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JORDAN DERIVATIONS OF SEMIPRIME RINGS AND
NONCOMMUTATIVE BANACH ALGEBRAS, II

Byung-Do Kim

ABSTRACT. Let A be a noncommutative Banach algebra. Suppose there exists a
continuous linear Jordan derivation D : A — A such that D(z)?[D(z),z] € rad(A)
or [D(x), r]D(z)* € rad(A) for all z € A. In this case, we have D(A) C rad(A).

1. INTRODUCTION

Throughout, R represents an associative ring and A will be a complex Banach
algebra. We write [r,y] for the commutator zy — yz for z,y in a ring. Let rad(R)
denote the (Jacobson) radical of a ring R. And a ring R is said to be (Jacobson )
semisimple if its Jacobson radical rad(R) is zero.

A ring R is called n-torsion free if nz = 0 implies « = 0. Recall that R is prime if
aRb = (0) implies that either a = 0 or b = 0, and is semiprime if aRa = (0) implies
a = 0. On the other hand, let X be an element of a normed algebra. Then for every
a € X the spectral radius of a, denoted by r(a), is defined by r(a) = inf{||a"||% :
n € N}. It is well-known that the following theorem holds: if a be an element of a
normed algebra, then r(a) = lim ||a”H% (see F.F. Bonsall and J. Duncan [1]).

An additive mapping D frgrzo‘k to R is called a derivation if D(zy) = D(x)y+
zD(y) holds for all z,y € R. And an additive mapping D from R to R is called a
Jordan derivation if D(2?) = D(z)x + zD(x) holds for all z € R.

B.E. Johnson and A.M. Sinclair [5] have proved that any linear derivation on a
semisimple Banach algebra is continuous. A result of .M. Singer and J. Wermer
[9] states that every continuous linear derivation on a commutative Banach algebra
maps the algebra into its radical. From these two results, we can conclude that there

are no nonzero linear derivations on a commutative semisimple Banach algebra.
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M.P. Thomas [10] has proved that any linear derivation on a commutative Banach
algebra maps the algebra into its radical.

J. Vukman [11] has proved the following: let R be a 2-torsion free prime ring. If
D : R — R is a derivation such that [D(z),z]D(x) = 0 for all z € R, then D = 0.

Moreover, using the above result, he has proved that the following holds: let A
be a noncommutative semisimple Banach algebra. Suppose that [D(z),z]D(z) =0
holds for all x € A. In this case, D = 0.

The author [6] has showed that the following results hold: let R be a 3!-torsion

free semiprime ring. Suppose there exists a Jordan derivation D : R — R such that
[D(), ] D()[D(z), 2] = 0

for all z € R. In this case, we have [D(z),z]> =0 for all z € R.

And, the author [7] has showed that the following results hold:let A be a noncom-
mutative Banach algebra. Suppose there exists a continuous linear Jordan derivation
D : A — A such that D(z)[D(z),z]D(z) € rad(A) for all x € A. In this case, we
have D(A) C rad(A).

In this paper, our first aim is to prove the following results in the ring theory in
order to apply it to the Banach algebra theory:

let R be a 7!-torsion free semiprime ring.

(i) Suppose there exists a Jordan derivation D : R —» R such that

D(z)*[D(z),z] = 0

for all z € R. In this case, we obtain [D(z),z]” =0 for all z € R.
(ii) Suppose there exists a Jordan derivation D : R — R such that

[D(z), z|D(x)? =0

for all z € R. In this case, we obtain [D(z),z]” =0 for all z € R.

Using the above results, we generalize J. Vukman’s result [11] as follows: let A
be a noncommutative Banach algebra and let D : A — A be a continuous linear
Jordan derivation.

(iii) Suppose that D(z)?[D(z),z] € rad(A) holds for all z € A. In this case,
D(A) C rad(A).

(iv) Suppose that [D(z),z]D(z)? € rad(A) holds for all z € A. In this case,
D(A) C rad(A).
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2. PRELIMINARIES AND RESULTS

The following lemma is due to L.O. Chung and J. Luh [4].
Lemma 2.1. Let R be a n!- torswn free ring. Suppose there exist elements yy, ya,

v Yn—1.Yn n R such thatZtkyk=0forallt—1 2,-++,n. Then we have yp = 0

k=1
for every positive integer k with 1 <k < n.

The following theorem is due to M. Bre§ar [3].

Theorem 2.2. Let R be a 2-torsion free semiprime ring and let D : R — R be a

Jordan derivation. In this case, D is a derivation.

We write Q(A) for the set of all quasinilpotent elements in A. M. Bresar [2] has
proved the following theorem.

Theorem 2.3. Let D be a bounded derivation of a Banach algebra A. Suppose that
[D(x),z] € Q(A) for every x € A. Then D maps A into rad(A).

After this, by S, we denote the set {k € N| 1 < k < m} where m is a positive
integer.

We need Theorem 2.4 and 2.5 to obtain the main theorems for Banach algebra
theory.

Theorem 2.4. Let R be a 7!-torsion free noncommutative semiprime ring. Suppose
there exists a Jordan derivation D : R — R such that

D(z)*[D(x), 2] =0
for all x € R. In this case we have [D(z),z]" = 0 for allz € R.

Proof. By Theorem 2.2, we can see that D is a derivation on R. For simplicity, we
shall denote the maps B: Rx R — R, f,g: R — R by B(z,y) = [D(z),y] +
[D(y),z], f(z) = [D().z]. g(z) = [f(x).z] for all x.y € R respectively. Then we
have the basic properties:
B(z,y) = B(y, ), Blz.yz) = B(r.y)z + yB(z.2) + D(y)z, z] + [y-:r]D(Z)s
B(z,z) = 2f(x), B(zy,z) = B(y. 2)x + 2B(y, ) + D(z)[z,y] + [z, y| D(z
B(z,z?) = 2(f(z)z + zf(2)), z,y,2 € R.
After this, we use the above relations without specific reference. By assumption.

(1) D(x)’f(x) =0, r € R
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Replacing x + ty for = in (1), we have
D(z + ty)?*[D(z + ty), = + ty]
= D(z)*f () + t{D(y)D(x) f () + D(z)D(y) B(x,y)
+D(2)*B(z,y)} + t*Hi(z,y) + t*Ha(z,y)
(2 +t*D(y)2f(y) =0, z,y € Rt € S

where H;, 1 <1< 2, denotes the term satisfying the identity (2).
From (1) and (2), we obtain

t{D(y)D(z)f(z) + D(z)D(y)f(z) + D(z)*B(z,y)}

3) +t2H1(x,y) + t3H2(ac,y) =0, z,y€ R, t€S;s.
Since R is 3!-torsion free by assumption, by Lemma 2.1 the relation (3) yields
(4) D(y)D(z)f(z) + D(z)D(y)f (z) + D(x)*B(z,y) = 0,2,y € R.
Let y = z? in (4). Then using (1), we have

(D(z)z + zD(x))D(z) f(z) + D(z)(D(z)z + zD(z)) f(z)

+2D(2)*(f (2)z + 2 f(x))

= f(z)D(z) f(z) + (f(z)D(z) + D(z) f(2))f(z) + f(z)D(z) f(x)

+2(f(x)D(x) + D(x) f(x))f (x)
(5) = 5f(z)D(x)f(x) +3D(z)f(x)? =0,z € R.
From (1), we arrive at

0= [D(@)*f(z),a]

(6) = f(z)D(z)f(z) + D(x)f(z)* + D(z)*¢(z), z € R.
From (5) and (6), we get
(7) 2f(z)D(z)f(x) - 3D(z)?¢(z) =0, z € R.

Combining (5) with (7),

3(2D(z) f(z)?* + 5D(x)%g(z)) =0, z € R.
Since R is 3!-torsion-free, the above relation gives
(8) 2D(x) f(x)? + 5D(x)2g(z) = 0, = € R.
Left multiplication of (8) by D(z) leads to
(9) 2D(x)? f(z)? + 5D(z)%g(z) = 0, = € R.
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Comparing (1) and (9), we arrive at
(10) 5D(x)%g(z) =0, z € R.
Since R is 5)-torsion-free, (10) gives
(11) D(z)3g(z) =0, = € R.
Writing zy for y in (4), we get
zD(y)D(z) f(x) + D(x)yD(x) f(x) + D(z)eD(y) f(z) + D(z)*yf(x)
(12) +D(x)*(xB(x.y) + 2f(«)y + D(x)[y,2]) = 0. z,y € R.
Left multiplication of (4) by « leads to
(13) D (y)D(z)f(z) + zD(z)D(y) f(z) + zD(z)?B(z,y) =0, z.y € R.
From (12) and (13), we arrive at
D(z)yD(x)f(z) + f(x)D(y) f(z) + D(x)*yf(x) + (f()D(x)
(14) +D(z)f(2))B(x,y) + 2D(z)*f(2)y + D(2)’[y,2] = 0. z.y € R.
By (1) and (14), it is obvious that
D(z)yD(z)f(z) + f(x)D(y)f(z) + D(«)*yf(z) + (f(x)D(x)

(15) +D(z)f(z))B(z,y) + D(z)3[y, 2] =0, .y € R.
Replacing ya for y in (15), it follows from that

D(z)yzD(z)f(x) + f(x)D(y)zf(x) + f(z)yD(x)f(x)

+D(@)?yz f(z) + (f(2)D(z) + D(x) f () (Bl y)x + 2y f(z) + [y. £] D ()
(16) +D(z)%[y.z)z = 0. z,y € R.

Right multiplication of (15) by r leads to
D(z)yD(z)f(z)z + f(z)D(y)f(x)x + D(x)?yf(z)z
(17) +(f(z)D(z) + D(r)f(x)) Bz, y)r + D(x)?[y, z}z = 0, z,y € R.
Combining (16) with (17), we see that
D(z)y(f( D(2)g(z)) - f()D(y)g9(x) + f(z)yD(z) f ()
(

)
D(z)yg(x) + 2(f(x) D(x) + (I)f()) f(=z)
(18) +(f(2)D(z) + D(r) f(x)]y. x| D(x) = 0. x,y € R.

x)° +
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Left multiplication of (18) by D(x)? leads to

—D(2)’y(f(x)* + D(z)g(x)) — D(x)*f(x)D(y)g(z) ~ D(z)*yg(x)

+D(2)? f(z)yD()f (z) + 2D(x)*(f(z) D(z)
(19) +D(z)f(z))yf(z) + D(x)*(f(2)D(z) + D(z) f(x))ly, z]D(z) = 0, =,y € R.
Comparing (1) and (19), we get
(20) D(z)%y(f(z)* + D(z)g(x)) + D(z)*yg(x) = 0, z,y € R.
Substituting yD(z)? for y in (20), we have
21) D) ’y(D(z)*f(z)* + D(x)*g(x)) + D(x)'yD(z)*g(x) = 0, z,y € R.
From (1), (11) and (21), it is clear that

)*
(

(22) D(z)*yD(z)%g(x) =0, =,y € R.
Using (8), it follows from (22) that
(23) 2D(z)*yD(z)’9(z) = D(x)*y(—5D(z)%¢(x)) = 0, z,y € R.
Thus since R is 2-torsion-free, (23) gives
(24) D(x)*yD(z)*g(x) =0, =,y € R.
Combining (8) with (24) that
(25) 2D(z)*yD(z)f(z)* = —5D(x)'yD(z)’g(z) = 0, z,y € R.
And so, since R is 2-torsion-free, (25) yields
(26) D(z)*yD(z)f(x)? =0, =,y € R.
From (7) and (24), we have
2D(2)*yf(z)D(z)f(z) = D(2)*y(3D(x)*g(x))
(27) = 3D(x)*yD(z)%g(z) = 0, z,y € R.
It follows from (27) that
(28) D(x)*yf(z)D(z)f(z) =0, z,y € R
since R is 2-torsion-free. Writing y f(z)D(z)f(z)z for y in (20), we have

()£ (
D(z)*yf (z)D(z) f()z(f(x)* + D(z)g(x))
(29) +D(z)yf(x)D(z) f(x)zg(z) = 0, z,y,2 € R.

N N
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From (28) and (29), we obtain

(30) D(z)*yf(z)D(x)f(z)2(f()* + D(z)g(z)) =0, z,y,z € R.
Letting zD(z) in z in (30), we get

(31) D(z)*yf(z)D(z)(z)z(D(z)f(z)* + D(x)*g(x)) =0, z,y,z € R.
Using (6), the relation (31) gives

(32) D(2)*yf(z)D(z)f(z)2f(2)D(z)f(z) = 0, z,y,2 € R.
Putting zD(x)3y instead of z in (32),

(33) D(2)*yf(x)D(z) f()2(D(x)’yf(2)D(2)f(2)) = 0, z,y,2 € R.
Since R is semiprime, we have

(34) D(z)*yf(z)D(z)f(z) = 0, z,y € R.

Replacing x + tz for z in (34), we have
D(z + t2)3yf(z + t2)D(z + t2) f(z + t2)
= D(z)’yf(z)D(z)f(z)
+t{(D(2)D(z)? + D(z)D(z)D(z) + D(z)*D(2))yf (x) D(x) f(x)

+D(2)*y(B(z, 2)D(z) f(z) + f(2)D(2) f () + f(x) D(z)B(x.2))}

+t2 1 (2, y, 2) + oz, y, 2) + t1]3(z, Y, 2)
o Iu(z, y, 2) + 815 (2, y, 2) + t Ts(z, 9, 2)
(35) +8D(2)%yf(2)D(2)f(2) =0, z,y,2z€ R, t € S¢

where I;, 1 < i < 6, denotes the term satisfying the identity (35).
From (34) and (35), we obtain

t{(D(2)D(z)* + D(z)D(2)D(x) + D(x)>D(2))yf(z) D(z) f (z)
+D(z)’y(B(z,2)D(z) f(z) + f(2)D(2)f(z) + f(z)D(z) B(z. 2))}
+t211(z,y, 2) + 3L (x,y, 2) + ti3(z, ¥, 2)

(36) +t314(x,y, 2) + t815(x,y, 2) + t Is(z,y,2) = 0, z,y,2 € R, t € S7.

Since R is 7!-torsion-free by assumption, by Lemma 2.1 the relation (36) yields

(D(2)D(x)* + D()D(2) D(x) + D(x)*D())yf (z)D(z) f (x)

+D(2)*y(B(z, 2)D(z) f(x) + f(z)D(2)f(2) + f(2)D(x)B(x. 2))
(37) =0, z,y,2 € R.

265
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Substituting yf(x)D(x)f(x)w for y in (37), we obtain

( (2)D(x)? + D(z)D(2)D(x)
D(2)’D(z))y f(z)D(z) f(z)w(f(z)D(z) f(z)
+D(x)*yf(z)D(z) f (x)w(B(z, z) D(z) f (x)
(38) +f(x)D(z)f(z) + f(z)D(x)B(z,2)) =0, z,y,2,w € R.
Combining (34) with (38). we get
(D(2)D(z)? + D(z) D(2)D(z)
(39) +D(z)?D(2))yf (z) D(2) f(x))wf(z)D(z) f(x) = 0, w,2,y,2 € R.
Writing w(D(2)D(z)? + D(z)D(2)D(z) + D(z)2D(z))y for w in (39), we obtain
(D(2)D(z)? + D(z)D(2)D(x)
+D(2)D(2))yf () D () f (¢))w(D(2) D(z)* + D(z) D(2) D(x)
(40) +D(z)?D(2))yf(z)D(z)f(z) =0, w,z,y,2 € R.
Since R is semiprime, it follows from (40) that
(D(2)D(x)? + D(2)D(2) D(2) + D(z)*D(2))yf () D(x) f ()
(41) =0, z,y,z€ R, t € 57.
Replacing z + tu for z in (41), we have
(D(2)D(z + tu)? + D(z + tu)D(z) D(x + tu)
+D(x + tu)?D(2))yf(x + tu)D(z + tu) f (z + tu)
= (D(2)D(z)? + D(x)D(z) D(x)
+D(x)?D(2))yf(z) D(z)f (z)
+t{(D(z)(D(u)D(z) + D(z)D(u)) + D(u)D(z)D(z)
+D(z)D(2)D(u) + (D(u)D(z) + D(z) D(w)) D(z))y f(z) D(z) f (x)
+(D(2)D(x)? + D(z)D(2) D(z) + D(2)*D(2))y(B(z,u)D(z) f (z)
+f(@)D(u) f(x) + f(z)D(x)B(z,u))}
+t2J1(z,y, z,u) + 3 Da(z, y, 2,u) + t*T3(x, v, 2, u)
+t3Jy(z,y, 2,0) + 8 J5(x, v, 2, u)
+t7(D(2) D(u)? + D(u) D(2)D(u)
(42) +D(u)?D(2))yf(uw)D(u)f(u) =0, z,y,2,u € R, t € Sg
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where J;, 1 <1 < 5, denotes the term satisfying the identity (42).
From (41) and (42), we obtain
{( 2)(D(u)D(x) + D(z)D ( )) + D(u)D(z)D(z)
D(z)D(z)D(u) + (D(u)D D(z)D(u))D(2))y f(z)D(x) f(x)
+(D(Z)D(il”)2 (T)D(Z)D( +D( )2D(2))y(B(z,u)D(z)f ()
+f(x)D(w) f(x) + f(z)D(z)B(x.u))}
+2 01 (2, y, z.u) + 3o (e, y. 2. u) + tHTs(2, y, 2, w)
(43) +t5J4(x,y, z,u) + t6J5(1:,y, z,u) =0, z,y,z,u € R, t € S.
Since R is 6!-torsion-free by assumption, by Lemma 2.1 the relation (43) yields
(D(2)(D(w)D(z) + D(x)D(w)) + D(u)D(z) D(x)
+D(z)D(2)D(u) + (D(w)D(x) + D(x)D(w)) D(z))yf () D(x) f ()
+(D(2)D(z)? + D(x)D(2)D(x) + D(2)*D(2))y(B(z. u)D(x) f (x)
(44) +f(x)D(u) f(x) + f(x)D(x)B(z.u)) =0, z,y,z,u € R.
Substituting yf(z)D(z) f(x)w for y in (44). we obtain
(D(2)(D(w)D(x) + D(z)D(u)) + D(u)D(2)D(z) + D(x)D(z) D(w)
+(D(u)D(z) + D(x) D(u))D(2))yf () D(x) f(x)wf(x) D(z) f(x)
+(D(2)D(x)? + D(x)D(2)D(r)
+D(2)2D(2))y f () D () f («)w(B(z, v) D(x) f ()
(45) +f(x)D(u)f(z) + f(z)D(z)B(z,u)) =0, z,y,2,u,w € R.
Combining (41) with (45), we get
(D(2)(D(u)D(x) + D(£)D(u)) + D(u)D(2)D(x) + D(x)D(z) D(u)

+(D(u)D(z) + D(x) D(u))D(2))yf (x)D(x) f(x)wf(x) D(z) f(x)
(46) =0 x,y.z.uwe€R,teS

D
D

Replacing w(D ( )(D(w)D(x) + D(z)D(u)) + D(u)D(2)D(z) + D(x)D(2)D(u)
+ (D(u)D(x) + D(x)D{(u))D(z))y for w in (46), we obtain
(D(Z)(D(U)D(I)-FD (z)D(w)) + D(u)D(z)D(z)
+D(x)D(2)D(u) + (D(u)D(x)
+D(2)D(u))D(2))y f(z) D(x) f(z)w(D(z)(D(u)D(x)
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+D(x)D(u)) + D(u)D(2)D(x) + D(x)D(z)D(u)
(47) +(D(u)D(x) + D(z)D(u))D(2))y f(z)D(z) f(z) = 0, u,w,z,y,2 € R.
Since R is semiprime, it follows from (47) that
(D(2)(D(u)D(z) + D(z)D(u)) + D(u)D(2)D(z) + D(z)D(2) D(u)
(48) +(D(u)D(z) + D(z)D(u))D(2))yf(z)D(z) f(z) = 0, x,y,z,u € R.
Starting from (48), we have the following relation
(D(2)(D(u)D(v) + D(v)D(u)) + D(u)D(2)D(v)
+D(v)D(z)D(u) + (D(u)D(v)
(49) +D(v)D(u)) D(2))yf(z)D(z)f(z) =0, z,y,2,u,v € R
in the same fashion that makes it possible to obtain (48) from (41). And so, setting
v =u = z in (49), it is obvious that
6D(z)3yf(x)D(z)f(z) =0, z,y,2 € R.
Since R is 3!-torsion-free, replacing x, z, w for z,z,y in the above relation respec-
tively, we obtain
(50) D(x)Ywf(2)D(2)f(z) =0, w,z,z € R.
Replacing x + ty for z in (50), we have
D(z + ty)*wf(2)D(2)f ()
= D(2)*wf(2)D(2)f(2) + t{(D(y) D(z)’
+D(2)D(y)D(z) + D(z)*D(y))wf(2)D(2) f(2)}
+2K (z,y)wf(2)D(2)f(2) + £ D(y)*wf(2)D(2) f(2)
(51) =0, w,xz,y,z€ R, t€ 53

where K (z,y) denotes the term satisfying the identity (51).
From (50) and (51), we obtain

t{(D(y)D(z)? + D(z)D(y) D(z) + D(z)*D(y))wf(z)D(2) f ()}
(52) 2K (z,y)wf(2)D(2)f(z) =0, w,z,y,2 € R, t € S3.
Since R is 2!-torsion-free by assumption, by Lemma 2.1 the relation (52) yields
(D(y)D(2)* + D(z)D(y)D(x) + D(x)*D(y))wf(2)D(2) f(2)
(53) =0, w,z,y,z € R.
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Substituting z? for y in (53), we obtain

(D(z)zD(z)? + zD(z)® + D(z)(D(z)z + D(z))D(x)

(54) +D(z)*(D(z)z + zD(x))wf(2)D(2)f(2) =0, w,z,z € R.
Combining (50) with (54), we get
(55) 2(f(z)D(z)? - D(z)*f(z))wf(2)D(2)f(2) =0, w,z,2 € R.
Since R is 2!-torsion-free, the relation (55) yields
(56) (f(z)D(x)* — D(z)* f(2))wf(2)D(2)f(2) = 0. w,z,z € R.
From (1) and (56), we have
(57) f(@)D(z)*wf(2)D(2)f(2) = 0, w,z,2 € R.
On the other hand, substituting zw for w in (50), we obtain
(58) D(@)%zwf(2)D(2)f(2) =0, w,z,z € R.
Left multiplication of (50) by « gives
(59) zD(z)3wf(z)D(2)f(z) =0, w,z,z € R.
Combining (58) with (59), we get

[D(2)?, zlwf(2)D(2) f(z)
(60) = (f(z)D(z)* + D(z)f(z)D(z) + D(z)*f(z))wf(z)D(2)f(2) =0, x € R.
From (1),(57) and (60), it is obvious that
(61) D(z)f(z)D(z)wf(2)D(z)f(2) = 0, w,x,2 € R.
Writing zw for w in (57), we obtain
(62) f(@)D(x)2zwf(2)D(2)f(z) =0, w.z,2z € R.
Left multiplication of (57) by = gives
(63) cf(z)D(z)*wf(z)D(z)f(z) =0, w,z,2 € R.
Comparing (62) and (63), we get

[f(z)D(x)?, zJwf(2)D(2) f(2)
(64) = (g(x)D(z)* + f(2)®D(z) + f(z)D(z)f(z))wf(z)D(2)f(z) = 0. x € R.
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Left multiplication of (53) by D(x)? gives

(D(x)’D(y)D(z)* + D(x)* D(y) D(x)
(65) +D(x)* D) wf(z)D(2)f(z) =0, w,,y,z € R.

From (50) and (65), we obtain
(66) D(z)’D(y)D(z)*wf(2)D(2)f(2) = 0, w,z,y,2 € R.
Putting yD(z)?u instead of y in (66), we have

D(z)*(D(y)D(z)*u + yD(D(z)?)u
(67) +yD(2)?D(w)) D(x)*wf(2)D(2) f(2) = 0, w,w,2,y,z € R.
Combining (66) with (67), we get
(68) D(x)2yD(D(x))uD(z)*wf(z)D(z)f(z) =0, u,w,z,y,z € R.
Substituting w f(z) D(2) f(z)y for y in (53), we obtain

D(z)*wf(z)D(2) f(2)yD(D(z)*)uD(z)?wf(2)D(2) f(2)
(69) =0, u,w,z,y,z € R.

Left multiplication of (69) by D(D(z)?)u gives

D(D(z)*)uD(z)*w f(2)D(2) f(2)y(D(D(z)*)uD(z)*wf(2) D(2) f (2))
(70) =0, u,w,z,y,z € R.

Since R is semiprime, the relation (70) yields

(71) D(D(z)?)uD(z)?wf(z)D(z)f(z) = 0, u,w,,z € R.

The relation (71) yields

(72) (D%(z)D(x) + D(z)D*(x))uD(x)?wf(z)D(2)f(z) = 0, u,w,z,z € R.
Left multiplication of (72) by D(z) gives

(73) (D(x)D*(z)D(z) + D(z)2D?(z))uD(z)?wf(2)D(2)f(z) = 0, u,w.z,2 € R.
Writing D(z) for y in (53), we have

(D*(2)D(z)* + D(z)D*(z) D(z) + D(z)*D*(z))w f(2)D(2) f (2)
(74) =0, w,z,z € R.
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Substituting uD(z)?w for w in (74), we obtain

(D*(2)D(z)* + D(x) D*(z) D(x)
(75) +D(z)?D*(x))uD(z)*wf(2)D(2) f(z) = 0, w,w,z,z € R.
From (73) and (75), we have
(76) D?(2)D(z)*uD(z)*wf(2)D(z)f(z) = 0, z,2,u,w € R.
And, putting wf(2)D(2) f(z)uD?(z) instead of u in (76), it follows that obtain
(77) D*(x)D(x)*wf(z)D(2)f (z)uD*(z) D(z)*wf(2)D(2)f(2) = 0, u,w,z,z € R.
Since R is semiprime, we get
(78) D?(x)D(z)?wf(z)D(2)f(2) =0, w,z,2 € R.
Replacing = + ty for z in (78), we have

D*(z + ty) D(z + ty)*w f(2)D(2) f(2)

= D*(2)D(z)*wf(2)D(2)f(2)
(2)* + D*(z) D(y)D(=)

+{(D*(y)D
+D*(2)D(z)D(y))wf(2) D(2) f(2)}
+2L(z, y)wf(2) D(2) f(2)
(79) +823D () D)2 wf(2)D(2)f(2) =0, z,y,2,w E R, t € S3

where L(z,y) denotes the term satisfying the identity (79).
From (78) and (79), we obtain

t{(D*(y)D(z)* + D*(z) D(y) D(x)
+D*(x) D(z) D(y))wf(2)D(2) f(2)}
(80) +82L(z,y) =0, z,y,2,w € R, t € Ss.
Since R is 2!-torsion-free by assumption, by Lemma 2.1 the relation (80) yields
(D*(y)D(2)* + D*(2) D(y)D(x)
(81) +D*(2)D(z) D(y))wf(2)D(2)f(2) = 0, w,2,y,2 € R
Substituting yz for y in (81), it follows that
(D*(y)zD(x)* + 2D(y)D(z)’ + yD?(z) D(x)?
+D?(2)D(y)xD(x) + D*()yD(x)*
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+D*(z) D() D(y)z + D*(2) D(z)yD(z))wf(2) D(2)f (2)
(82) =0, w,r,¥,2 € R.
Writing zw for w in (81), we get
(D?(y)D(z)*z + D*(z)D(y) D(x)z
(83) +D%(2)D(x)D(y)x)wf(z)D(2)f(z) =0, w,z,y,z € R.
Combining (50), (82) with (83), we have
(—D*(y)(f(x)D(z) + D(z)f(x)) - D*(x)D(y)f(x)
(84)  +D*(x)yD(x)? + D*(z)D(z)yD(z))wf(z)D(z)f(z) =0, w,z,y,z € R.
Replacing D(z)w for w in (84), we obtain
(—D*(y)(f(2)D()* + D(z) f(x)D(x)) — D*(z)D(y) f(z) D(x)

(85)  +D?*(x)yD(x)® + D*(z)D(z)yD(x)®)wf(z)D(2)f(z) =0, w,z,y,2 € R.
Combining (50), (57), (61) with (85), we have

(—~D*(2)D(y) f(2)D(z) + D*(z) D(z)yD(z)*)wf(2)D(2) f (2)
(86) =0, w,z,y,z € R.
Substituting zy for y in (53), we obtain

(zD(y)D(2)* + D(z)yD(z)? + D(z)zD(y)D(x)
(87) +D(z)%yD(z) + D(z)2zD(y) + D(z)>y)wf(2)D(2)f(z) =0, w,z,y,z € R.
Left multiplication of (53) by z gives
(D(y)D(x)* + 2D(z)D(y) D(x)

(88) +zD(z)?D(y))wf(z)D(2)f(z) = 0, w,z,y,2 € R.
Combining (50), (87) with (88), we obtain

(D(z)yD(z)* + f(z)D(y)D(x)

+D(z)’yD(z) + (f(2)D(z) + D(z) f(2))D(y))wf(2) D(2) f (2)
(89) =0, w,z,y,z € R.
Putting yz instead of y in (89), we have

(D(x)yzD(x)* + f(z)D(y)eD(z) + f(z)yD(z)”
+D(z)*yzD(z) + (f(z)D(z) + D(z)f(2)) D(y)=

(90) +(f(@)D(z) + D(z)f(2))yD(z))wf(2)D(2)f(2) = 0, w,z,y,2 € R.
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Substituting zw for w in (89), we have
(D(z)yD(z)*x + f(z)D(y)D(z)z
+D(z)*yD(z)*z + (f(2)D(z) + D(2) f(2))D(y)z)wf(2)D(2)f(2)
(91) =0, w,z,y,z € R.
From (90) and (91), we get
(—D(z)y(f(z)D(z) + D(x)f(x)) - f(z)D(y)f(2) + f()yD(z)*
~D(z)*yf(z) + (f(2)D(z) + D(z) f(z))yD(z))wf(2)D(2) f (2)
(92) =0, z,y,z,w € R.
Let y = z in (92). Then we have
(~D(z)z(f(z)D(z) + D(z)f(2)) - f(z)D(z)f () + f(z)xD(x)?
—D(z)’zf(z) + (f(z)D(z) + D(z)f(2))zD(z))wf(2)D(2) (2)
(93) =0, w,z,z € R.
Using (1), (57) and (61), the relation (93)can be written as
(—f(2)*D(z) - 3f (z)D(x)f (z) + g(x) D(x)* + D(z)*g(x)
+D(z) f(2)*)wf(2)D(2)f(2)
= —2f(2)’D(x) - 5f(z)D(z) f(z) — 2D(z)f(2)*)w f(2)D(2)f ()
=0, w,z,z € R.

Hence the above relation gives
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(94) (2f(2)>D(2) + 5f(z) D(2) f (x) + 2D(2) f (&) )wf(2)D(2)§(2) = 0, w,z.z € R.

From (5) and (94), we get

(95) (2f(2)’D(z) ~ D(z)f(2)")wf(2)D(2)f(2) = 0, w,z,2 € R.
Comparing (5) and (95), we have

(96) (5f(z)D(x)f () + 6f(2)*D(z))wf(2)D(2) f(2) = 0, w,z,z € R.
Writing f(z)w for w in (96), it follows that

97)  (5f(x)D(x)f(x)? + 6f(2)’D(z) f(z))wf(2)D(2)f(2) = 0, w,z,2 € R.

Replacing f(z)w for w in (64), we obtain

(9(z)D(x)*f(z) + f(z)*D(x)f(x) + f(z)D(z)f(x)*)wf(z)D(2) f(2)
(98) =0, w,z,z € R. :
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From (1) and (98), we have

(99) (f(2)?D(2)f(z) + f(2)D(z) f(2)*)wf(2)D(2) f(2) = 0, w,z,z € R.
Subtracting 5x (99) from (97), we get

(100) f(@)?D(z) f(z)wf(2)D(2)f(2) = 0, w,z,z € R.

From (99) and (100), we have

(101) f(@)D(x)f(z)*wf(2)D(2)f(2) = 0, w,z,z € R.
Writing f(z)w for w in (95), it follows that

(102) (2f(2)*D(x) f(z) — D(z)f(2)*)wf(2)D(2)f(2) = 0, w,z,z € R.
From (100) and (102), we obtain

(103) D(z)f(z)*wf(2)D(2)f(z) = 0, w,z,z € R.

Right multiplication of (103) by 5f(z) gives

(104) D(z)f(2))w(5f(2)D(2)(2)*) = 0, w,z,z € R.

From (5) and (104), we obtain

(105) D(x) f(x)3w(—3D(2)f(2)®) =0, w,z,2 € R.

Thus since R is 3!-torsion-free, setting z = = in (105) we have

(106) D(z)f(z)3wD(z)f(z)® =0, w,z € R.

Since R is semiprime, it follows from (106) that

(107) D(z)f(z)®* =0, z € R.

Left multiplication of (95) by f(z) gives

(108) (2f(2)’D(z) = f(z)D(x)f(x))wf(2)D(2)f(2) = 0, w,z,z € R.
Combining (101) with (108), we obtain

(109) 2f(x)3D(x)wf(2)D(2)f(z) =0, w,z,z € R.

Since R is 2!-torsion-free, we get from (109)

(110) f@)?®D(x)wf(z)D(2)f(z) =0, w,z,z € R.

Writing zw for w in (110), we obtain

(111) f@)?D(z)zwf(2)D(z)f(z) =0, w,z,2 € R.
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Left multiplication of (110) by z gives
(112) zf(z)*D(x)wf(z)D(z)f(z) =0, w,z,z € R.
Combining (111) with (112), we obtain

(9(2)f(x)*D(z) + f(z)g(z) f(x)D(z) + f(z)’9()D(x)
(113) +f(@)Hwf(2)D(2)f(z) =0, w,z,z € R.

Writing f(z)3w for w in (113), we obtain

(9(z) f(#)*D(x) f(z)* + f(x)g(z) f(z)D(x) f (x)°
+£(x)?g(z)D(z) f(z)* + f(&))wf(z)D(2) f(2)
(114) =0, w,z,z € R.

Combining (107) with (114), we obtain

(115) f(x)"wf(z)D(z)f(z) =0, w,z,z € R.
Right multiplication of (115) by z gives

(116) f@)wf(2)D(2)f(2)z =0, w,x,z € R.
Writing wz for w in (115), it follows that

(117) f@)wzf(2)D(2)f(2) =0, w,z,z € R.
Combining (116) with (117), we get

F(@) w(f(2)D(2)f(2), 2]
(118) = f(z)"w(g(2)D(2) f(2) + f(2)> + f(2)D(2)g(2)) = 0, w,z,2 € R.

On the other hand, replacing y + ¢z for 2z in (103), we have

f@) wfly+ t2)D(y + tz) f(y + tz)
= f(z)"wf(y) D)/ (v)
+t{ f(2)"w(B(y, 2)D(y) f(y) + f(y)D(2) F(y) + f(y) D(y) B(y. 2))}
+82f(x) wh (y, 2) + 3 f(x) wha(y, 2) + t* f(x) " whly(y, 2)
(119) +Pf(x) wf(z)D(2)f(z) = 0, w,z,y,z € R, t € S3
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where M;(y, z), 1 <1i < 4, denotes the term satisfying the identity (119).
From (103) and (119), we obtain

t{f(x)"w(B(y, 2) D) f (y) + f ) D(2) () + f(y) D(2) B(y, 2))}
+2f(x) wM(y, 2) + 3 f () wha(y, z) + t* f (z) wMy(y, )
(120) =0, w,z,y,2 € R, t€ S;.
Since R is 4!-torsion-free by assumption, by Lemma 2.1 the relation (120) yields
f(@)"w(B(y, 2)D(y) f(y) + f)D(2)f() + fy)D(y)B(y. 2))
(121) =0, w,z,y,z € R.
Substituting 32 for z in (121), we obtain
F@) wBfWyDY)f ) + 2y () DY) f(y) + 2 () D(y)f (v)y

(122) +3f(W)D(y)yf(y)) =0, w,z,y € R.

Combining (115) with (122), using (113) we have

(123) f(@)w(B(9(y) D) f(v) — fFW)D(Y)g(¥))) =0, w,z,y € R.
Since R is 3!-torsion-free, we get (123)

(124) f@) " w(g)DW) W) - fF)D)g(y)) =0, w,z,y € R.
Combining (118) with (124), we obtain

(125) @) w(29(2)D()f(2) + £(2)*) = 0, w,,2 € .
Right multiplication of (125) by f(z)* gives

(126) F(@)"w(29(2)D(2)f(2)® + f(2)") =0, w,z,z € R.
Combining (107) with (126), and setting z = x in (126) we obtain
(127) f@)wf(z)" =0, w,x € R.

Since R is semiprime, we obtain from (127)
f(z)"=0, z€R.
O

Theorem 2.5. Let R be a 7!-torsion free noncommutative semiprime ring. Suppose

there exists a Jordan derivation D : R — R such that
[D(x), 2] D(x)? = 0

for all z € R. In this case we have [D(x),z)” = 0 for allx € R.
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Proof. By Theorem 2.2, we can see that D is a derivation on R. For simplicity, we
shall denote the maps B : RxR—»R f.g: R — R by B(z,y) = [D(x),y] +
[D(y), 2], f(z) = [D(z),z], g(z) = [f(x),z] for all x,y € R respectively. Then we
have the basic properties:
B(z,y) = B(y,z), B(z,yz) = B(z,y)z +yB(z.z) + D(y)[z, 7] + [y, 2] D(2),
B(z,z) = 2f(z), B(zy,2) = By, 2)z + 2B(y,z) + D(2)[z, 9] + [z, y] D(2).
B(x,z?) = 2(f(z)z + zf(z)), 7,y,2 € R.
After this, we use the above relations without specific reference. By assumption.
(128) f@)D)?=0,z€R
Replacing z + ty for z in (128), we have
f(z + ty)D(z + ty)?
= f(z)D(z)* + { B(z,y)D(z)* + f(z) D(y)D(x) + f(z)D(x)D(y)}
+2Ny (z,y) + P Na (2. y) + t* f(y) D(y)?
(129) =0, z,y€ R, t€ 53
where N;, 1 < i < 2, denotes the term satisfying the identity (129).
From (128) and (129), we obtain
t{B(z,y)D(x)* + f(z)D(y)D(z) + f(z)D(x)D(y)}
(130) +12N; (z,y) + 2 Na(2,y) = 0. 2,y € R, t € S3

Since R is 3!-torsion free by assumption, by Lemma 2.1 the relation (130) yields

(131) B(z,y)D(x)* + f(z)D(y)D(z) + f(z)D(z)D(y) =0, =,y € R.
Let y = z2 in (131). Then using (128). we have

2(f(z)z + 2 f(2))D(x)? + f(z)(D(z)x + 2D(z))D(z)
+f(2)D(x)(D(z)z + xD(x))
= —2f(z)(f(z)D(z) + D(z)f(z)) — f(z)D(z)f(z)
—f(2)(f(z)D(z) + D(x)f(x)) — f(z)D(x)f(x)
= —3f(2)’D(x) - 5f(z)D(z)f(z) = 0, z € R.

Thus the above relation gives

(132) 3f(z)2D(z) + 5f(x)D(z)f(z) = 0. z € R.
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Using (128), we arrive at

0= [f(=)D(x)?, 7]

(133) = g(2)D(z)* + f(2)*D(z) + f(x)D(z)f(z), x € R.
From (132) and (133), we get
(134) 2f(z)D(x) f(x) — 3g(x)D(z)2 =0, z € R.

Combining (132) with (134).
3(2f(z)2D(z) + 59(z)D(z)?) = 0, = € R.
Since R is 3!-torsion-free, the above relation gives
(135) 2f(x)?D(x) + 5g(x)D(z)*> = 0, = € R.
Right multiplication of (135) by D(z) leads to
(136) 2f(z)?D(x)? + 59(z)D(z)® = 0, z € R.
Comparing (128) and (136), we arrive at
(137) 5g(x)D(z)® =0, z € R.
Since R is 5!-torsion-free, (137) gives
(138) g(x)D(z)® =0, z € R.
Writing yz for y in (131), we get
(B(=,y)z + 2yf(z) + [y, 2] D(x)) D(z)* + f(2)(D(y)z + yD(z))D(x)

(139)  f(z)D(z)(D(y)z + yD(z)) =0, z,y € R.
Right multiplication of (131) by z leads to
(140) B(z,y)D(z)*z + f(z)D(y)D(x)z + f(z)D(z)D(y)z =0, z,y € R.
From (139) and (140), we arrive at

~B(z,3)(f(2)D(x) + D(2)f(2)) + 2f (@) D(z)? + [y, D(x)?

~f(@)D(y)f(z) + f(z)yD(z)* + f(z)D(x)yD()
(141) =0, z,y € R.
By (128) and (141), it follows that

—B(z,y)(f(z)D(z) + D(z){(z)) + ly, 2] D(z)*
(142) ~f(z)D(y)f(z) + f(z)yD(x)? + f(z)D(x)yD(z) = 0, z,y € R.
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Replacing xy for y in (142), it follows from that
—(B(z,y) + 2f(x)y + D(2)[y, z))(f (z) D(x) + D(2)f(x)) + [y, z] D(z)’
~f(z)(@D(y) + D(z)y)f(z) + f(z)zyD(x)? + f(2)D(z)zyD(x)
(143) =0, 7,y € R.
Left multiplication of (142) by x leads to
—zB(z,y)(f(2)D(z) + D(z)(z)) + zly, 2] D(2)*
(144)  ~zf(x)D(y)f(z) + zf(z)yD(z)* + zf(z)D(z)yD(z) = 0, z,y € R.
Comparing (143) and (144), we see that
—2f(z)y(f (2)D(z) + D(z)f(x)) — D(z)ly, z|(f(z) D(z) + D(z)f(x))
~g()D(y)f(x) — f(z) D()yf(z) + g(z)yD(x)?
(145)  +(9(2)D(z) + f(2)*)yD(z) = 0, z.y € R.
Right multiplication of (145) by D(x)? leads to
~2f(2)y(f(2)D()* + D(z)f(z)D(z)")
—D(z)ly, z)(f(z)D(2)? + D(z)f(z) D(z)*)
—9(z)D(y) f(z) D(z)? — f(2)D(x)yf(z)D(x)* + g(z)yD(x)*

- (146) +(g(z)D(z) + f(2))yD(z)* =0, z,y € R.
Combining (128) with (146), we get
(147) g(z)yD(x)* + (9(z)D(z) + f(z)*)yD(z)* =0, z,y € R.

Replacing D(z)%y for y in (147), we have
(148)  g(z)D(2)*yD(2)* + (9(z)D(x)* + f(2)*D(x)*)yD(z)* = 0, 2.y € R.
From (128),(138) and (148), it is obvious that

(149) g{z)D(z)*yD(z)* =0, =,y € R.
Using (135), it follows from (149) that
(150) 2f(2)*D(x)yD(z)* = ~59(x)D(z)*yD(z)* = 0, z,y € R.

Thus since R is 2-torsion-free, (150) gives

(151) f(@)’D(x)yD(z)* =0, z,y € R.

From (134) and (151), we have

(152) 2f(z)D(z) f(z)yD(z)* = 3g(z)D(z)*yD(x)* = 0, z,y € R.
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And so, since R is 2-torsion-free, (152) yields
(153) f(@)D(2)f(z)yD(x)" =0, z,y € R.

Substituting zf(z)D(x)f(z)y for y in (147), we have

g(z)zf(x)D(z) f (2)yD(z)* + (g9(z)D(x)
(154) +f(2))zf(x)D(x) f(x)yD(x)® = 0. x,y,z € R.
From (153) and (154), we obtain
(155) (9(2)D() + f(2)*)2f () D(x) f(z)yD(z)* = 0, x,y,2 € R.

Putting D(z)z instead of z in (155), we get
(156) (9(2)D(2)? + f(2)*D(x))2f () D(x) f(2)yD(z)* = 0, z,y,2 € R.
Using (133), the relation (156) gives
f(2)D(z)f(2)2f (z)D(z)f (2)yD(z)’
(157) = —(9(a)D(@)? + f(2)2D(2))2f(z)D(z) f(x)yD(@)} = 0, 2,y € K.
Writing yD(z)32 for z in (157),
f(&)D(z) f(2)yD(z)*zf (z) D(z) f («)yD(z)*
(158) =0,z,y9,z € R.
Since R is semiprime, we have from (158)
(159) f(@)D(z) f(z)yD(z)* = 0,2,y € R.
Replacing x + tz for = in (159), we have
f(z + t2)D(z + t2) f(z + t2)yD(x + tz)3
= f(z)D(x)f(z)yD(z)®
+t{(B(z, 2)D(z) f (z) + f(2)D(2) f(z) + f(2)D(z)B(z, 2))yD(x)*
+/(2)D(x) f(2)y(D(2) D(x)* + D(z)D(2) D(z) + D()*D(2))}
+t2Pi(z,y, 2) + 3 Po(x,y, 2) + t* P3(z, v, 2)
+0Py(z,y, 2) + t°Ps(z,y, 2) + t" Ps(z,y, 2)
(160) +t8f(2)D(2) f(z)yD(2)* =0, x,y,z € R, t € S7

where P;,1 < i < 6, denotes the term satisfying the identity (160).
From (159) and (160), we obtain
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t{(B(z,2)D(x)f(x) + f(£)D(2) () + f(x)D() Bz, 2))yD(x)°
+f(2)D(x) f (2)y(D(2)D(z)* + D(z)D(2) D{z) + D(z)*D(z))}
+t2Pi(x,y, 2) + 2 Po(x, y. 2) + t*P3(z,y, 2)
Ft3Py(x,y, 2) + t8Ps(x, y. 2) + t" Ps(z,y, 2)

(161) =0, r,y,z€ R. t € 57.

Since R is 7!-torsion-free by assumption, by Lemma 2.1 the relation (161) yields
(B(z,2)D(z)f(x) + f(x)D(2)f(z) + f(z)D(z)B(z, 2))yD(z)’
+f(2)D(2) f (2)y(D(2) D(x)? + D(2)D(2) D(z) + D(x)*D(2))

(162) =0, r,y,z € R.

Substituting wf(z)D(z)f(x)y for y in (162), we obtain
(B(z, 2)D(z) f(z) + f(2)D(z) f(z)

+f(@)D(x) B(z. 2))w f(«) D(x) f (z)y D()*
+f(@)D(x) f(£)wf(x)D(x) f (2)y(D(2) D(x)®
(163) +D(x)D(2)D(x) + D(x)2D(z)) = 0, w,z,y.z € R.
Combining (159) with (163), we get
f()D(z)f(@)wf(z)D(z) f (z)y(D(2) D(x)?
(164) +D(z)D(z)D(z) + D(z)*D(z)) =0, w.z,y.2 € R.
Writing y(D(2)D(x)? + D(x)D(2)D(x) + D(x)?D(2))w for w in (164). we obtain
f(@)D(z) f(2)y(D(2)D(z)* + D(z)D(2) D(z)
+D(z)*D(2))w f(z)D(x) f (2)y(D(2)D(x)* + D(x)D(2)D(x)
(165) +D(x)?D(2)) =0, w,z,y.z € R.

Since R is semiprime, it follows from (165) that
(166) f(z)D(z) f(2)y(D(2)D(z)? + D(x)D(2)D(x) + D(z)?D(2)) =0, 7.y.z € R.
Replacing  + tu for z in (166), we have
f(z + tu)D(x + tu) f(x + tw)y(D(z)D(z + tu)?
+D(z + tw)D(2) D(x + tu) + D(x + tu)?D(z))
= f(2)D(x)f(2)y(D(z)D(x)* + D(2)D(2) D(z) + D(x)?D(2))
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+?5{f(ﬂf)D( )f(2)y(D(2)(D(u)D(z) + D(z)D(w)) + D(u)D(z) D(z)
D(z)D(z)D(u) + (D(u)D(x) + D(x)D(u))D(2)) + (B(z,u) D(z) f(x)
+f($)D(U)f(ft) + f(2) D(2) B(x,u))y(D(2) D(x)?
+D(2)D(2)D(z) + D(z)*D(2))}
+£2Q1(z,y, z,u) + t3IQa(x, y, 2, u) + t*Q3(x, y, 2. u)
+9Qu4(z,y, z,u) + t5Qs(x, y, 2, )
+7 f(w) D(w) f (u)y(D(2) D(u)? + D(u)D(2) D(w)
(167) +D(u)?D(2)) =0, u,x,y,2 € R, t € Sg

where Q;, 1 <1 < 5, denotes the term satisfying the identity (167).
From (166) and (167), we obtain

t{f(z)D(x)f(z)y(D(2)(D(u)D(z) + D(z)D(u)) + D(u)D(z)D(x)
+D(z)D(2)D(u) + (D(u)D(z) 4+ D(z)D(u))D(z)) + (B(z,u)D(z) f(x)
+f(2)D(u)f(z) + f(z)D(2)B(z,v))y(D(2)D(z)* + D(z) D(z) D(x)
+D(x)2D(2))} + 2Q1(x, y, 2, u) + t3JQa(x, v, 2, u) + t*Qs(x, y, 2, u)
(168)  +t°Qu(z,y. z,u) + t5Qs(z,y, z,u) =0, u,z,y,2 € R, t € Se.
Since R is 6!-torsion-free by assumption, by Lemma 2.1 the relation (168) yields

f(z)D(z)f(2)y(D(z)(D(v) D(z) + D(z)D(u)) + D(v) D(z) D(x)
+D(z)D(2) D(u) + (D(u) D(z) + D(z)D(u))D(2)) + (B(z, u) D(z) f(x)
+f(2)D(u) f(z) + f(2)D(z) B(z,u))y(D(2)D()?

(169) +D(z)D(z)D(z) + D(z)?’D(z)) =0, u,z,y,z € R.

Substituting wf(z)D(z) f(x)y for y in (169), we obtain
f(2)D(x)f(z)wf(z) D(x) f(z)y(D(2)(D(u) D(z) + D(z)D(u))
+D(u)D(2)D(z) + D(x)D(z)D(u) + (D(u)D(z) + D(z)D(u))D(z))
+(B(z, u)D(z)f () + (=) D(w)f(x)
+f(2)D(z)B(z, u))wf(2)D(z)f (¢)y(D(z) D(z)

(170) +D(z)D(2)D(z) + D(x)?D(2)) = 0, z,y,z,u € R.

Combining (166) with (170), we get

f(@)D() f(z)wf(z)D(z) f(2)y(D(z)(D(u)D(x) + D(z)D(u))
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+D(u)D(2)D(x) + D(x)D(2)D(u) + (D(u)D(z) + D(z)D(u))D(z))
(171) =0, u,z,¥,2 € R.
Putting y(D(2)(D(u)D(z) + D(z)D(u)) + D(u)D(2) D(z) + D(x) D(z) D(u)
+(D(u)D(z) + D(z)D(u))D(z))w instead of w in (171), we obtain

f(@)D(x) f()y(D(z)(D(w)D(z) + D(z)D(w)) + D(w)D(2) D(x)

+D(z)D(z)D(u) + (D(u)D(x)

+D(2)D(w)) D(2))wf (z)D(x) f (2)y(D(2)(D(w)D(z) + D(z)D(w))

+D(u)D(2)D(x) + D(z)D(2) D(u) + (D(u) D(z) + D(x) D(u)) D(2))
(172) =0, u,w,x,y,2 € R.

)
(D

Since R is semiprime, it follows from (172) that
f(@)D(z) f(z)y(D(2)(D(u)D(z) + D(z)D(w)) + D(u)D(2)D(z)
(173)  +D(z)D(2)D(u) + (D(w)D(z) + D(z)D(w))D(2)) = 0, v, w,r,y,z € R.
Starting from (173), we have
f(@)D() f(z)y(D(2)(D(u)D(z) + D(z)D(u)) + D(u) D(2)D(x)
+D(z)D(z)D(u) + (D(u)D(zx)
+D(2)D(w)) D(2))wf(z)D(z)f (z)y(D(z)(D(w)D(x) + D(x) D(w))
+D(u)D(2)D(z) + D(x)D(2) D(v) + (D(u)D(z) + D(2)D(u)) D(2))
(174) =0, u,v,w,,y,z € R.
in the same fashion that makes it possible to obtain (173) from (166).
And so, setting v = u = z in (174), the relation (174) yields
6f(x)D{(z)f(x)yD(2)® =0, z,y,2 € R.

Since R is 3!-torsion-free, replacing z,z,w for z,z,y in the above relation, it is

obvious that
(175) f(2)D(2)f(z)wD(x)® =0, z,z,w € R.
Replacing z + ty for z in (175), we have
F(2)D(2)f(z)wD(x + ty)?
(Z)D(z)f (2)wD(e)® + t{f(2)D(2) f (z)w(D(y)D(z)”
+D(z)D(y)D(x) + D(z)*D(y))}
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+t2f(2)D(2) f(z2)wS(x,y) + t*f(2) D(2) f(2)wD(y)*
(176) =0, w,x,y,z€ R, t€ S

where S(x,y) denotes the term satisfying the identity (176).
From (175) and (176), we obtain

t{f(2)D(2) f(z)w(D(y)D(z) + D(x)D(y)D(x) + D(z)*D(y))}

(177) +t2f(2)D(2) f(2)wS(x,y) =0, w.x,y,z € R, t € S3
Since R is 2!-torsion-free by assumption, by Lemma 2.1 the relation (177) yields

f(2)D(2) f(z)w(D(y)D(x)* + D(z) D(y)D(x) + D(z)*D(y))
(178) =0, w,z,y,z € R.
Substituting z? for y in (178), we obtain

F(2)D(2)f (2)w(D(z)zD(z)? + 2D(x)* + D(x)(D(x)z + zD(x)) D(x)
(179)  +D(z)*(D(z)z + zD(x))) =0, w,z,z € R.
Combining (175) with (179), we get
(180) 2f(2) D(2)f (z)w(f(2)D(z)* — D(z)* f(z)) = 0, w,z,z € R.
Since R is 2!-torsion-free by assumption, the relation (180) yields
(181) F(z)D(2) f(2)w(f(z)D(z)? - D(z)*f(x)) = 0, w,z,z € R.
From (128) and (181), we have
(182) f(2)D(2)f(2)wD(z)*f(z) =0, w,z,z € R.
On the other hand, substituting wz for w in (175), we obtain
(183) f(2)D(2)f(z2)wzD(z)® = 0, w,z,2 € R.
Right multiplication of (175) by z gives
(184) f(2)D(2) f(z)wD(z)3z = 0, w,z,z € R.
Combining (183) with (184), we get
F(:)D(=) f(2)ulD()* 2]
= f(2)D(2) f(2)w(f(z)D(z)?

(185) +D(z)f(z)D(z) + D(z)*f(z)) =0, w,z,z € R.
From (128), (182) and (185), it is obvious that
(186) f(2)D()f(z)wD(x)f(x)D(z) =0, w,z,z € R.
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Writing wz for w in (182), we obtain
(187) f(2)D(2) f(2)wzD(z) f(z) =0, w,z,z € R.
Right multiplication of (182) by z gives
(188) f(2)D(2) f(2)wD(x)*f(x)x =0, w,z,2z € R.
Combining (187) with (188), we get

f(2)D(2) f(2)w|D(x)? f(z), 2]

= f(2)D(2) f()w(f(z)D(z)f(z)
(189) +D(2)f(z)? + D(z)*g(x)) =0, w,z,z € R.

Right multiplication of (178) by D(z)? gives
F(2)D(2) £ (2)w(D(y) D(x)*

(190) +D(z)D(y)D(z)* + D(z)*D(y)D(2)?) = 0, w,z.y.2 € R.
From (175) and (190), we obtain
(191) F(2)D(2)f (2)wD(x)* D) D(z)* = 0, w,z,y,2 € R.
Putting uD(x)%y instead of y in (191). we have

F(2)D(2) f(2)u(D(@)2(D(y) D(x) uD(x)®

+D(2)’yD(D(z)*)uD(z)? + D(x)’yD(2)>D(u) D(x)?)
(192) =0, u,w,z,y,2z,w € R
Comparing (191) and (192). we get
(193) f(2)D(2)f(2)wD(z)*yD(D(z)*)uD(z)? = 0, u,w,r,y,z € R.
Substituting vf(z)D(z) f(z)w for u in (193), we obtain
(194) f(2)D(2) f(z)wD(a)?yD(D(x)*)o f (2) D(2) f(2)wD(x)* = 0, v, w,z,y,2 € R.
Right multiplication of (194) by yD(D(z)?) gives

F(2)D(2)f (2)wD(x)?yD(D()*)o f (2)D(2)f (2)wD(z)’y D(D(x)?)

(195) =0, v,w,r,y,2 € R.
Since R is semiprime. the relation (195) yields

(196) f(2)D() f(2)wD(z)*yD(D(z)?) =0, w,z.y.z € R.
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The relation (196) yields
(197)  f(2)D(2)f(2)wD(x)?y(D?*(z)D(z) + D(z)D*(z)) = 0, w,z,y,z € R.
Right multiplication of (197) by D(z) gives
(198) f(2)D(z)f(z)wD(x)?y(D?*(z)D(z)? + D(z)D*(z)D(z)) = 0, w,z,y,2 € R.
Substituting D(z) for y in (178), we obtain
f(2)D(2)f(2)w(D*«)D(z)* + D(z) D*(z) D(x)
(199) +D(z)’D?*(x)) =0, w,z,y,z € R.
Substituting wD(x)?y for w in (199), we obtain
f(2)D(2) f(2)wD(x)*y(D*(x) D(z)? + D(z) D*(z) D(x)
(200) +D(z)?D?*(z)) =0, w,z,y,z € R.
From (198) and (200), we have
(201) f(2)D(2)f(2)wD(x)?yD(x)?D*(x) = 0, z,y, 2 w € R.
And, substituting D?(z)yf(2)D(z)f(z)w for y in (201), we obtain
f(2)D(2) f(z)wD(z)* D*(w)yf(2) D(z) f (z)wD(x)* D*(x)
(202) =0, z,y,z,w € R.
Since R is semiprime, we get from (202)
(203) f(2)D(2)f(2)wD(x)*D*(z) =0, w,z,y,z € R.
Replacing x + ty for z in (203), we have
F(2)D(2)f(z)wD*(z + ty) D(z + ty)?
= f(2)D(2)f(z)wD(xz)* D*(z)
+t{f(2)D(2) f(2)w(D(y)D(z) D*(z) + D(x) D(y) D*(x)
+D(2)?D?(y))}

+2 f(2)D(2) f (2)wT (x,y)
(204) +83f(2)D(2) f(2)wD(y)2D?*(y) =0, w,z,y,2 € R, t € S3

where T'(z,y) denotes the term satisfying the identity (204).
From (203) and (204), we obtain
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t{(2)D(2) (z)w(D(y)D(z) D*(z) + D(z)D(y) D*(x)

+D(z)?D*(y))}
+2f(2)D(2) f (2)wT (z.y)
(205) =0, w,z,y,2,w € R, t €8Ss.

Since R is 2!-torsion-free by assumption, by Lemma 2.1 the relation (205) yields

F(2)D(2) f (2)w(D(y) D(x) D*(x) + D(x) D(y)D*(x)
(206) +D(z)*D%(y)) =0, w,z,y,z € R.
Substituting xy for y in (206), we obtain
f(2)D(2)f (2)w(zD(y) D(z) D*(z) + D(z)yD(z) D*(x)
+D(2)zD(y) D*(z) + D(z)*yD*(z)
+D(z)2xD?(y) + 2D(x)3D(y) + D(z)*D?(x)y
(207) =0, w,z,y,z € R.
Writing wx for w in (206), we get
F(2)D(2)f(z)w(zD(y) D(z) D*(z) + zD(z) D(y) D*(x)
(208) +2D(2)2D?*(y)) = 0. w,z.y,z € R.
Combining (175), (203), (207) with (208). we have
f(2)D(2)f(2)w(D(z)yD(z)D*(z) + f(z)D(y) D* (=)
+D(z)*yD*(x) + (f(z)D(z) + D(z) f(z)) D*(y)
(209) =0, w,2,y,2 € R.
Replacing wD(z) for w in (209), we obtain
f(2)D(2) f(2)w(D(z)*yD(x)D*(z) + D(z)f(z) D(y) D ()
+D(2)*yD?(z) + (D(z) f(z) D(z) + D(2)*f(z)) D*(y)
(210) =0, w,x,y,2 € R.
Comparing (175),(182), (186), (203) and (210), we have
f(2)D(2) f(2)w(D(z)*yD(z)D*(z) + D(z)f(z) D(y) D*(x)
(211) =0, w,r.y,2 € R.

Substituting yx for y in (178), we obtain

287
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f(2)D(2)f (2)w(D(y)xD(z)* + yD(z)* + D(x) D(y)zD(x)
+D(x)yD(x)? + D(z)*yD(x) + D(z)* D(y)x)
(212) =0, w.z,y,2 € R.
Right multiplication of (178) by x gives
F(2)D(2) f(2)w(D(y) D(z)*z + D(z)D(y)D(x)x + D(z)*D(y)z)
(213) =0, w,z,y,2 € R.
Combining (175), (212) with (213), we obtain
f(2)D(2) f(2)w(=D(y)(f(z)D(x) + D(z)f(x))
(214) ~D(z)D(y) f(z) + D(z)yD(x)? + D(z)*yD(x)) = 0, w,z,y,z € R.
Putting zy instead of y in (214), we have
f(2)D(2)f (2)w(-zD(y)(f(z)D(z) + D(z) f(z))
~D(2)y(f(z)D(z) + D(z) f())D(x)? — D(z)zD(y) f () — D(z)’yf ()
(215)  4+D(x)zyD(x)? + D(z)*zyD(z)) = 0, w,z,y,z € R.
Substituting wz for w in (214), we have
f(2)D(2)f (2)w(-zD(y)(f(z)D(z) + D(z) f(z))
(216) —xD(z)D(y)f(z) + zD(z)yD(z)? + zD(x)?yD(z)) = 0, w,z,y,z € R.
From (215) and (216), we get
f(2)D(2)f (z)w(=D(z)y(f (x)D(z) + D(z)f(z)) — f(x)D(y)f (=)
—D(z)*yf(z) + f(z)yD(z)* + (f(z)D(z) + D(z) f(x))yD(x))
(217) =0, w,z,y,z € R.
Let y = x in (217). Then we have
f(2)D(2)f(z)w(-D(z)z(f(z)D(z) + D(z) f(z)) — f(z)D(z) f(z)
—D(z)*cf(z) + f(z)zD(z)* + (f(z)D(z) + D(2)f(z))zD(x))
(218) =0, w,z,2 € R.
Using (186), (218) gives
f(2)D(2)f (2)w(~f(z)(f(z)D(z) + D(z)f(z)) — f(z)D(z)f(z)
—(f(2)D(z) + D(z) f(2))f(x) + g(z) D(x)?
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—(f(z)D(x) + D(x)f(x))f(x))
= f(2)D(2) f(2)w(~f(x)* D(x) — 4f (@) D(2) f () — D(x) f (=)
(219) +¢(z)D(x)?) = 0, w,x,z € R.
Thus the relation (219) yields
F(2)D(2) f(2)w(2f (x)2D(x) + 5f()D(x)(z) + 2D () f()*)
(220) =0, w,z,z€ R.
From (132) and (220), we get

(221) f(2)D(2) f(2)w(f(2)*D(x) — 2D(2)f(2)*) = 0, w,z,z € R.
According to (132) and (221), we have
(222) f(2)D(2) f(2)w(5f(z) D(x) f () + 6D(x) f(2)*) = 0, w,z,2 € R.

Writing wf(z) for w in (222), it follows that
(223)  f(2)D(2)f(2)w(5f(x)?D(z)f(z) + 6f(z)D(z) f(x)?) = 0. w.z,2 € R.
Replacing wf(z) for w in (189), we obtain

F(2)D(2) f(2)w(f(x)’D(@) f(z) + [(2)D(x) f(2)? + f(2) D(x)?g(x))
(224) =0, w,z,z € R.
From (128) and (224), we have
(225)  f(2)D(2)f(2)w(f(x)’D(x)f(z) + f(x)D(z)f(x)*) =0, w,z.z € R.
Subtracting 5x (225) from (223). we get

(226) (D) (2wf(£)D@)f()? =0, w,z,2 € R.
From (225) and (226), we have
(227) F(2)D(2)f (2)wf(x)?D(z)f(z) = 0, w,z,z € R.

Writing wf(z) for w in (221), it follows that

(228) F(2)D(2) f(2)w(f(2)3D(x) - 2f (x)D(z) f(z)?) = 0. w,z,z € R.
From (226) and (228). we obtain

(229) F(2)D(2)f(2)wf(z)3D(x) =0, w,z,z € R.

And left multiplication of (229) by 5f(x) gives

(230) (5f(2)2D(2)f(2))wf(z)®D(z) = 0. w.z.z € R.
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Comparing (132) and (230), we have

(231) (=3f(2)*D(2)wf(z)*D(x) =0, w,x,z € R.

Since R is 3!-torsion-free, we get from (231)
f(2)3D(2)wf(z)*D(z) =0, w,z,z € R.

Let z = x in the above relation. Then we have

(232) f(@)3D(x)wf(x)®D(z) =0, w,z € R.

And so, since R is semiprime, we obtain from (232)

(233) f(z)3D(z) =0,z € R.

Right multiplication of (221) by f(z) gives

(234) f(2)D(2) f(2)w(f(z)*D(z)f (z) — 2D(z) f(z)*) = 0, w,z,2 € R.
Combining (227) with (234), we obtain

(235) 2f(2)D(2) f(2)wD(z) f(x)* =0, w,z,z € R.

Since R is 2-tosion-free, we get from (235)
(236) f@)D(2)f(z)wD(z)f(z)® =0, w,z,z € R.
Right multiplication of (236) by z gives
(237) f(2)D(2) f(z)wD(z)f(z)3z =0, w,z,z € R.
Writing wz for w in (236),
(238) f(z)D(2)f(2)wzD(z)f(x)® =0, w,z,z € R.
Comparing (237) and (238), we obtain

f(2)D(2)f(2)w[D(z) f (x)*, x]

= f(2)D(2) f(2)w(f(2)* + D(z)g(z) f(z)* + D(z)f(z)g(x) f(z)
(239) +D($)f(:c)2g(:c)) =0, w,z,z € R. '
Writing w f(z)? for w in (239),
f(2)D(2)f(2)w(f(2)" + f(2)*D(z)g(x)f (z)?
(240) +f(z)*D() f(z)9(z) f(z) + f(2)*D(z) f(z)*g(x)) = 0, w,x,2 € R.
Combining (233) with (240), we obtain
(241) f(2)D(2)f(2)wf(z)" =0,w,z,z € R.
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Left multiplication of (241) by z gives
(242) 2f(2)D(2)f(z)wf(z)" = 0,w,z,2 € R,
Writing zw for w in (242), it follows that
(243) f(2)D(2)f(z)zwf(z)" = 0,w,z,2z € R.
Combining (242) with (243), we get

(9(2)D(2)f(2) + £(2)° + f(2) D(2)g(2))wf (z)"
(244) =0,w,z,z € R.
On the other hand, replacing y + ¢z for z in (241), we have

Fly +2)D(y + t2) f(y + t2)wf(z)”
= f(y)D(y)f(y)wf(z)
+H{(B(y, 2) D) f (v) + (@)D (2)f (v) + f () D(y) By, 2)wf ()"}
+EUL(y, 2w f ()" + 2 Us(y, 2)wf(2)]
+Us(y, 2)wf (@) + 12 f(2) D(2) f(2)wf(z)
(245) =0, w,r,y,2€ R. t€ S3
where U;(y, z),1 < i < 4, denotes the term satisfying the identity (245).
From (241) and (245), we obtain
t{(B(y,2)D(¥)f (v) + F(W)D(2)f (v) + f(y) D(¥) B(y, 2)wf(z)"}
+82Uy (y, 2)wf ()7 + t3Us(y, 2)w f(z)”
(246) +t*U(y, 2)wf(z)" =0, w,z,y,2 € R.
Since R is 4!-torsion-free by assumption, by Lemma 2.1 the relation (246) yields
(B(y, 2)D()f(y) + fW)D(2)f(y) + f(y)D(y) B(y, 2))wf (e)
(247) =0, w,z,y,2 € R.
Substituting y? for z in (247), we obtain

BUfWyDW) fly) + fw)DW)yf(v) + 2w f(y)D(y) f(y)
+f)DW)fW)y))wf(z) =0, w,z,y,z € R.

From (241) and the above relation we obtain

(248) 3(fWyDW)fy) + fW)DWf W) wf(z)' =0, w,z,y.z € R.
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Comparing (241) and (248), we have

(249) 3(9(w)DY) f(y) — fW)D(y)g(y))wf(z)" =0, w.z,y.z € R.
Since R is 3!-torsion-free, using (241) we get form (249)

(250) (9(y)DW)f(y) = fFW)DY)gw)wf(z)" =0, w,z,y,2 € R.
Let y = z in (244). Then it is obvious that

(251) (9W)D(W)f(y) + F)* + F)DW)g(y)wf(x)’ =0, w.r,z € R.
Combining (250) with (251), we obtain

(252) (fW)* +2f () D(W)gy)wf(z) =0, w,z,y € R.

Left multiplication of (252) by f(y)* gives

(253) (f()" +2f(¥)°D(¥)g(v)wf(z)" =0, w,z,y € R.

Combining (233) with (253), we obtain
fW)wf(z)" =0, z,w € R.
Let y = z in the above relation.
(254) f(@)wf(z)" =0, w,z € R.
Then since R is semiprime, we obtain from (254)
f(x)'=0, z € R.
0

The following theorem as our main theorem generalizes the results of J. Vukman'’s
theorem [12].

Theorem 2.6. Let A be a noncommutative Banach algebra. Suppose there exists a

continuous linear Jordan derivation D : A — A such that
D(z)}[D(z), z] € rad(A)
for all x € A. Then we have D(A) C rad(A).

Proof. By the result of B.E. Johnson and A.M. Sinclair [5] any linear derivation
on a semisimple Banach algebra is continuous. Sinclair [8] has proved that every
continuous linear Jordan derivation on a Banach algebra leaves the primitive ideals of
A invariant. Hence for any primitive ideal P C A one can introduce a linear Jordan
derivation Dp : A/P — A/P, where A/P is a prime and factor Banach algebra, by
Dp(2) = D(z) + P, £ = z + P. Then D is a derivation on A/P. By the assumption
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that D(z)%f(x) € rad(A). r € A, we obtain (Dp(2))?[Dp(2),2]) = 0, & € A/P,
since all the assumptions of Theorem 2.4 are fulfilled. And since the prime and
factor algebra A/P is noncommutative, from Theorem 2.4 we have [Dp(£),2]" =
0, £ € A/P. And for each P, by the elementary properties of the spectral radius rp
in a Banach algebra A/P, it follows that rp([Dp(%),2])” = rp([Dp(2).£]7) = 0 for
all £ € A/P. Hence we obtain rp([Dp(%),#]) = 0 for all & € A/P. Thus [Dp(£). 2] €
Q(A/P) for all £ € A/P. On the one hand, since D is continuous, we see that Dp is
also continuous. Thus by Theorem 2.3, we obtain Dp(A/P) C rad(A/P). But since
A/P is semisimple, Dp(A/P) = {0} for all primitive ideals of A. Hence we see that
D(A) C P for all primitive ideals of A. And so, D(A) C rad(A). On the other hand.
In case A/P is a commutative Banach algebra, one can conclude that Dp = 0 as
well, since A/P is semisimple and since we know that there are no nonzero linear
derivations on a commutative semisimple Banach algebra. In other words. D(z) € P
for all primitive ideals of A and all x € A. i.e. we get D(A) C rad(A). Therefore in
any case we have D(A) C rad(A). O0

Theorem 2.7. Let A be a noncommutative Banach algebra. Suppose there exists a

continuous linear Jordan derivation D : A — A such that
[D(x), 2] D(x)? € rad(A)
for all z € A. Then we have D(A) C rad(A).

Proof. The proof is similar as in the proof of Theorem 2.6. 0

The following theorem generalizes Vukman's result [11].

Theorem 2.8. Let A be a noncommutative semisimple Banach algebra. Suppose

there exists a linear Jordan derivation D : A — A such that
D(z)*[D(x),z] =0
for all x € A. Then we have D = 0.

Proof. According to the result of B.E. Johnson and A.M. Sinclair [5] every linear
derivation on a semisimple Banach algebra is continuous. A.M. Sinclair [8] has
proved that any continuous linear derivation on a Banach algebra leaves the primitive
ideals of A invariant. IHence for any primitive ideal P C A one can introduce a
derivation Dp : A/P — A/P, where A/P is a prime and factor Banach algebra. by
Dp(#) = D(z)+ P, & — x+ P. From the given assumptions D(z)%f(z) = 0. x € A. it
follows that (Dp(2))?[Dp(2).7] = 0. & € A/P.since all the assumptions of Theorem
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2.4 are fulfilled. And also the prime and factor algebra A/P is noncommutative.
Hence by Theorem 2.5 we have [Dp(%),2]” =0, 2 € A/P. Then rp([Dp(2),2])7 =
r([Dp(£),£]") = 0 for all £ € A/P. Hence we obtain rp([Dp(2),#]) = 0 for all
z € A/P. Thus [Dp(%),%] € Q(A/P) for all & € A/P. On the other hand. since D is
continuous, we see that Dp is also continuous. Thus by Theorem 2.3, one obtains
Dp(A/P) C rad(A/P). But since A/P is semisimple, Dp(A/P) = {0}. Hence we
get D(A) C P for all primitive ideals P of A. Thus D(A) C rad(A). But since A
is semisimple, rad(A4) = {0}. And so, D = 0. On the other hand, in case A/P is
a commutative Banach algebra, one can conclude that Dp = 0 as well since A/P
is semisimple and since we know that there are no nonzero linear derivations on a
commutative semisimple Banach algebras. In other words D(z) € NP = {0} for all
primitive ideals and all z € A. And so Thus D = 0. Therefore in any case we have
D =0. O

We generalize the result of J. Vukman [11].

Theorem 2.9. Let A be a noncommautative semisimple Banach algebra. Suppose

there exists a linear Jordan derivation D : A — A such that

[D(z), 2]D(z)* = 0
for all x € A. Then we have D = 0.
Proof. The proof is similar as in the proof of Theorem 2.8. Od
Corollary 2.10. Let A be a noncommutative semisimple Banach algebra. Suppose
there exists a linear Jordan derivation D : A — A such that

D(z)[D(z),z] =0
for all x € A. Then we have D = 0.
Corollary 2.11. Let A be a noncommutative semisimple Banach algebra. Suppose
there exists a linear Jordan derivation D : A — A such that

[D(z),z]D(x) =0
for all x € A. Then we have D = 0.

Note: By a simple calculation, if R is a 3!-semiprime ring and D: R — Ris a

Jordan derivation on R with [D(z),z]D(z) = 0 or D(z)[D(z),z] =0 for all z € R,
we have [D(z),z]? =0 for all z € R.

As a special case of Theorem 2.8 we get the following result which characterizes

commutative semisimple Banach algebras.
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Corollary 2.12. Let A be a semisimple Banach algebra. Suppose
[xs y]QH'T’ y]’ ‘T] = 0
for all x,y € A. In this case, A is commutative.

As a special case of Theorem 2.9 we get the following result which characterizes

commutative semisimple Banach algebras.
Corollary 2.13. Let A be a semisimple Banach algebra. Suppose
[lz. 9} 2]z, g = 0
for all x,y € A. In this case, A is commutative.
As a special cases (Theorem in [11]) of Theorem 2.6 we have the following result.

Corollary 2.14. Let A be a noncommutative Banach algebra. Suppose there erists
a continuous linear Jordan derivation D : A — A such that

D(z)[D(z), ] € rad(A)
and for all x € A. Then we have D(A) C rad(A).
As a special case (Theorem in [11]) of Theorem 2.7 we have the following result.

Corollary 2.15. Let A be a noncommutative Banach algebra. Suppose there exists

a continuous linear Jordan derivation D : A — A such that
[D(z),z|D(x) € rad(A)
and for all x € A. Then we have D(A) C rad(A).
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