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NULL BERTRAND CURVES IN A LORENTZ MANIFOLD

DAE Ho JIN

ABSTRACT. The purpose of this paper is to study the geometry of null Bertrand
curves in a Lorentz manifold.

1. INTRODUCTION

J. Bertrand studied a pair of curves in a 3-dimensional Euclidean space which
posses common principal normal direction. Such a curve is now called a Bertrand

curve. Bertrand curves are characterized as follows:

Theorem A ([6]). A curve C in a 3-dimensional Euclidean space, parameterized by
the arc length, s o Bertrand curve if and only if C is a plane curve or curves whose
curvature k and torsion T are in linear relation: ak + br = 1 for some constants a

and b. The product of torsion of Bertrand pair is constant.

Extending above result to null curves in 3-dimensional Minkowski space R3,
Honda-Inoguchi [10] and Inoguchi-Lee [13] have done some work on a pair of null
curves (C, C), called a null Bertrand pair and their relation with null helices in R3.
They have the following result.

Theorem B ([13]). Let C(p) be a null Cartan curve in R3, where p is a special
distinguished parameter. Then C admits a Bertrand mate C if and only if C and C

have same nonzero constant curvatures. Moreover, C is congruent to C.

Recently, Coken and Ciftci [3] have followed the 3-dimensional notion of Bertrand

curves and proved a theorem for null helices in 4-dimensional Minkowski space R1.

Theorem C ([3]). A null Cartan curve in R} is a null Bertrand curve if and only

if 71 is non-zero and Ty is zero.
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The purpose of this paper is to study null Bertrand curves in a Lorentz manifold.
We draw a conclusion which characterizes null Bertrand curves by properties of the
second and third curvatures of the general null curves which contain the null Cartan

curves as special case: k1 = 1, ko = 71 and k3 = T9.
2. FRENET AND CARTAN EQUATIONS

Let (M, g) be a real (m + 2)-dimensional Lorentz manifold and C' a smooth null
curve in M locally given by

' =a'(t), telIcR, i€{0,1,...,(m+1)}

for a coordinate neighborhood & on C. Then the tangent vector field £ = C’ on U
satisfies

g(£¢) =0

Denote by TC the tangent bundle of C and TC* the T'C perpendicular. Clearly,
TC* is a vector bundle over C of rank (m + 1). Since £ is null, the tangent bundle
TC of C is a vector subbundle of TC*, of rank 1. This implies that TC* is not
complementary to TC' in TM,,. Thus we must find complementary vector bundle
to TC in TM which will play the role of the normal bundle TC' consistent with
the classical non-degenerate theory.

Suppose S(T'C*) denotes the complementary vector subbundle to TC in TC*,
i.e., we have

TCt = TC 1 S(TCH)

where | means the orthogonal direct sum. It follows that S(T'C*) is a non-
degenerate vector subbundle of TM, of rank m. We call S(TC') a screen vector

bundle of C, which being non-degenerate, we have

(1) TM|. = S(TCY) L S(TCH)*,
where S(TC+)™
TM|c of rank 2.

We denote by F(C) the algebra of smooth functions on C and by I'(E) the F(C)

module of smooth sections of a vector bundle E over C. We use the same notation

is a complementary orthogonal vector subbundle to S(T'C*) in

for any other vector bundle.

Theorem 1 ([4], [5]). Let C be a null curve of a Lorentz manifold (M, g) and
S(TCL) be a screen vector bundle of C. Then there exists a unique vector bundle
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ntr(C) over C, of rank 1, such that on each coordinate neighborhood U C C' there is
a unique section N € U'(ntr(C)jy) satisfying

(2) g(& N)=1, g(N,N)=g(N, X)=0, "X eT(S(TCH)u).
We call the vector bundle ntr(C) the null transversal bundle of C' with respect
to S(T'C+). Next consider the vector bundle
tr(C) = ntr(C) L S(TCH),
which according to (1) and (2) is complementary but not orthogonal to T'C' in TM |¢.
More precisely, we have
(3) TM|c =TC @ tr(C) = (TC © ntr(C)) L S(TCH).

We call tr(C) the transversal vector bundle of C with respect to S(T'C+). The vector
field N in Theorem 1 is called the null transversal vector field of C' with respect to
€. As {£, N}is anull basis of T ((TC ® ntr(C))|y) satisfying (2). any screen vector
bundle S(TC*) of C is Riemannian.

Let C = C(p) be a smooth null curve, parametrized by the distinguished param-
eter p([4]), such that ||C”|| = k1 # 0. Denote by V the Levi-Civita connection on
M. Using (2) and (3) and taking into account that the screen vector bundle S(TC*)

is Riemannian of rank m, we obtain the following Frenet equations ([15])
Vel = riWh,
VeN = koW + k3Wa,
VeWy = — ko€ — k1N,
VeWs = — k3€ + kgW3,
(4) VeWs = — kaWa + 55Wi,
VeW; = —kipiWiq + kipoWip, 1€ {3, ..., m—1},
VeWn = —kmiWno1,
where {K1, ..., km41} are smooth functions on U and {Wy, ..., Wy} is a certain
orthonormal basis of I'(S(TC+)|y). In general, for any m > 0, we call F =
{&, N, Wi, ---, W} a natural Frenet frame on M along C with respect to the
screen vector bundle S(TC+) and the equations (4) are called its natural Frenet

equations of C. Finally, the functions {ki, ..., Km+1 } are called curvature func-
tions of C' with respect to the Frenet frame F.



212 DAE Ho JiIN

Note. According to Duggal and Bejancu [4] and Jin [14], a null curve with respect

to a distinguished parameter p is called a null geodesic if k1 = 0.

Let C = C(p) be a smooth null curve in a Lorentz manifold (M, g), parametrized
by a special distinguished parameter p such that ||[C”|] = 1. Also we obtain the
following Cartan equations due to [5]:

Vel = Wy,
V5N =W+ roWs,
VWi = —né— N,
Vng = — 1 + 13Wj,
(5) V§W3 = —13Wo + 14 Wy,
VeW; = —riWi 1 +1iaiWigr, t€{3, ..., m—1},
V§W = —Tme_l.
We call the frame F = {£, N, Wy, ---, Wp} of the equations (5), its curvature

functions and the corresponding curve C the Cartan frame on M along C, the

Cartan curvatures and the null Cartan curve respectively ([2], [5]).

3. NuLL BERTRAND CURVES

In this section we investigate the properties of the null Bertrand curve C in
a Lorentz manifold. Using the usual terminology, the spacelike unit vector field
Wi = C”/k1 will be called principal normal vector field of C.
Definition. A pair of null curves (C, C) in a Lorentz manifold (M, g) is called null
Bertrand pair if the principal normal directions of C and C coincide. We say that

C is a null Bertrand mate for C and vice versa. A null curve C is said to be a null

Bertrand curve if it admits a null Bertrand mate.

Let (C, C) be a null Bertrand pair parametrized by their distinguished parameters
p and p respectively, then C is parametrized as

(6) C(@(p)) = C(p) + f(p) Wi(p)

for some function f(p) # 0. Without any loss of generality, we assume that

(7) Wi(B(p)) = — Wi(p).
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Then, using (6), we obtain

dp -
(8) G = (= fm)e — fmN + ['Wh.
Taking the scalar product of (8) with W; and using (7), we obtain f' = 0 and
dp -
(9) d—p§~(1—fﬁ2)§—fﬁlN-
Also, taking the scalar product of both sides in the last equation, we have
(10) Iﬂ(l — fﬁ:g) = 0.

Differentiating (9) with respect to p and using (4) and (10), we get

d273 ; _ (dp 2 ' /
(11) @56 + K1 . Wi = —fry§ — f&1N — friraWi — frirsWa.

Taking the scalar product of (9) and (11) with £, we obtain
2 -

dp - ap - /
(12) @g(f» §) = —fr1, Wﬂ(ﬁ» §) = —fx,
respectively. From the equations (12), we have
4
(13) d—p = ck1; where cis a non-zero constant.
P
Also, by duality, we have
dp
dp
Thus we have g k1 = C—% =constant. Using (13) in (9) we get

(15) €_=%1;{K2§—£N.

Differentiating (15) with respect to p and using the Frenet equation (4), we have

dp - 1d (1~ fry 1 f
1 L = — — —— _— _ — — /.
( 6) dpﬂl W1 p dp( e > &+ C(l 2f ko) W1 CﬂgWg

(14) = dRK1; where d is a non-zero constant.

Taking the scalar product of (16) with Wa, N and W; and using (7), we obtain

1- p 1
fr = b, Eiglzal = E(QfK:z—-l)

17 =
(17) k3 = 0, o =

respectively, where b is a constant. If b # 0, then 1 — fxo = bk;. Thus, from (10),
we have k; = 0. It is contraction to x; # 0. This implies b = 0. Consequently, we
have 1 — frg = 0, this implies k2 = 1/f = non-zero constant. Using this fact. the
third equation of {17) reduces & g—g = -i— From this and (14), we have ¢ = d. Thus
K1 K1 = positive constant.

Conversely, assume that C is a null curve such that k3 = 0 and k3 = non-zero
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constant and the product of the first curvatures satisfies k1 k1 = n%, where a is a

non-zero constant, then define a new curve C by

(18) Cp(p)) = Clp) + — W 1(p).

Differentiating (18) with respect to p and using the Frenet equations (4), we get
(19) —ﬁg‘ =N

Fro_m_(lg), since k1 # 0, we have Zlg §£_0. Thus £ = pN, where p = —2—;3—; # 0 and
<& E>= p? <N, N >=0, that is, C is also null curve. Differentiating (19) with

respect to p and using the Frenet equation (4) with k3 = 0, we get
_ d - !
(20) ——12)5 (—p> K1 W1 = —ﬁN — K] Wl.
dp K2

N\ 2
Taking the norm of both sides in (20) we have (‘;—z) k1 = * K. Since k1 £ 0, we
have k1 # 0 and = k = a? K. Thus =tak; and p = :Fa—m = non-zero constant.

Thus, differentiating £ = pN with respect to p and using (4) with k3 = 0, we get

dp —
(21) fﬁl Wi = pro Wi
P

Consequently, the null curve C is a Bertrand mate of €. Thus we have

Theorem 2. A non-geodesic null curve in a Lorentz manifold is a null Bertrand
curve if and only if k2 is a non-zero constant and k3 = 0. The product of the first

curvatures of Bertrand pair is positive constant.

The null Cartan curve is a special case of null curve such that k1 = 1 and k;41 = 7
for i (1 <7 < m) in (4). Thus we have

Theorem 3. A null Cartan curve in a Lorentz manifold is a null Bertrand curve

if and only if 7 is a non-zero constant and 1o = 0.
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