in G_1$ , then there exists a homomorphism  $H: G_1 \to G_2$  with  $d(h(x), H(x)) < \epsilon$  for all  $x \in G_1$ ?

In the next year, D. H. Hyers [5] answered the Ulam's question for the case of the additive mapping on the Banach spaces  $G_1, G_2$ . Thereafter, the result of Hyers has been generalized by Th. M. Rassias [15]. Since then, the stability problems of various functional equations have been investigated by many authors (see [1, 3, 4, 6-13, 16-21]).

Received by the editors October 18, 2007 and, in revised form April 14, 2008.

<sup>2000</sup> Mathematics Subject Classification. 39B72, 39B22.

Key words and phrases. exponential functional equation, stability of functional equation, super-stability, solution of functional equation.

In particular, J. Baker, J. Lawrence and F. Zorzitto in [4] introduced the stability of the exponential functional equation in the following form: if f satisfies the inequality  $|f(x+y)-f(x)f(y)| \le \varepsilon$ , then either f is bounded or f(x+y)=f(x)f(y). This is frequently referred to as Superstability.

In this paper, we will investigate the solution and the superstability of the exponential type functional equation

$$(1) f(x+y) = a^{xy} f(x) f(y),$$

which is a generalization of the superstability of the exponential functional equation given by J. Baker et al.[2]. And also we obtain stability in the sense of R. Ger [4].

## 2. SOLUTION OF THE EQUATION (1)

**Proposition 1.**  $f(x) = a^{\frac{x^2}{2}}$  is a solution of the equation (1). In particular, this f is the unique continuous solution with  $f(1) = \sqrt{a} = f(-1)$ .

*Proof.* It is trivial to show that  $f(x)=a^{\frac{x^2}{2}}$  is a solution of the equation (1). Let g be any continuous solution of the equation (1) and  $g(1)=\sqrt{a}=g(-1)$ . Then  $g(2)=g(1+1)=ag(1)g(1)=a^{\frac{2^2}{2}}$ . If  $g(n)=a^{\frac{n^2}{2}}$ , then

$$g(n+1) = a^n g(n)g(1) = a^n \cdot a^{\frac{n^2}{2}} \cdot a^{\frac{1}{2}} = a^{\frac{(n+1)^2}{2}}.$$

An induction argument implies that  $g(n) = a^{\frac{n^2}{2}}$  for every nonnegative integer n. And similarly  $g(-n) = a^{\frac{n^2}{2}}$  for every positive integer n. Also we have

$$g\left(\frac{1}{2}\right)^2 = g(1) \cdot a^{-\frac{1}{4}} = a^{\frac{1}{4}}.$$

Thus  $g(\frac{1}{2}) = a^{\frac{(\frac{1}{2})^2}{2}}$ . If  $g(\frac{1}{2^n}) = a^{\frac{(\frac{1}{2^n})^2}{2}}$  for some nonnegative integer n, then

$$g\left(\frac{1}{2^{n+1}}\right)^2 = g\left(\frac{1}{2^n}\right) \cdot a^{-\frac{1}{2^{(n+1)2}}} = a^{\frac{1}{2^{2n+2}}}$$

and so  $g(\frac{1}{2^{n+1}})=(a^{\frac{1}{2^{2n+2}}})^{\frac{1}{2}}=a^{\frac{(\frac{1}{2^{n+1}})^2}{2}}$ . Also an induction argument implies that  $g(\frac{1}{2^n})=a^{\frac{(\frac{1}{2^{n+1}})^2}{2}}$  for all nonnegative integer n. Note that for every positive integer m,  $m=a_02^0+a_12^1+\cdots+a_k2^k$ , where  $a_i=0$  or 1 for each  $i=0,1,\cdots,k$ . We may

assume that  $a_i = 1$  for all  $i = 1, 2, \dots, k$ . Then for any positive integer n,

$$\begin{split} g\left(\frac{m}{2^{n}}\right) &= g\left(\frac{1+2^{1}+\cdots+2^{k}}{2^{n}}\right) \\ &= g\left(\frac{1}{2^{n}}\right)g\left(\frac{2^{1}+\cdots+2^{k}}{2^{n}}\right) \cdot a^{\frac{1}{2^{n}}\cdot\frac{2^{1}+\cdots+2^{k}}{2^{n}}} \\ &= g\left(\frac{1}{2^{n}}\right)g\left(\frac{2^{1}}{2^{n}}\right)g\left(\frac{2^{2}}{2^{n}}\right)\cdots g\left(\frac{2^{k}}{2^{n}}\right) \cdot \prod_{i=0}^{k-1} a^{\frac{2^{i}}{2^{n}}\cdot\sum_{j=i+1}^{k}\frac{2^{j}}{2^{n}}} \\ &= a^{\frac{\left(\frac{m}{2^{n}}\right)^{2}}{2}} \end{split}$$

Similarly,  $g(\frac{-m}{2^n}) = a^{\frac{(\frac{m}{2^n})^2}{2}}$  for all positive integer m and n. Now let r be any real number. For each  $\epsilon > 0$  we can choose an integer n with  $\frac{1}{2\epsilon} < 2^n$  and also choose an integer m such that

$$m < 2^n(r+\epsilon) \le m+1.$$

Then we have

$$r-\epsilon=r+\epsilon-2\epsilon<\frac{m+1}{2^n}-\frac{1}{2^n}=\frac{m}{2^n}< r+\epsilon.$$

Thus for any real number r > 0, there exist an integer m and a positive integer n such that

$$\left|\frac{m}{2^n}-r\right|<\epsilon.$$

By the continuity of g, we have  $g(r) = a^{\frac{r^2}{2}}$  for every real number r. Thus f(x) = g(x) for every real number x.

## 3. Superstability of the Functional Equation (1)

J. Baker, J. Lawrence and F. Zorzitto [2] proved the superstability of Cauchy's exponential equation

$$f(x+y) = f(x)f(y).$$

That is, if the Cauchy difference f(x+y) - f(x)(y) of a real-valued function f defined on a real vector space is bounded for all x, y, then f is either bounded or exponential. Their result was generalized by J. Baker [1]: let S be a semi-group and let f be a complex-valued function defined on S such that

$$|f(xy) - f(x)f(y)| < \delta$$

for all  $x, y \in S$ , then f is either bounded or multiplicative.

**Theorem 2.** Let  $\delta > 0$  and  $a \geq 1$  be given. Let  $f:(0,\infty) \to (0,\infty)$  be an unbounded function (in particular,  $f(m) \geq \max(2,2\sqrt{\delta})$  for some positive integer m) such that

$$(2) |f(x+y) - a^{xy}f(x)f(y)| < \delta$$

for all  $x, y \in (0, \infty)$ . Then

$$f(x+y) = a^{xy} f(x) f(y)$$

for all  $x, y \in (0, \infty)$ .

*Proof.* If we replace x and y by m in (2), simultaneously, we get

$$|f(2m) - a^{m^2}f(m)^2| < \delta.$$

An induction argument implies that for all  $m \geq 2$ 

$$|f(nm) - a^{m^2} a^{2m^2} \cdots a^{(n-1)m^2} f(m)^n|$$

$$\leq \delta + a^{(n-1)m^2} f(m) \delta + a^{(n-1)m^2} a^{(n-2)m^2} f(m)^2 \delta$$

$$+ \cdots + a^{(n-1)m^2} a^{(n-2)m^2} \cdots a^{2m^2} f(m)^{n-2} \delta.$$

Indeed, if the inequality (3) holds, we have

$$|f((n+1)m) - a^{m^2}a^{2m^2} \cdots a^{nm^2}f(m)^{n+1}|$$

$$\leq |f((n+1)m) - a^{nm^2}f(nm)f(m)|$$

$$+ |f(nm) - a^{m^2}a^{2m^2} \cdots a^{(n-1)m^2}f(m)^n|a^{nm^2}f(m)$$

$$\leq \delta + a^{nm^2}f(m)\delta + a^{nm^2}a^{(n-1)m^2}f(m)^2\delta$$

$$+ \cdots + a^{nm^2}a^{(n-1)m^2} \cdots a^{2m^2}f(m)^{n-1}\delta$$

for all  $n \geq 2$ . By (3) with  $a \geq 1$ , we get

$$\left| \frac{f(nm)}{a^{(n-1)m^2}a^{(n-2)m^2}\cdots a^{2m^2}a^{m^2}f(m)^n} - 1 \right|$$

$$\leq \left( \frac{1}{f(m)^n} + \frac{1}{f(m)^{n-1}} + \dots + \frac{1}{f(m)^2} \right) \delta$$

$$< \frac{1}{f(m)^2} \left( 1 + \frac{1}{2} + \frac{1}{2^2} + \dots \right) \delta = \frac{2\delta}{f(m)^2} \leq \frac{1}{2}$$

for all positive integer n. Since  $f(m)^n \to \infty$  and

$$a^{(n-1)m^2}a^{(n-2)m^2}\cdots a^{2m^2}a^{m^2}\to \infty \text{ as } n\to \infty, f(nm)\to \infty \text{ as } n\to \infty.$$

Then for any  $x, y \in (0, \infty)$  we have

$$\begin{split} & f(nm)|f(x+y) - a^{xy}f(x)f(y)| \\ & \leq |a^{nm(x+y)}f(nm)f(x+y) - f(nm+x+y)| \frac{1}{a^{nm(x+y)}} \\ & + |f(nm+x+y) - a^{x(y+nm)}f(x)f(y+nm)| \frac{1}{a^{nm(x+y)}} \\ & + |f(y+nm) - a^{ynm}f(y)f(nm)|f(x) \cdot \frac{a^{xy}}{a^{ynm}} \end{split}$$

and so

$$|f(x+y) - a^{xy}f(x)f(y)|$$

$$\leq \frac{2\delta}{f(nm)a^{nm(x+y)}} + \frac{a^{xy}\delta f(x)}{f(nm)a^{ynm}} \to 0$$

as  $n \to \infty$ . Thus it follows that

$$f(x+y) = a^{xy}f(x)f(y).$$

for any  $x, y \in 0, \infty$ ).

Suppose that  $H_p: (0, \infty) \times (0, \infty) \to (0, \infty)$  be monotonically increasing (in both variables) homogeneous mapping, for which  $H_p(tx, ty) = t^p H_p(x, y)$  holds for some p > 1, and for all  $t, x, y \in (0, \infty)$ . For examples  $H_p(x, y) = ax^p + by^p$  for  $a, b, x, y \in (0, \infty)$ .

**Theorem 3.** Let  $a \ge 1$  be given. If  $f:(0,\infty) \to (0,\infty)$  satisfies the functional inequality

$$|f(x+y) - a^{xy}f(x)f(y)| \le H_p(x,y),$$

then either  $f(x) = o(x^p)$  as  $x \to \infty$  or  $f(x+y) = a^{xy} f(x) f(y)$  for every  $x, y \in (0, \infty)$ .

*Proof.* By the same method as the proof of Theorem 2, we have

$$|f(nx) - a^{x^{2}}a^{2x^{2}} \cdots a^{(n-1)x^{2}}f(x)^{n}|$$

$$\leq H_{p}((n-1)x, x) + H_{p}((n-2)x, x)f(x)a^{(n-1)x^{2}}$$

$$+ H_{p}((n-3)x, x)f(x)^{2}a^{(n-1)x^{2}}a^{(n-2)x^{2}}$$

$$+ \cdots + H_{p}(x, x)f(x)^{n-2}a^{2x^{2}} \cdots a^{(n-2)x^{2}}$$

for all positive integer  $n \geq 2$  and x > 0. Since  $a \geq 1$ , we get

$$\left| \frac{f(nx)}{f(x)^n a^{x^2} a^{2x^2} \cdots a^{(n-1)x^2}} - 1 \right| \le \sum_{i=1}^{n-1} \frac{H_p(ix, x)}{f(x)^{i+1}} \le \sum_{i=1}^{\infty} \frac{i^p H_p(x, x)}{f(x)^{i+1}}$$
$$\le \frac{H_p(x, x)}{f(x)} \sum_{i=1}^{\infty} \frac{i^p}{f(x)^i}$$

for any positive integer  $n \geq 2$  and x > 0. Assume that  $f(x) \neq o(x^p)$  as  $x \to \infty$ , that is, there exist some  $\alpha > 0$  and a sequence  $\{x_k\}$  in  $(0, \infty)$  such that  $x_k \to \infty$  as  $k \to \infty$  and  $f(x_k) \geq \alpha x_k^p > 1$  for sufficiently large k. Then  $\frac{i^p}{f(x_k)^i} \leq \frac{i^p}{(\alpha x_k^p)^i}$  and  $\sum_{i=1}^{\infty} \frac{i^p}{(\alpha x_k^p)^i}$  converges. We can then let the series  $\sum_{i=1}^{\infty} \frac{i^p}{f(x_k)^i}$  converge to a value less than  $\frac{f(x)}{2H_p(x,x)}$  by taking sufficiently large k. Thus for some sufficiently large k and any  $n \geq 2$ , we have

$$\left| \frac{f(nx_k)}{f(x_k)^n \prod_{i=1}^{n-1} a^{ix_k^2}} - 1 \right| < \frac{1}{2}.$$

Since  $\frac{n^p H_p(x_k, x_k)}{f(x_k)^n} \to 0$  and  $\prod_{i=1}^{n-1} a^{ix_k^2} \to \infty$  as  $n \to \infty$ , we have

$$\left| \frac{\frac{f(nx_k)}{n^p H_p(x_k, x_k)}}{\frac{f(x_k)^n \prod_{i=1}^{n-1} a^{ix_k}^2}{n^p H_p(x_k, x_k)}} - 1 \right| < \frac{1}{2}$$

and so  $\frac{n^p H_p(x_k, x_k)}{f(nx_k)} \to 0$  as  $n \to \infty$ .

Now let x, y > 0 be given. If k is sufficiently large, we have

$$f(nx_k)|f(x+y) - a^{xy}f(x)f(y)|$$

$$\leq |a^{nx_k(x+y)}f(nx_k)f(x+y) - f(nx_k + x + y)| \frac{1}{a^{nx_k(x+y)}}$$

$$+ |f(nx_k + x + y) - a^{x(y+nx_k)}f(x)f(y+nx_k)| \frac{1}{a^{nx_k(x+y)}}$$

$$+ |f(y+nx_k) - a^{ynx_k}f(y)f(nx_k)| \frac{f(x)a^{xy}}{a^{ynx_k}}$$

$$\leq C_1H_p(x+y,nx_k) + C_2H_p(x,y+nx_k) + C_3H_p(y,nx_k)$$

$$\leq (C_1 + C_2 + C_3)H_p(nx_k,nx_k) = (C_1 + C_2 + C_3)n^pH_p(x_k,x_k)$$

for some  $C_1, C_2, C_3 > 0$  and sufficiently large n. Thus

$$|f(x+y) - a^{xy}f(x)f(y)| \le \frac{(C_1 + C_2 + C_3)n^p H_p(x_k, x_k)}{f(nx_k)} \to 0$$

# 4. Stability of the Equation (1)

R. Ger [4] introduced a stability for the exponential equation in the following type :

$$\left|\frac{f(x+y)}{f(x)f(y)}-1\right| \le \delta.$$

Now we prove the stability of the equation (1) in the sense of Ger.

**Theorem 4.** Let  $0 < \delta < 1$  and  $a \ge 1$  be given. If a function  $f:(0,\infty) \to (0,\infty)$  satisfies the inequality

$$\left| \frac{f(x+y)}{a^{xy}f(x)f(y)} - 1 \right| \le \delta$$

for all  $x, y \in (0, \infty)$ , then there exists a function  $F: (0, \infty) \to (0, \infty)$  such that

$$F(x+y) = a^{xy}F(x)F(y)$$

for all  $x, y \in (0, \infty)$  and

$$\left|\frac{F(x)}{f(x)} - 1\right| \le \delta$$

for all  $x \in (0, \infty)$ .

*Proof.* If we define a function  $G:(0,\infty)\to(0,\infty)$  by

$$G(x) = \ln f(x)$$

for all x > 0, then the equality (4) may be transformed into

$$|G(x+y) - \ln a^{xy} - G(x) - G(y)| \le \ln(1+\delta) := \theta$$

for all x, y > 0. Replacing y by x and dividing by 2, we get

$$\left|\frac{G(2x)}{2} - \ln a^{\frac{x^2}{2}} - G(x)\right| \le \frac{\theta}{2}$$

for all x > 0. We use induction on n to prove

(6) 
$$\left| \frac{G(2^n x)}{2^n} - \ln(a^{\frac{x^2}{2}} \cdot a^{x^2} \cdot a^{2x^2} \cdots a^{2^{n-2}x^2}) - G(x) \right| \le \theta \sum_{i=1}^n \frac{1}{2^i}$$

for all x > 0. On account of (5), the inequality holds for n = 1. Suppose that inequality (6) holds true for some n > 1. Then (5) and (6) imply

$$\left| \frac{G(2^{n+1}x)}{2^{n+1}} - \ln(a^{\frac{x^2}{2}} \cdot a^{x^2} \cdot a^{2x^2} \cdots a^{2^{n-1}x^2}) - G(x) \right|$$

$$\leq \left| \frac{G(2^{n+1}x)}{2^{n+1}} - \frac{1}{2} \ln(a^{\frac{(2x)^2}{2}} \cdot a^{(2x)^2} \cdots a^{2^{n-2}(2x)^2}) - \frac{G(2x)}{2} \right|$$

$$+ \left| \frac{G(2x)}{2} - \ln a^{\frac{x^2}{2}} - G(x) \right| \leq \theta \sum_{i=1}^{n+1} \frac{1}{2^i},$$

which ends the proof of (6). For any x > 0 and for every positive integer n we define

$$P_n(x) = \frac{G(2^n x)}{2^n} - \ln(a^{\frac{x^2}{2}} \cdot a^{x^2} \cdot a^{2x^2} \cdot \dots \cdot a^{2^{n-2}x^2}).$$

Let m, n > 0 be integers with n > m. Then it follows from (6)

$$|P_n(x) - P_m(x)|$$

$$= \frac{1}{2^m} \left| \frac{G(2^{n-m}(2^m x))}{2^{n-m}} - \ln \left( \prod_{i=-1}^{n-m-2} a^{2^i(2^m x)} \right) - G(2^m x) \right|$$

$$\leq \theta \sum_{i=m+1}^n \frac{1}{2^i} \to 0$$

as  $m \to \infty$ . Therefore, the sequence  $\{P_n(x)\}$  is a Cauchy sequence, and we may define a function  $L: (-\infty, \infty) \to (-\infty, \infty)$  by

$$L(x) := \lim_{n \to \infty} P_n(x)$$

and

$$F(x) := e^{L(x)} = \lim_{n \to \infty} \frac{f(2^n x)^{\frac{1}{2^n}}}{a^{\frac{x^2}{2}} a^{x^2} a^{2x^2} \cdots a^{2^{n-2}x^2}}$$

for all x > 0. Thus

$$\frac{F(x+y)}{a^{xy}F(x)F(y)} = \lim_{n \to \infty} \frac{f(2^n x + 2^n y)^{\frac{1}{2^n}} a^{\frac{x^2}{2}} a^{x^2} a^{2x^2} \cdots a^{2^{n-2}x^2} a^{\frac{y^2}{2}} a^{y^2} a^{2y^2} \cdots a^{2^{n-2}y^2}}{a^{xy} f(2^n x)^{\frac{1}{2^n}} f(2^n y)^{\frac{1}{2^n}} a^{\frac{(x+y)^2}{2}} a^{(x+y)^2} a^{2(x+y)^2} \cdots a^{2^{n-2}(x+y)^2}} \\
= \lim_{n \to \infty} \left[ \frac{f(2^n x + 2^n y)}{a^{2^{2^n}xy} f(2^n x) f(2^n y)} \right]^{\frac{1}{2^n}}$$

and

$$(1-\delta)^{\frac{1}{2^n}} \le \left[ \frac{f(2^n x + 2^n y)}{a^{2^{2n} xy} f(2^n x) f(2^n y)} \right]^{\frac{1}{2^n}} \le (1+\delta)^{\frac{1}{2^n}}$$

for all x, y > 0 and for every positive integer n. Therefore we have

$$F(x+y) = a^{xy}F(x)F(y)$$

for all x, y > 0. We can easily see from (4) that

$$(1 - \delta)^{\frac{1}{2}} \le \frac{f(2x)^{\frac{1}{2}}}{a^{\frac{x^2}{2}}f(x)} \le (1 + \delta)^{\frac{1}{2}}$$

for all x > 0. Note that for all x > 0 and for every positive integer n

$$\frac{f(2^{n}x)^{\frac{1}{2^{n}}}}{a^{\frac{x^{2}}{2}}a^{x^{2}}\cdots a^{2^{n-2}x^{2}}f(x)} = \frac{f(2^{n}x)^{\frac{1}{2^{n}}}}{(a^{(2^{n-1}x)^{2}})^{\frac{1}{2^{n}}}f(2^{n-1}x)^{\frac{1}{2^{n-1}}}} \cdot \frac{f(2^{n-1}x)^{\frac{1}{2^{n-1}}}}{(a^{(2^{n-2}x)^{2}})^{\frac{1}{2^{n-1}}}f(2^{n-2}x)^{\frac{1}{2^{n-2}}}} \cdot \frac{f(2^{n-1}x)^{\frac{1}{2^{n-1}}}}{(a^{(2^{n-2}x)^{2}})^{\frac{1}{2^{n-1}}}f(2^{n-2}x)^{\frac{1}{2^{n-2}}}} \cdot \cdots \frac{f(2x^{\frac{1}{2}})}{(a^{x^{2}})^{\frac{1}{2}}f(x)}.$$

Thus we have

$$(1-\delta)^{\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}} \le \frac{f(2^n x)^{\frac{1}{2^n}}}{a^{\frac{x^2}{2}} a^{x^2} \cdots a^{2^{n-2} x^2} f(x)} \le (1+\delta)^{\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}}$$

and so

$$1 - \delta \le \frac{F(x)}{f(x)} \le 1 + \delta$$

for all x > 0.

### REFERENCES

- 1. J. Baker: The stability of the cosine equations. *Proc. Amer. Math. Soc.* **80** (1980), 411-416.
- 2. J. Baker, J. Lawrence & F. Zorzitto: The stability of the equation f(x+y) = f(x)+f(y). Proc. Amer. Math. Soc. 74 (1979), 242-246.
- 3. G.L. Forti: Hyers-Ulam stability of functional equations in several variables. Aequationes Math. 50 (1995), 146-190.
- 4. R. Ger: Superstability is not natural. Rocznik Naukowo-Dydaktyczny WSP Krakkowie, Prace Mat. 159 (1993), 109-123.
- 5. D.H. Hyers: On the stability of the linear functional equation. *Proc. Nat. Acad. Sci. U. S. A.* 27 (1941), 222-224.
- 6. D.H. Hyers & Th.M. Rassias: Approximate homomorphisms. Aequationes Math. 44 (1992), 125-153.

- 7. D.H. Hyers, G. Isac & Th.M. Rassias: Stability of functional equations in several variables. Birkhäuser-Basel-Berlin (1998).
- 8. K.-W. Jun, G.H. Kim & Y.W. Lee: Stability of generalized gamma and beta functional equations. *Aequationes Math.* **60** (2000), 15-24.
- 9. S.-M. Jung: On the general Hyers-Ulam stability of gamma functional equation. *Bull. Korean Math. Soc.* **34** (1997), no. 3, 437-446.
- 10. S.-M. Jung: On the stability of the gamma functional equation. Results Math. 33 (1998), 306-309.
- 11. G.H. Kim & Y.W. Lee: The stability of the beta functional equation. *Babes-Bolyai Mathematica* **XLV** (2000), no. 1, 89-96.
- 12. Y.W. Lee: On the stability of a quadratic Jensen type functional equation. J. Math. Anal. Appl. 270 (2002), 590-601.
- 13. Y.W. Lee: The stability of derivations on Banach algebras. Bull. Institute of Math. Academia Sinica 28 (2000), 113-116.
- 14. Y.W. Lee & B.M. Choi: The stability of Cauchy's gamma-beta functional equation. *J. Math. Anal. Appl.* **299** (2004), 305-313.
- 15. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. *Proc. Amer. Math. Soc.* **72** (1978), 297-300.
- 16. Th.M. Rassias: On a problem of S. M. Ulam and the asymptotic stability of the Cauchy functional equation with applications. General Inequalities 7. MFO. Oberwolfach. Birkhäuser Verlag. Basel ISNM Vol 123 (1997), 297-309.
- 17. Th.M. Rassias: On the stability of the quadratic functional equation and its applications. Studia. Univ. Babes-Bolyai XLIII (1998), no. 3, 89-124.
- 18. Th.M. Rassias: The problem of S. M. Ulam for approximately multiplication mappings. J. Math. Anal. Appl. 246 (2000), 352-378.
- 19. Th.M. Rassias: On the stability of functional equation in Banach spaces. J. Math. Anal. Appl. **251** (2000), 264-284.
- 20. Th.M. Rassias: On the stability of functional equations and a problem of Ulam. *Acta Applications Math.* **62** (2000), 23-130.
- 21. Th.M. Rassias & P. Semrl: On the behavior of mapping that do not satisfy Hyers-Ulam stability. *Proc. Amer. Math. Soc.* **114** (1992), 989-993.
- 22. S.M. Ulam: Problems in Modern Mathematics. Proc. Chap. VI. Wiley, NewYork, 1964.

<sup>a</sup>Department of Computer and Information Security, Daejeon University, Daejeon 300-716, Korea

Email address: ywlee@dju.ac.kr

<sup>b</sup>DEPARTMENT OF MATHEMATICS, KANGNAM UNIVERSITY, SUWON 449-702, KOREA Email address: ghkim@kangnam.ac.kr

<sup>c</sup>Jung IL High School, Daejeon 305-509, Korea *Email address*: ljh@hanmail.net