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JORDAN DERIVATIONS OF SEMIPRIME RINGS AND
NONCOMMUTATIVE BANACH ALGEBRAS, 1

Byung-Do Kium

ABSTRACT. Let A be a noncommutative Banach algebra. Suppose there exists a
continuous linear Jordan derivation D : A — A such that D(z)[D(x), z]* € rad(A)
or [D(x),x)*D(z) € rad(A) for all x € A. In this case, we have D(A) C rad(A).

1. INTRODUCTION

Throughout, R represents an associative ring and A will be a complex Banach
algebra. We write [z,y] for the commutator zy — yx for x,y in a ring. Let rad(R)
denote the (Jacobson) radical of a ring R. And a ring R is said to be (Jacobson )
semisimple if its Jacobson radical rad(R) is zero.

A ring R is called n-torsion free if nx = 0 implies x = 0. Recall that R is prime if
aRb = (0) implies that either a = 0 or b = 0, and is semiprime if aRa = (0) implies
a = 0. On the other hand, let X be an element of a normed algebra. Then for every
a € X the spectral radius of a, denoted by r(a), is defined by r(a) = inf{||a”||% :
n € N}. It is well-known that the following theorem holds: If a is an element of a
normed algebra, then r(a) = lim ||a”||% (see F.F. Bonsall and J. Duncan [1}).

An additive mapping D frg;looR to R is called a derwation if D(zy) = D(x)y +
xD(y) holds for all z,y € R. And an additive mapping D from R to R is called a
Jordan derivation if D(x?) = D(z)z + 2D(z) holds for all z € R.

B.E. Johnson and A M. Sinclair [5] have proved that any linear derivation on a
semisimple Banach algebra is continuous. A result of I.M. Singer and J. Wermer

9] states that every continuous linear derivation on a commutative Banach algebra
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maps the algebra into its radical. From these two results, we can conclude that there
are no nonzero linear derivations on a commutative semisimple Banach algebra.
M.P. Thomas [10] has proved that any linear derivation on a commutative Banach
algebra maps the algebra into its radical. | |

J. Vukman [11] has proved the following: Let R be a 2-torsion free prime ring. If
D : R — R is a derivation such that [D(z),z]D(x) = 0 for all z € R, then D = 0.

Moreover, using the above result, he has proved that the following holds: Let A
be a noncommutative semisimple Banach algebra. Suppose that [D(z),z]|D(z) =0
holds for all x € A. In this case, D = 0.

B.D. Kim [6] has showed that the following results hold: Let R be a 3!-torsion

free semiprime ring. Suppose there exists a Jordan derivation D : R — R such that
[D(x),2}D(«)[D(x),] = 0

for all z € R. In this case, we have [D(z), z]° = 0 for all z € R.

And, B.D. Kim (7] has showed that the following results hold: Let A be a noncom-
mutative Banach algebra. Suppose there exists a continuous linear Jordan deriva,tion
D : A — A such that D(x)[D(x),z]|D(z) € rad(A) for all z € A. In this case, we
have D(A) Crad(A4).

In this paper, our first aim is to prove the following results in the ring theory in
order to apply it to the Banach algebra theory:

(i) Let R be a 3!-torsion free semiprime ring.

Suppose there exists a Jordan derivation D : R — R such that
D(z)[D(z),z]* = 0

for all z € R. In this case, we obtain [D(z),z]* =0 for all z € R.
(ii)) Let R be a 3!-torsion free semiprime ring.

Suppose there exists a Jordan derivation D : R — R such that
[D(z), 2]’ D(x) = 0

for all z € R. In this case, we obtain [D(z),z]* = 0 for all z € R.
Using the above results, theses generalize J. Vukman’s result [11] as follows: Let
A be a noncommutative Banach algebra and let D : A — A be a continuous linear

Jordan derivation. |
(iii) Suppose that D(z)[D(z),z]* € rad(A) holds for all z € A. In this case,
D(A) C rad(A).
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(iv) Suppose that [D(z),z]?D(z) € rad(A) holds for all z € A. In this case,
D(A) Crad(A).

2. PRELIMINARIES AND RESULTS

The following lemma is due to L.O. Chung and J. Luh [4].

Lemma 2.1. Let R be a n!-torsion free ring. Suppose there exist elements y1, Y2,
- UYn—1,Yn n R such that > ;_, thyr = 0 for allt = 1,2,--- ,n. Then we have
yr = 0 for every positive integer k with 1 < k < n.

The following theorem is due to M. Bresar [3].

Theorem 2.2. Let R be a 2-torsion free semiprime ring and let D : R — R be a

Jordan derivation. In this case, D is a derivation.

We write Q(A) for the set of all quasinilpotent elements in A. M. BreSar |2] has
proved the following theorem.

Theorem 2.3. Let D be a bounded derivation of a Banach algebra A. Suppose that
[D(x),z] € Q(A) for every x € A. Then D maps A into rad(A).

3. MAIN RESULTS IN SEMIPRIME RINGS

We need the lemma to prove the main theorem. After this, by S;, we denote the
set {k € N|1 <k <m} where m is a positive integer.

We need the following results to obtain the main theorems for Banach algebra
theory.

Theorem 3.1. Let R be a 3!-torsion free noncommutative semiprime ring. Suppose
there exists a Jordan derivation D : R — R such that

D(x)|D(z),o]* = 0
for all x € R. In this case we have [D(x),z]* =0 for all z € R.

Proof. By Theorem 2.2, we can see that D is a derivation on R. For simplicity,
we shall denote the maps B : Rx R — R, f,g : R — R by B(z,y) =

D(z),4] + [D@),a], f(z) = [D@), 2], g(z) = [f(z),a], h(z) = [gx).a] for all
z,y € R respectively. Then we have the basic properties:

B(z,y) = Bly,z), B(z,yz) = B(z,y)z + yB(z,2) + D(y)[z, 2] + ly, 2] D(2),
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B(z,z) = 2f(2), B(zy,2) = B(y, 2)z + 2B(y, ) + D(2)[z,y] + [z, D(x),
B(z,z?) = 2(f(x)x + zf(2)), z,y,2 € R.
After this, we use the above relations without speciﬁc reference. By assumption,
(1) | D(z)f(x)2=0, z € R.
Replacing z + ty for x in (1), we have
(2) D(x + ty) f(z + ty)?
= D(z)f(z)* + t{D(y) f(z)* + D(z)B(z,y) f ()
+D(z) f(z)B(z,y)} + t* Hi(z, y) + t*Ha(z,y) + " H3(z,y)
+°D(y)f(y)* =0, z,y € R, t € S3

where H;,1 <1 < 3, denotes the term satisfying the identity (2).
From (1) and (2), we obtain

(3) t{D(y)f(z)* + D(z)B(z,y) f(z) + D(z)f(z)B(z,y)}
+t2Hy(xz,y) + 3 Hy(x,y) + t*H3(z,y) = 0, =,y € R, t € Ss.

Since R is 3!-torsion free by assumption, by Lemma 2.1 the relation (3) yields

(4) D(y)f(z)* + D(z)B(z,y) f(z) + D(z) f(z) B(z,y) =0, z,y € R.
Let y = 22 in (4). Then using (1), we have
() ~ (D(@)z +2D())f(2)* + D()(2(f(x)x + zf(x))) f ()

+D(z) f(x)(2(f(z)z + 2 f(x)))
= f(z)® - 2D(z) f(x)g(z) + 2f ()’ — 2D(z) f(x)g(x)
= 3f(z)° — 4D(z)f(x)g(z) =0, = € R.

From (1), we arrive at
(6) 0 = [D(@)f(x)’ 2]
= f(z)> + D(z)g(z)f(z) + D(z)f(z)g(x), = € R.
From (5) and (6), we get
™) 77(2)? + 4D(z)g(z) f(z) = 0, z € R.
Combining (5) with (7),
4(3D(x)g(z) f(x) + 7D(z) f(x)g(x)) =0, = € R.
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Since R is 3!-torsion-free, the above relation gives

(8) 3D(z)g(z) f(x) + 7D(z) f(z)g(x) =0, = € R.
Writing zy for y in (4), we get

9 «DE)f(@)’+ D(@)yf(x)’ + D(z)(xBla,y) + 2f(2)y + D(@)[y, 2])f ()
+D(x)f(2)(zB(x,y) + 2f(x)y + D(2)ly,a]) = 0, o,y € R.

Left multiplication of (4) by z leads to

(10) zD(y)f(x)* + zD(z)B(z,y) f(x) + zD(z)f(z)B(z,y) =0, z,y € R.

From (9) and (10), we arrive at

(11) D(z)yf (=)’ + f(z)B(z,y) f(z) + 2D(2)f (2)yf () + D(z)’[y, z]f ()
+(f(2)? + D(z)g(z)) B(z, y) + 2D(z) f(2)*y + D(z) f (z) D(x)[y, ]
=0, z,y € R.

By (1) and (11), it is obvious that

(12) D(z)yf(z)* + f(z)B(z,y)f(z) + 2D (z)f (z)yf(x) + D(x)*[y, 2] f (x)
+(f(x)? + D(2)g(x))B(z,y) + D(z) f(«)D(z)[y. 2] =0, 2,y € R.
Replacing yx for y in (12), it follows from that

(13) D(x)yzf(x)* + f(z)(B(z,y)z + 2yf(x) + [y, 2| D(2)) f (z)
+2D(z)f (x)yz f(z) + D(x)*[y, ]z f (z)
+(f(2)? + D(2)g(z))(B(z, y)= + 2y f(z) + [y, 7] D(z))
+D(z) f(x)D(x)|y, ]z =0, z,y € R.
Right multiplication of (12) by x leads to
(14)  D(z)yf(x)’z + f(x)B(z,y)f(z)x + 2D(z) f(z)yf(z)z
+D(z)%ly, 2] f (z)z + (f(z)* + D(2)g(2))B(z,y)z + D(z) f(z) D(x)ly, z]=
=0, z,y € R.
.Combining (13) with (14), we see that
(15) —D(2)y(f(0)g(z) + () f(z)) — f(z)Blz,y)g(x) + 2f (x)yf ()"
+f(@)ly, 2] D() f(z) — 2D(x) f (z)yg(z) — D(z)*[y, z]g(z)
+2(f(@)? + D@)g(@)uf (@) + (f(@)? + D(@)g(a))ly, xD(@) = 0, 2,y € R.



184 ByYunGg-Do KM

Left multiplication of (15) by D(z) leads to

(16) —D(2)y(f(2)g(x) + 9(a)§(z)) — D(x)f(z)B(z,v)g(z) +2D(e) {2}y ()’
+D() f(2)ly, 2| D(2) f(z) — 2D(x)* f(z)yg(z) — D(z)°[y, z}g(z)
+2(D(2)f(2)? + D(z)2g(2))yf (2) + (D(z) f(z)? + D(x)?g())ly, 21D ()
=0, z,y € R.

Let y —zin (16). Then we get

A7) ~D(@)a(f(2)9(s) + 9(x) f(x)) — 2D(z) f()2g(x) + 2D (@) f (&) f (x)?

~2D(2)*f(2)29(z) + 2AD(x) f(2)? + D(x)%g(x))zf(x) = 0, 2,y € R.

Left multiplication of (6) by D(x) leads to

(18) D(z)f(x)* + D(x)%g(z)f(z) + D()*f(x)g(z) = 0, a € R.
Comparing (1) and (18), we get
(19) D(x)*g(z)f(x) + D(z)*f(z)g(z) = 0, z € R.

From (1), (7) and (19), it follows from (17) that

(20)  —(f(=)D(z) + D(z)f(z)) f(z)g9(z) — (f(z)D(z) + D(z)f(z))g(x)f(x)
—2D()(2)%g() + 2(f(2)? + D(e)g(2))f(z)? + 2D(2)*f (2)h(z)
~2D(x)*g(x)*
= —f(2)D(x) f(z)g(z) - D(z)f(x)*g(z) — f(z)D(z)g(z)f (z)
~D(z)f(2)g(z) f(x) — 2D(2) f(z)?g(z) + 2 (2)* + 2D(z)g(z) f (z)°
+2D(2)2f (5)h(z) — 2D(z)2g(x)?
= —f(x)D(z)f(z)g(x) - f(z)D(z)g(z)f(z)
—D(z)f(2)g(x) f(z) + 2f(z)* + 2D(z)g(z) f (2)*
+2D(z)*f(x)h(z) — 2D(2)?g(z)> =0, z € R.

Combining (1), (6) with (20), we obtain

(21)  4f(x)* +3D(x)g(x)f(x)? + 2D(z)*f(x)h(z) — 2D(x)%g(x)* =0, = € R.

Right multiplication of (7) by f(x) leads to

(22) 7f(x)* +4D(z)g(z) f(x)* =0, z € R.

Comparing (21) and (22), we have

(23) 5f(z)* — 8D(x)%f(x)h(z) + 8D(x)%g(x)2 =0, z€R.
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From (5), it follows that

(24) 0 = [3f(z)’ - 4D(2)f()g(z), 2]
= 3g(z)f(2)* + 3f(x)g(x)f(2) — f(z)*g(x)
—4D(x)g(x)* — 4D(x) f(z)h(x), = € R.

Left multiplication of (24) by D(z) leads to

(25) 3D(z)g(z)f(z)* + 3D(z) f(z)g(x) f(z) — D(z)f(z)*g()
—4D(x)%g(z)? - 4D(z)?f(x)h(z) = 0, = € R.

Combining (1) with (25), we get

(26) 3D(z)g(x)f(2)? +3D(z) f(z)g(z) f (z) — 4D(x)*g(z)*

—4D(z)?f(z)h(z) =0, = € R.

Right multiplication of (5) by f(x) leads to

(27) 3f(z)* — 4D(z)f(x)g(x) f(x) = 0, = € R.

Comparing (22), (26) and (27), we have

(28) 12f(x)* + 16D (x)?g(z)? + 16D(x)% f(x)h(z) = 0, z € R.

Thus since R is 3-torsion-free, (28) gives

(29) 3f(x)* + 4D(x)?g(z)? + 4D(x)? f(z)h(z) = 0, = € R.

Comparing (23) and (29),we obtain

(30) 11f(x)* +16D(x)%g(z)* =0, z € R.

Left multiplication of (8) by D(z) leads to

(31) 3D(x)’g(x) f(z) + 7D(x)*f(z)g(z) =0, = € R.

Comparing (19) and (31), we have

(32) 4D(z)*f(z)g(z) =0, = € R.

Thus since R is 3!-torsion-free, (32) gives

(33) D(z)%g(z)f(z) =0, z € R.

Combining (31) with (33), we get

(34) D(z)?f(x)g(z) =0, z € R.
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On the other hand, we have the basic relations

(35) D(z*) = D(x)x* + 2D(zx)zx + 2°D(x),

(36)  [D(x),2°] = f(z)x + zf(2),
[D(2), 2% = f(2)2® + zf(z)z + 2 f(z),

(37) B(z,2%) = [D(z%), 2] + [D(z), 2% = [D(z)2® + 2D(z)z + 2*D(x), ]
+[D(x), 2°] = 2f(z)x? + 2z f(x)x + 222 f(z),

(38)  [D(@)f(2),2] = f(x)* + D(z)g(=),

(39) [D(x)f(x),2%] = D()|f(z),2°] + [D(x), %] f(x)
= D(x)g(x)z + D(z)zg(z) + f(z)zf(z) + zf(x)?,

(40) [D(z)?,x] = f(x)D(z) + D(z)f(x), = € R.

Let y = 2 in (4). Then using (35),(36), (37) and (38), we get

(41) D(«°) f(x)* + D(z)B(z,2%) f(z) + D(z)f () B(x,z°)
= (D(z)z” + &D(z)z + «*D(z)) f (z)* + D(x)B(z,z%) f(z) + D(x)f(2)B(z,z°)
= (D(x)2? + zD(z)z + 22 D(2)) f(x)? + 2D(z)(f (2)z? + x f(x)z + 2° f(2)) f(2)
+2D(x) f(z)(f(z)a® + z f(2)x + z* f(x))
= 5f(x)xf(x)? + 6z f(z)® + 2D(z)g(z)zf(x) + 2D(x)zg(x) f(x)
+2D(x)xf(x)xf(x) =0, = € R.
Left multiplication of (41) by D(x) leads to

(42) 5D(z) f(x)xf(x)? + 6D(x)xf(x)® + 2D(x) g(x)x f(x)
+2D(x)%xg(z) f(z) + 2D(x)’z f(z)xf(z) = 0, = € R.
Comparing (38), (40) and (42), we have
(43)  5(7(@)’ + D(@)g(@))(x)? + 6/(a)* — 2D(2)g(z)
£2(£(2)D(x) + D(2)())g(x) () + 2D(z) e f (2)e  (x)
= 11f(2)* + 5D(x)g(z) f(z)* — 2D(z)?g(z)*
+2f(2)D(z)g(z) f(z)+2D(z) f (z)g(z) f (x) +2D(x) z f(z)af(x) = 0, = € R.
Combining (5), (7) with (43), we get

(44) flz)* - 8D($)?g(x)2 + 8D(z)’xf(x)rf(z) =0, z € R.



JORDAN DERIVATIONS 187

Comparing (1) and (34), we obtain

(45) D(z)*f(x)xf(x) =0, z € R.

From (40), (44) and (45), we get

(46)  f(z)* —8D(z)*g(x)? + 8(f(2)D(x) + D(z)f(2))f(z)zf(z) =0, z € R.
Combining (1) with (46),

(47) f(2)* - 8D(2)2g(x)* + 8f(x) D(x) f (x)f(z) = 0, @ € R.

From (1) and (47),

(48) f(2)* - 8D(2)2g(z)? - 8(2)D(x)f(2)g9(x) = 0, « € R

Comparing (5) and (48), we obtain

(49) 5f(x)* 4+ 8D(x)%g(z)®> =0, z € R.

From (30) and (49), we can conclude that f(z)* =0, z € R. L]

Theorem 3.2. Let R be a 3'-torsion free noncommutative semiprime ring. Suppose
there exists a Jordan derivation D : R — R such that

[D(z),2]"D(x) = 0
for all x € R. In this case we have [D(z),z|* = 0 for all x € R.

Proof. By Theorem 2.2, we can see that D is a derivation on R. For simplicity,
we shall denote the maps B : Rx R — R, f,g : R — R by B(x,y) =

[D(2), 4} + [D(y), z], f(z) = [D(z),z], g(x) = [f(z),z], hz) = [g(x), 2] for all
x,y € R respectively. Then we have the basic properties:
B(z,y) = B(y,x), B(z,yz) = B(z,y)z + yB(z, 2) + D(y)|z, ] + |y, z] D(2),
B(z,z) = 2f(x), B(xy,z) = B(y, 2)x + 2B(y, z) + D(2)[z,y] + [z, y]D(x),
B(x,z%) = 2(f(z)z + zf(z)), z,y,2 € R.
After this, we use the above relations without specific reference. By assumption,
(50) f(2)2D(z) =0, z € R
Replacing = + ty for « in (50), we have
(51) f(z + ty)’D(z + ty)
= f(2)*D(z) + t{f(2)’D(y) + f(z)B(z,y)D(x)
+B(z,y) f(z)D(x)} + 2 Hy (2, y) + t* Ha(z,y) + t*H3(z,y)
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+t3f(y)®D(y) =0, z,y € R, t € 5

where H;,1 < i < 3, denotes the term satisfying the identity (51).
From (50) and (51), we obtain

(52) t{f(2)’D(y) + f(z)B(x,y)D(z) + B(z,y)f(z)D(z)}
+t2Hy(z,y) + t*Ha(z,y) + t*H3(z,y) =0, 2,y € R, t € 54

Since R is 3!-torsion free by assumption, by Lemma 2.1 the relation (52) yields

(53) f(x)*D(y) + f(z)B(z,y)D(x) + B(z,y)f(z)D(z) = 0, z,y € R.
Let y = 22 in (53). Then using (50), we obtain
(54) F@P(D@)e + zD(x)) + 2/ () (f (&) + 2£(2) D)

+2(f(z)z + = f(z)) f(z) D(x)

= f(2)’D(z)x + 3f(z)*zD(z) + 4f(z)z f (z)D(z)
+22f(2)*D(z)

= -3f(z)® + 49(z) f()D(z) =0, z € R.

From (50), it follows that
(55)  0=[f(2)?D(z),a] = g(z) () D(x) + f(2)g(@)D(a) + f(z)?, = € R.
From (54) and (55), we get
(56) 7f(z)} +4f(z)g(x)D(c) = 0, = € R.
Combining (54) with (56),
4(3f(x)g(z)D(x) + 7g(z) f(z)D(x)) =0, z € R.
Since R is 3!-torsion-free, the above relation gives
(57) ' 3/(2)9(a)D(x) + T9(2)f()D(z) =0, z € R.
Writing yz for y in (53), we have

(58)  f(2)*D@)x + f(x)’yD() + f(2)(B(z,y)z + 2yf(z) + [y, x]D(«)) D(z)
+(B(z,y)z + 2yf(z) + [y, 2] D(2)) f () D(z) = 0, 2,y € R.

Right multiplication of (53) by z leads to

(59) f(z)’D(y)z + f(z)B(z,y)D(z)z + B(xz, y)f(x)D(a:)a': =0, z,y € R.
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From (58) and (59), we obtain

(60)  f(=)yD(z) - f(2)B(,y)f(z) + 2f(2)yf (&) D(x) + f(2)ly, 2] D(x)’
—B(z,y)(f(z)* + g(z)D(x)) + 2y f(z)*D(x) |
+ly, z]D(x) f(#)D(z) =0, ,y € R.

By (50) and (60), it is obvious that
(61) f(x)?yD(z) — f()B(=,y)f(x) + 2f(z)yf(z)D(z) + f(x)[y, 2] D(z)’
—B(z,y)(f(2)* + g(z)D(x)) + [y, 2] D(x) f(z)D(z) = 0, z,y € R.
Replacing zy for y in (61), it follows that
(62) £()22yD(x) - f(2)(zB(z,y) +2f (2)y + D(x)ly, o)) f(z) + 2f (w)ayf () D(x)
+f(2)zly, 2] D(z)* — (xB(z,y) + 2f (z)y + D(z)[y, 2])(f(x)* + g(z) D(z))
+zly, x]D(x) f(x)D(z) =0, =,y € R.
Left multiplication of (61) by x leads to
(63) af(z)’yD(z) — xf(2)B(x,y)f(z) + 2z f(z)yf(x)D(z) + zf(x)[y, 2] D(x)*
—aB(z,y)(f(2)* + g(z)D(2)) + zly, 2} D(2) f(2)D(z) = 0, z,y € R.
Combining (62) with (63), we see that -
(64) (f(z)g(z) + g(x)f(x))yD(x) — g(z)B(z,y)f(z) — 2f(x)*y f(x)
- —f(@)D(x)[y, 2] f (z) + 2g(z)y f () D(2) + g(z)y, x| D(x)*
—2f(x)y(f(z)* + g(z)D(x)) — D()ly, z](f(z)* + g(x)D(z)) = 0, z,y € R.
Right multiplication of (64) by D(z) leads to
(65)  (f(x)g(z) + g(z)f(2))yD(z)? — g(z)B(z,y) f(x)D(z) — 2f(z)°yf(z)D(x)
—f(z)D()y, 2] f (z) D(x) + 29(x)y f (z) D(2)? + g(z)ly, ] D(z)*
—2f(2)y(f(z)*D(z) + g(z)D(z)*) — D(x)[y, z}(f(x)*D(z) + g()D(z)*)
=0, z,y € R. |
Let y = x in (65). Then we get
66)  (f(@)g(e) +g(2)(2)zD(@)? — 20(2)f()?D(z) - 2f (2)’f(2) D(z)
+29(2)0 £ (2)D(2)? — 2f (2)2(f(2)*D(z) + 9(z)D(@)2) = 0, z,y € R.
Right multiplication of (55) by D(x) leads to
(67) f()*D(z) + f(x)g(z)D(z)* + g(z) f(z)D(x)* =0, z € R.
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Comparing (50) and (67), we obtain

(68) f(@)g(z)D()? + g(x)f(2)D(z)* =0, s € R.
Right multiplication of (57) by D(z) leads to

(69) 3f(x)g(z)D(z)* + 7g(x)f(z)D(x)* = 0, z € R.
Combining (68) with (69), we have

(70) 4g9(z)f(z)D(x)* =0, = € R.

And since R is 3!-torsion-free, (70) gives

(71) g(z)f(z)D(z)* =0, z € R.

From (68) and (71),

(72) | f(x)g(z)D(x)? =0, z € R.

From (50),(71), (72), it follows from (66) that

(73)  —(f(@)g(z) + 9(x)f (@))(f (&) D(x) + D(x)f(x))
 42f(2)X(g(x)D(x) + f(x)?) + 2h(z) f(z) D(z)?
+2£(2)(29(z) f (z)D(z) + f(z)g(x)D(z) + f(z)°
+h(z)D(z)? + g(z)D(z) f(z))

= — f(z)g(z)f(x) D(z) — f(2)g(z)D(x)f(x) — g(z)f(z)*D(z)

—9(2)f(z)D(z) f(z) + 2f (z)*g(z) D(z) + 2f(z)"
+2h(z)f(z)D(z)* + 4f(z)g(x) f(z)D(z)

+2f(2)29(z)D() + 2f(z)* + 2f (2)h(z) D()? + 2f ()g(z) D(x) f ()

= 3f(z)g(z) f(z)D(z) + f(z)g9(z)D(z)f ()

—g(z)f(z)D(x) f(z) + 4 (2)*g(z) D(x)

+4f(x)* 4 2h(z) f(x)D(x)? + 2f(x)h(z)D(x)* = 0, T € R.
Combining (54), (56) with (73), we have

(74) ~13f(z)* + 8h(z) f(z)D(z)? + 8f (x)Mzx)D(x)* =0, z € R.

From (57), it follows that
(75) -0 = [3f(2)g(z)D(z) + T9(z) f (z) D(2), x|

= 10g(x)’D(z) + 3f (x)h(x) D(z) + 3f (z)g(z) f (x)
+7h(z)f(z)D(z) + Tg(z) f(z)?, z € R.
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Right multiplication of (75) by D(x) leads to

(76) 10g(z)* D(2)* + 3f (2)h(z) D(x)” + 3f(z)g(x)f (x) D{x)
+7h(z) f(2)D(x)? + 7g(z) f(z)>D(z) = 0, = € R.

Comparing (50) and (76), we get

(77) 10g(x)?D(x)? + 3f(x)h(x) D(z)* + 3f(z)g(z) f (x) D(x)
+7h(z)f(x)D(z)* =0, = € R.

Combining (74) with (77), we have -

(78) 57 f(z)* + 80g(z)?D(x)? + 32h(x) f(z)D(x)> =0, x € R.

From (71), it follows that
(79) 0 = [g(2)f(#)D(@) 2] |
= h(z)f(z)D(z)* + g(x)>D(x)? + g(x) f(2)*D(x),
+9(z)f(x)D(z)f(z)z € R.
And from (50) and (79),

(80) h(z)f(x)D(x)? + g(z)2D(x)? + 9(z) f () D(@)f(z) = 0, z € R

Thus, combining (54) and (80), we get

(81) 3f(x)* + 49(2)?D(z)? + 4h(x) f(z)D(2)* = 0, = € R.
Combining (78) with (81), we have

(82) 33f(z)* + 48¢(z)?D(x)®> =0, z € R.

Thus since R is 3!-torsion-free, (82) gives

(83) 11f()* + 169(z)2D(z)? = 0, z € R.

On the other hand, we have the basic relations

8  [D@?e) = (Dl + 2D 2] = D(@)f()z + f(@)D()a
+zD(z) f(z) + = f(z)D(z),

(85) [f(2)D(z), 2] = g(2)D(z) + f(z)?,

(86) [f(@)D(x), 2% = [f(x),2*| D(z) + f(x)[D(z),2’]
= (g(x)zD(z) + zg(z) D(z) + f(2)’x + f(z)zf(2),
x € R.

191
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Let y = 3 in (53). Then using (35), (50),(36), (37) and (85), we get

(87) f(z)*D(z”) + f(z)B(z,2°) D(z) + B(z,z°) f(z)D(z)
= f(x)*(D(z)z* + zD(z)x + £2D(z)) + f(z)B(z,2*)D(z) + B(z, %) f(z)D(z)
= f(x)2(D(z)2* + xD(x)x + 22 D(zx)) + 2f(:r)(f(:v):1: +zf(xr)z+ wzf(a:))D(w)
+2(f(2)z’ + 2 f () + 2° f(z)) f (¢) D(z)
= f(z)’zD(z)x + 3f(x)*2*D(x) + 2f(z)z f (z)xD(z) + 4f (z)z” f(x) D()
+2zx f(x)xf(x)D(x) =0, = € R.

Right multiplication of (87) by D(z) leads to

(88) f(2)*zD(z)xD(x) + 3f(z)’x*D(x)* + 2f (z)z f(x)zD(x)*
+4f(x)z? f(x)D(x)? + 2z f(x)zf(x)D(z)* =0, z € R.

Comparing (40), (50), (84),(85) and (88), we have

(89) f(z)2zD(x)xD(z) + 3f(x)°2%D(x)? + 2f(x)z f(x)zD(z)?
+4f(2)a*f(z)D(z)* + 22§ (2)2f (2) D(x)’

= —f(2)’zD(z) - 3f(2)*[D(2)?, 2°] + 2f (2)zf (z)x D(z)’
+4[f(x), 2% f(z) D(z)? + 22[f (z), z] f(x) D(z)*

= —4f(2)°zD(z) - 3f(2)*(D(z)f (x)z + f(z) D(z)z + zD(x) f (x)
+xf(x)D(x)) + 2f (x)zf(x)zD(x)? + 49(:1:):1:f(:17)D(a:)2 + 6xg(z) f(z) D(x)?
+62g(x) f(z)D(z)? |

= —4f(z)°zD(z) - 3f(z)*zD(z) f (z) — 3f(z)*zf(z) D(x)
+2f(z)zf(x)xD(x)* + 4g(z)z f (z)D(z)*
+6zg(z)f(z)D(z)> =0, = € R.
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Combining (50), (71) with (89), we get
(90) —4f(z)°xD(z) ~ 3f(x)*2zD(z) f(2) — 3 (z)*zf(x) D(x)
+2f(x)zf(x)zD(x)* + 4g(z)x f(z) D(x)*
+6zg(x) f(2)D(z)’ '
= 4f(2)* + 3£(2)2ID(®) f(2), ] + 3f (2)°[f (2) D(x), 2] + 2f () f ()2 ()’
—4g(x)(f(z)D(x)?, 2] |
= 10f(z)* + 3f(z)*g()D(z) + 2f (z)2 ()2 D(z)? ~ 49(x)*D(x)?
—4g(x)f(x)D(z)f(z) =0, z € R.
Comparing (50) and (71), we obtain
(91) f(@)xf(x)D(x)? =0, z € R.
Comparing (50), (54), (56), (90), and (91), we obtain |
(92) 40f(2)* + 3f(z)(4f (x)g(x) D(x)) — 8f(z)zf(z)[D(z)* 2]
—16g(x)?D(z)* ~ 4(4g(z) f (¢) D(x)) f (z)
= 40f(2)* + 3f(x)(~7f(2)®) — 8 (@) f(x)(f(2) D(z) + D(z)f(z))
~169(2)*D(z)* - 4(3f(2)")(a) '
= 7f(x)" - 8f()2f(2)D(2)f(z) — 169(z)*D(z)* = 0, z € R.
From (50) and (92), we get

(93) 7f(x)* - 8g(z) f(z)D(z) f(z) — 169(x)’D(x)* = 0, = € R.
Combining (54) with (93),
(94) 7f(z)* — 2(3f(2)°) f(z) — 16g(x)*D(x)

= f(z)* — 16¢(z)*D(z)2 = 0, z € R.
From (83) and (94),
(95) 12f(z)* =0, z € R.
Since R is 3!-torsion-free, (95) gives f(z)* =0, z € R. O

Theorem 3.3. Let R be a 2!-torsion free noncommutative semiprime ring. Suppose
there exists a Jordan derivation D : R — R such that

[D(z), z]D(z) =0
for all x € R. In this case we have [D(x),z]?> = 0 for all x € R.
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Proof. By Theorem 2.2, we can see that D is a derivation on R. For simplicity,
we shall denote the maps B : Rx R — R, f,g : R — R by B(z,y) =

|[D(x),y] + [D(y), x|, f(z) = [D(z),x], g(x) = [f(z),x], .h(a:) = [g(::c),:c] for all
x,y € R respectively. Then we have the basic properties: |

B(x,y) = Bly,x), B(z,yz) = B(w,y)z +yB(z, 2) + D(y)lz, 2] + [y, 2] D(2),
B(z,z) = 2f(z), B(zy,2) = B(y, 2)z + 2B(y, ai‘)_+ D(z)[x,y] + [z, y] D(x),
B(z,z%) = 2(f(z)x + zf(x)), z,y,2 € R.

After this, we use the above relations without specific reference. By assumption,
(96) flx)D(z) =0, z € R
Replacing x + ty for x in (96), we have
(97) f(z+ty)D(z + ty)
= f(x)D(x) + t{f(z)D(y) + B(z,y)D(x)}
+2J(z,y) + 3 f(y)D(y) =0, T,y € R, t € Sy

where J .denotes the term satistying the identity (97).
From (96) and (97), we obtain

(98) t{f(z)D(y) + B(z,y)D(x)} + t*J(x,y) =0, x,y € R, t € S>
Since R is 2!-torsion free by assumption, by Lemma 2.1 the relation (98) yields
(99) f(z)D(y) + B(z,y)D(z) = 0, ,y € R.

Let y = 22 in (99). Then using (96), we obtain

(100) 7(@)(D(@)e + 2D(x)) + 2(f (2)z + 2f(2)) D(z)

= f(z)D(z)z + 3f(x)xD(z) + 22 f(x) D(x)
= -3f(x)*=0, z € R.
From (96), it follows that
(101) 0 = [f(2)D(2), 2]
= g(z)D(z) + f(z)?, z € R.
Writing yx for y in (99), we have |

(102) f(@)D(y)x + f(x)yD(x) + (B(z,y)x + 2yf(x) + [y, 2] D(x)) D(x)
=0, z,y € R.
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Right multiplication of (99) by z leads to

(103) flx)D(y)xz + B{z,y)D(z)x =0, z,y € R.

From (102) and (103), we obtain

(104)  f(2)yD(x) — B(x,)f(z) + 20 f(@)D(x) + [y, 11 D(x)? = 0, 2,y € .
By (96) and (104), it is obvious that

(105)  f(z)yD(z) - B(z,y)f(z) + [y,2]D(@)* = 0, z,y € R.
Replacing zy for y in (105), it follows that

(106)  f(x)zyD(z) — (zB(z,y) + 2f(z)y + D(z)ly, z)) f(z) + zly, 2] D(x)*
=0, z,y € R.

Left multiplication of (105) by z leads to

(107) zf(z)yD(z) — zB(x,y) f(2) + 2]y, 2} D(z)* = 0, =,y € R.
Combining (106) with (107), we see that |
(108) 9(z)yD(z) - 2f(z)yf(z) — D(z)ly, z]f(z) =0, =,y € R.

Let y = z in (108). Then we get
(109) g{x)xD(z) — 2f(x)xf(x) =0, z € R.
Comparing (96) and (109), we obtain

(110) ~g(2)f(2) + 2/ (z)g(z) = 0, a € R
Right multiplication of (110) by D(x) leads to
(111) —g(x)f(z)D(x) + 2f(x)g(x)D(x) =0, z € R.

Combining (96) with (110), we have
(112) 2f(x)g(z)D(zx) =0, z € R.

And since R is 2!-torsion-free, (112) gives

(113) f(z)g(x)D(z) =0,z € R.
Left multiplication of (101) by f(x) leads to
(114) f(2)g(z)D(z) + f(z)* =0, z,y € R

Combining (113) with (114), we see that f(z)3 =0, = € R. O
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Theorem 3.4. Let R be a 3!-torsion free noncommutative semiprime ring. Suppose

there exists a Jordan derivation D : R — R such that
[D(z),z]D(z) =0

for all x € R. In this case we have [D(x),z]? =0 for all z € R.

Proof. By Theorem 2.2, we can see that D is a derivation on R. For simplicity,
we shall denote the maps B : Rx R — R, f,g : R — R by B(z,y) =

[D(z),y] + [D(¥),z], f(x) = [D(z),z], g(z) = [f(z),z], h(z) = [g(z),z] for all
x,y € R respectively. Then we have the basic properties:

B(z,y) = B(y,z), B(x,y2) = B(z,y)z + yB(z,2) + D(y)[2,2] + [y, 2] D(2),
B(x,z) = 2f(z), B(zy,z) = B(y, 2)x + 2B(y, z) + D(z)[z,y] + [z, y| D(x),
B(x,z%) = 2(f(z)z + xf(z)), =;y,2 € R.

After this, we use the a,bové relations without speCiﬁc reference. By assumption,
(115) f(x)D(z) =0,z € R
Replacing x + ty for z in (115), we have

(116) f(x + ty)D(x + ty) |
= f(z)D(z) + t{f(2)D(y) + B(z,y)D(z)} + t*L(z, y) + t*f (¥) D(y)
=0, z,y€ R, t€ 53

where L denotes the term satisfying the identity (116).
From (115) and (116), we obtain

(117) t{f(x)D(y) + B(z,y)D(z)} + t*J(x,y) =0, T,y € R, Lt € 53

Since R is 3!-torsion free by assumption, by Lemma 2.1 the rel.a.tion (117) yields
(118) f(x)D(y) + B(z,y)D(x) =0, z,y € R.

Let y = x* in (118). Then using (115), we obtain

(119) f(z)(D(z)x + zD(z)) + 2(f(z)z + = f (:c_))D(w)_
= f(z)D(z)x + 3f(x)xD(zx) + 2z f(a:)D(a:) =-3f(z)?2=0, z € R.

and so, since R is 3!-torsion-free, (119) gives f(x)* =0, z € R. O]
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4. APPLICATIONS TO BANACH ALGEBRA THEORY

The proof of the following theorem as our main theorem is the same argument
as 1n the proof of J. Vukman’s theorem [12].

Theorem 4.1. Let A be a noncommutative Banach algebra. Suppose there exists a

continuous linear Jordan derivation D : A — A such that
D(x)[D(x), z]* € rad(A)
for all x € A. Then we have D(A) C rad(A).

Proof. According to the result of B.E. Johnson and A.M. Sinclair (5] every linear
derivation on a semisimple Banach algebra is continuous. A.M. Sinclair [8] has
proved that any continuous linear derivation on a Banach algebra leaves the primitive
ideals of A invariant. Hence for any primitive ideal P C A one can introduce a
continuous linear Jordan derivation Dp : A/P — A/P, where A/P is a prime and
factor Banach algebra, by Dp(%) = D(z) + P, £ = 2 + P. Then A/P is a prime
Banach algebra, by Theorem 2.2 it is obvious that Dp is a continuous derivation
on A/P. And also, from the given assumptions D(z)f(z)? = 0, = € A, it follows
that (Dp(2))|Dp(2),£]? = 0, £ € A/P, since all the assumptions of Theorem 2.4
are fulfilled. The factor algebra A/P is noncommutative, by Theorem 2.5 we have
[Dp(2),2]* =0, & € A/P. Then rp([Dp(2),))* = r([Dp(%),2]*) = 0 for all €
A/P. Hence we obtain rp([Dp(%),2]) = 0 for all & € A/P. Thus [Dp(%),3] €
Q(A/P) for all £ € A/P. On the other hand, since D is continuous, we see that
Dp is also continuous. Thus by Theorem 2.3, one obtains Dp(A/P) C rad(4/P).
But since A/P is semisimple, Dp(A/P) = {0}. Hence we get D(A) C P for all
primitive ideals P of A. Thus D(A) C rad(A). On the other hand, in case A/P is a
commutative Banach algebra, one can conclude that Dp = 0 as well since A/P is
semisimple and prime Banach algebra and since we know that there are no nonzero
linear derivations on a commutative semisimple Banach algebras. Hence D(x) € P

for all primitive ideals and all z € A i.e., we D(A) C rad(A). Therefore in any case,
we D(A) C rad(A). U

Theorem 4.2. Let A be a noncommutative Banach algebra. Suppose there exists a

continuous linear Jordan derivation D : A — A such that
[D(a:),;r:]zD(a:) € rad(A)
Jorallx € A. Then we have D(A) C rad(A).
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Proof. The proof is similar as in the proof of Theorem 2.7. ]

We will give another proof of J. Vukman’s result in [11]. We will give a new proof
to make use of the results of Theorem 3.3 and 3.4. Of course, it is also a special case

of the above Theorem.

Corollary 4.3. Let A be a noncommutative Banach algebra. Suppose there erists

a continuous linear Jordan derivation D : A — A such that
|D(x), z|D(z) € rad(A)
for all x € A. Then we have D(A) C rad(A).

Proof. According to the result of B.E. Johnson and A.M. Sinclair [5] every linear
derivation on a semisimple Banach algebra is continuous. A.M. Sinclair [8] has
proved that any continuous linear derivation on a Banach algebra leaves the primitive
ideals of A invariant. Hence for any primitive ideal P C A one can introduce a
continuous linear Jordan derivation Dp : A/P — A/P, where A/P is a prime and
factor Banach algebra, by Dp(%) = D(z) + P, £ = ¢ + P. Then A/P is a prime
Banach algebra, by Theorem 2.2 it is obvious that Dp is a continuous derivation
on A/P. And also, from the given assumptions f(z)D(x) = 0, = € A, it follows
that [Dp(2),2]Dp(2) = 0, £ € A/P, since all the assumptions of Theorem 3.4
are fulfilled. The factor algebra A/P is noncommutative, by Theorem 3.4 we have
[Dp(2),2)2 =0, & € A/P. Then rp([Dp(2),2])? = r([Dp(£),£]?) = 0 for all £ €
A/P. Hence we obtain rp([Dp(%),z]) = 0 for all # € A/P. Thus [Dp(2),%] €
Q(A/P) for all £ € A/P. On the other hand, since D is continuous, we see that
Dp is also continuous. Thus by Theorem 2.3, one obtains Dp(A/P) C rad(A/P).
But since A/P is semisimple, Dp(A/P) = {0}. Hence we get D(A) C P for all
primitive ideals P of A. Thus D(A) C rad(A). On the other hand, in case A/P is a
commutative Banach algebra, one can conclude that Dp = 0 as well since A/P is
semisimple and prime Banach algebra and since we know that there are no nonzero
linear derivations on a commutative semisimple Banach algebras. Hence D(x) € P
for all primitive ideals and all x € A i.e., we D(A) C rad(A). Therefore in any case,
we D(A) C rad(A). - []

Remark 4.4. By the same arguments of Theorem 3.3 and 3.4, it is easily checked
that [D(z),z]® = 0 or [D(x),2)? =0 for all z € R if D(z)[D(z),z] = 0 for all z € R.
And using the results, we can obtain the analytic version by the same arguments as

in Corollary 4.11.
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Theorem 4.5. Let A be a noncommutative semisimple Banach algebra. Suppose

there exists a linear Jordan derivation D : A — A such that
D(z)[D(z),x)* =0
for all x € A. Then we have D = 0.

Proof. According to the result of B.E. Johnson and A.M. Sinclair [5] every linear
derivation on a semisimple Banach algebra is continuous. A.M. Sinclair [8] has
proved that any continuous linear derivation on a Banach algebra leaves the primitive
ideals of A invariant. Hence for any primitive ideal P C A one can introduce a linear
Jordan derivation Dp : A/P — A/P, where A/P is a prime and factor Banach
algebra, by Dp(z) = D(z)+ P, £ = ¢+ P. Then A/P is a prime Banach algebra, by
Theorem 2.2 it is obvious that Dp is a continuous derivation on A/P. And also, from
the given assumptions D(z)f(z)? =0, z € A, it follows that (Dp(2))[Dp(),2]? =
0, & € A/P, since all the assumptions of Theorem 2.4 are fulfilled. In the case
that the prime Banach algebra A/P is noncommutative, by Theorem 2.5 we have
|[Dp(£),2]* =0, 2 € A/P. Then rp([Dp(2),2))* = r([Dp(£),2]*) = 0 for all & €
A/P. Hence we obtain rp({Dp(Z),2]) = 0 for all £ € A/P. Thus [Dp(Z),2] €
Q(A/P) for all £ € A/P. On the other hand, since D is continuous, we see that Dp
is also continuous. Thus by Theorem 2.3, one obtains Dp(A/P) C rad(A4/P). But
since A/ P is semisimple, Dp(A/P) = {0}. Hence we get D(A) C P for all primitive
ideals P of A. Thus D(A) C rad(A) = {0} since A is semisimple. That is D = 0. On
the other hand, in case A/P is a commutative semisimple Banach algebra, one can
conclude that Dp = 0 as well since A/P is a semisimple and prime Banach algebra
and since we know that there are no nonzero linear derivations on a commutative
semisimple Banach algebras. Hence D(A) C P for all primitive ideals of A i.e., we
D(A) Crad(A). By the assumption that A is semisimple, we get 1) = 0. ]

The following theorem generalizes Vukman’s result [11].

Theorem 4.6. Let A be a noncommutative semisimple Banach algebra. Suppose

there exists a linear Jordan derivation D : A — A such that
[D(x), z]*D(x) = 0
for all x € A. Then we have D = 0.
Proof. The proof is similar as in the proof of Theorem 2.9. [

The following Theorem 2.8 is essentially due to J. Vukman [11].
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Corollary 4.7. Let A be a noncommutative semisimple Banach algebra. Suppose

there exists a linear Jordan derivation D : A — A such that
D(@)[D(z),2] = 0
for all x € A. Then we have D = 0.

Corollary 4.8. Let A be a noncommutative semisimple Banach algebra. Suppose

there exists a linear Jordan derivation D : A — A such that
[D(z),x]D(z) =0
for all t € A. Then we have D = 0.

As a special case of Theorem 2.9 we get the following result which characterizes

commutative semisimple Banach algebras.
Corollary 4.9. Let A be a semisimple Banach algebra. Suppose
[z, yl[[z,y),z]* = 0
for all x,y € A. In this case, A is commutative.

As a special case of Theorem 2.10 we get the following result which characterizes

commutative semisimple Banach algebras.
Corollary 4.10. Let A be a semisimple Banach algebra. Suppose
2, ), 2]z, 5] = 0
for all z,y € A. In this case, A is commutative.
As a special case of Theorem 2.7 we have the following result.

Corollary 4.11. Let A be a noncommutative Banach algebra. Suppose there exists

a continuous linear Jordan derivation D : A — A such that
D(zx)[D(x),x] € rad(A)
and for all x € A. Then we have D(A) C rad(A).
As a special case of Theorem 2.8 we have the following result.

Corollary 4.12. Let A be a noncommutative Banach algebra. Suppose there exists

a continuous linear Jordan derivation D : A — A such that
[D(z),z]|D(x) € rad(A)
and for all x € A. Then we have D(A) C rad(A).
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