THE DENJOY_{*}-STIELTJES EXTENSION OF THE BOCHNER, DUNFORD, PETTIS AND MCSHANE INTEGRALS

CHUN-KEE PARK a AND MEE NA OH b

ABSTRACT. In this paper we introduce the concepts of Denjoy_{*}-Stieltjes-Dunford, Denjoy_{*}-Stieltjes-Pettis, Denjoy_{*}-Stieltjes-Bochner and Denjoy_{*}-McShane-Stieltjes integrals of Banach-valued functions using the Denjoy_{*}-Stieltjes integral of real-valued functions and investigate their properties.

1. Introduction

The Denjoy integral of real-valued functions which is an extension of the Lebesgue integral was studied by some authors ([3], [4], [9]). In [7] we introduced the Denjoy* integral of real-valued functions. J. L. Gamez and J. Mendoza [2] and R. A. Gordon [3] studied the Denjoy extension of the Bochner, Pettis and Dunford integrals which is defined by the Denjoy integral. J. M. Park and D. H. Lee [8] introduced the concept of Denjoy-McShane integral of Banach-valued functions. In [7] we introduced the concept of Denjoy*-Stieltjes integral which is a generalization of the Denjoy* integral and obtained some properties of the Denjoy*-Stieltjes integral.

In this paper we deal with the Denjoy_{*}-Stieltjes extension of the Bochner, Pettis, Dunford and McShane integrals. We first define the Denjoy_{*}-Stieltjes-Dunford, Denjoy_{*}-Stieltjes-Pettis, Denjoy_{*}-Stieltjes-Bochner and Denjoy_{*}-McShane-Stieltjes integrals of Banach-valued functions using the Denjoy_{*}-Stieltjes integral of real-valued functions and then investigate their properties.

2. Preliminaries

Throughout this paper, X denotes a real Banach space and X^* its dual. Let

Received by the editors January 25, 2008. Revised June 12, 2008. Accepted July 31, 2008. 2000 Mathematics Subject Classification. 28B05, 26A39, 46G10.

Key words and phrases. Denjoy_{*}-Stieltjes integral, Denjoy_{*}-Stieltjes -Dunford integral, Denjoy_{*}-Stieltjes-Pettis integral, Denjoy_{*}-Stieltjes-Bochner integral, Denjoy_{*}-McShane-Stieltjes integral.

$$\omega(F, [c, d]) = \sup \{ ||F(y) - F(x)|| : c \le x < y \le d \}$$

denote the oscillation of the function $F:[a,b] \to X$ on the interval [c,d].

Definition 2.1 ([9]). Let $F:[a,b] \to X$ and let $E \subset [a,b]$.

(a) The function F is AC_* on E if F is bounded on an interval that contains E and for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$\sum_{i=1}^{n} \omega(F, [c_i, d_i]) < \epsilon$$

whenever $\{[c_i, d_i]: 1 \leq i \leq n\}$ is a finite collection of non-overlapping intervals that have endpoints in E and satisfy

$$\sum_{i=1}^{n} (d_i - c_i) < \delta.$$

(b) The function F is ACG_* on E if F is continuous on E and E can be expressed as a countable union of sets on each of which F is AC_* .

Definition 2.2 ([7,9]). Let $F:[a,b] \to X$ and let $t \in (a,b)$. A vector z in X is the approximate derivative of F at t if there exists a measurable set $E \subset [a,b]$ that has t as a point of density such that

$$\lim_{\substack{s \to t \\ s \in E}} \frac{F(s) - F(t)}{s - t} = z.$$

We will write $F'_{ap}(t) = z$.

A function $f:[a,b] \to \mathbb{R}$ is $Denjoy_*$ integrable on [a,b] if there exists an ACG_* function $F:[a,b] \to \mathbb{R}$ such that F'=f almost everywhere on [a,b]. In this case, we write

$$(D_*)\int_a^b f = F(b) - F(a).$$

The function f is Denjoy_{*} integrable on a set $E \subset [a, b]$ if $f\chi_E$ is Denjoy_{*} integrable on [a, b]. In this case, we write

$$(D_*)\int_E f = (D_*)\int_a^b f\chi_E.$$

Definition 2.3 ([5]). A McShane partition of [a, b] is a finite collection $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ such that $\{[c_i, d_i] : 1 \leq i \leq n\}$ is a non-overlapping family of subintervals of [a, b] covering [a, b] and $t_i \in [a, b]$ for each $i \leq n$. A gauge on [a, b]

is a function $\delta : [a, b] \to (0, \infty)$. A McShane partition $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ is subordinate to a gauge δ if

$$[c_i, d_i] \subset (t_i - \delta(t_i), t_i + \delta(t_i))$$

for every $i \leq n$. If $f: [a, b] \to X$ and if $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ is a McShane partition of [a, b], we will denote $f(\mathcal{P})$ for

$$\sum_{i=1}^n f(t_i)(d_i-c_i).$$

A function $f:[a,b]\to X$ is McShane integrable on [a,b], with McShane integral z, if for each $\varepsilon>0$ there exists a gauge $\delta:[a,b]\to(0,\infty)$ such that

$$||f(\mathcal{P}) - z|| < \varepsilon$$

whenever $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ is a McShane partition of [a, b] subordinate to δ . In this case, we write

$$(M)\int_a^b f = z.$$

3. The Denjoy_{*}-Stieltjes Extension of the Bochner, Dunford and Pettis Integrals

In this section we introduce the concepts of Denjoy_{*}-Stieltjes-Bochner, Denjoy_{*}-Stieltjes-Pettis and Denjoy_{*}-Stieltjes-Dunford integrals and investigate their properties.

Definition 3.1 ([7]). Let $F:[a,b] \to X$ and let $\alpha:[a,b] \to \mathbb{R}$ be a strictly increasing function and let $E \subset [a,b]$.

(a) The function F is α -AC* on E if F is bounded on an interval that contains E and for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$\sum_{i=1}^{n} \omega(F, [c_i, d_i]) < \epsilon$$

whenever $\{[c_i, d_i] : 1 \le i \le n\}$ is a finite collection of non-overlapping intervals that have endpoints in E and satisfy

$$\sum_{i=1}^{n} [\alpha(d_i) - \alpha(c_i)] < \delta.$$

(b) The function F is α -ACG_{*} on E if F is continuous on E and E can be expressed as a countable union of sets on each of which F is α -AC_{*}.

Theorem 3.2 ([7]). Let $F : [a,b] \to X$ and let $\alpha : [a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$ and let $E \subset [a,b]$. Then F is AC_* on E if and only if F is α - AC_* on E.

Proof. Suppose that F is AC_{*} on E. Let $\epsilon > 0$ be given. Then there exists $\eta > 0$ such that

$$\sum_{i=1}^{n} \omega(F, [c_i, d_i]) < \epsilon$$

whenever $\{[c_i, d_i] : 1 \le i \le n\}$ is any finite collection of non-overlapping intervals that have endpoints in E and satisfy

$$\sum_{i=1}^{n} (d_i - c_i) < \eta.$$

Since α is a strictly increasing function such that $\alpha \in C^1([a,b])$, there exists m > 0 such that

$$|\alpha'(t)| = \alpha'(t) \ge m$$

for all $t \in [a, b]$. Take $\delta = m\eta$. Let $\{[c_i, d_i] : 1 \le i \le n\}$ be any finite collection of non-overlapping intervals that have endpoints in E and satisfy

$$\sum_{i=1}^{n} [\alpha(d_i) - \alpha(c_i)] < \delta.$$

Then by the Mean Value Theorem there exists $t_i \in (c_i, d_i)$ such that

$$\alpha(d_i) - \alpha(c_i) = \alpha'(t_i)(d_i - c_i), \ 1 \le i \le n.$$

So $\alpha(d_i) - \alpha(c_i) \ge m(d_i - c_i), \ 1 \le i \le n$. Hence

$$\sum_{i=1}^{n} (d_i - c_i) \le \frac{1}{m} \sum_{i=1}^{n} [\alpha(d_i) - \alpha(c_i)] \le \frac{1}{m} \cdot \delta = \eta.$$

So

$$\sum_{i=1}^n \omega(F, [c_i, d_i]) < \epsilon.$$

Thus F is α -AC* on E.

Conversely, suppose that F is α -AC* on E. Let $\epsilon > 0$ be given. Then there exists $\eta > 0$ such that

$$\sum_{i=1}^{n} \omega(F, [c_i, d_i]) < \epsilon$$

whenever $\{[c_i, d_i] : 1 \leq i \leq n\}$ is any finite collection of non-overlapping intervals that have endpoints in E and satisfy

$$\sum_{i=1}^{n} [\alpha(d_i) - \alpha(c_i)] < \eta.$$

Since $\alpha \in C^1([a,b])$, there exists M>0 such that

$$|\alpha'(t)| \leq M$$

for all $t \in [a, b]$. Take $\delta = \frac{\eta}{M}$. Let $\{[c_i, d_i] : 1 \le i \le n\}$ be any finite collection of non-overlapping intervals that have endpoints in E and satisfy

$$\sum_{i=1}^n (d_i - c_i) < \delta.$$

Then by the Mean Value Theorem there exists $t_i \in (c_i, d_i)$ such that

$$\alpha(d_i) - \alpha(c_i) = \alpha'(t_i)(d_i - c_l), \ 1 \le i \le n.$$

So

$$\alpha(d_i) - \alpha(c_i) \le M(d_i - c_i), \ 1 \le i \le n.$$

Hence

$$\sum_{i=1}^{n} [\alpha(d_i) - \alpha(c_i)] \le M \sum_{i=1}^{n} (d_i - c_i) < M\delta = \eta.$$

So

$$\sum_{i=1}^{n} \omega(F, [c_i, d_i]) < \epsilon.$$

Thus F is AC_* on E.

Definition 3.3 ([7]). Let $F:[a,b]\to X$ and let $t\in(a,b)$ and let $\alpha:[a,b]\to\mathbb{R}$ be a strictly increasing function such that $\alpha\in C^1([a,b])$. A vector $z\in X$ is the α -approximate derivative of F at t if there exists a measurable set $E\subset[a,b]$ that has t as a point of density such that

$$\lim_{\substack{s \to t \\ \alpha \in F}} \frac{F(s) - F(t)}{\alpha(s) - \alpha(t)} = z.$$

We will write $F'_{\alpha,ap}(t) = z$.

Note that $F'_{ap}(t) = F'_{\alpha,ap}(t) \cdot \alpha'(t)$ for each $t \in (a,b)$.

Definition 3.4. (a) A function $f:[a,b] \to X$ is $Denjoy_*$ -Dunford integrable on [a,b] if for each $x^* \in X^*$ the function x^*f is Denjoy $_*$ integrable on [a,b] and if for

every interval I in [a,b] there exists a vector x_I^{**} in X^{**} such that

$$x_I^{**}(x^*) = (D_*) \int_I x^* f$$

for all $x^* \in X^*$.

- (b) A function $f:[a,b] \to X$ is $Denjoy_*$ -Pettis integrable on [a,b] if f is $Denjoy_*$ -Dunford integrable on [a,b] and if $x_I^{**} \in X$ for every interval I in [a,b].
- (c) A function $f:[a,b] \to X$ is $Denjoy_*$ -Bochner integrable on [a,b] if there exists an ACG_* function $F:[a,b] \to X$ such that F is approximately differentiable almost everywhere on [a,b] and $F'_{ap} = f$ almost everywhere on [a,b].

A function $f:[a,b]\to X$ is integrable in one of the above senses on a set $E\subset [a,b]$ if the function $f\chi_E$ is integrable in that sense on [a,b].

Definition 3.5 ([7]). Let $\alpha:[a,b]\to\mathbb{R}$ be a strictly increasing function such that $\alpha\in C^1([a,b])$. A function $f:[a,b]\to\mathbb{R}$ is α -Denjoy_{*}-Stieltjes integrable on [a,b] if there exists an α -ACG_{*} function $F:[a,b]\to\mathbb{R}$ such that $F'_{\alpha,ap}=f$ almost everywhere on [a,b]. In this case, we write

$$(D_*S)\int_a^b f d\alpha = F(b) - F(a).$$

The function f is α -Denjoy_{*}-Stieltjes integrable on a set $E \subset [a,b]$ if $f\chi_E$ is α -Denjoy_{*}-Stieltjes integrable on [a,b]. In this case, we write

$$(D_*S)\int_E f d\alpha = (D_*S)\int_a^b f \chi_E d\alpha.$$

Theorem 3.6 ([7]). Let $f:[a,b] \to \mathbb{R}$ and let $\alpha:[a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$ and let $E \subset [a,b]$. Then f is α -Denjoy*-Stieltjes integrable on E if and only if $\alpha'f$ is Denjoy* integrable on E.

Proof. If f is α -Denjoy_{*}-Stieltjes integrable on E, then there exists an α -ACG_{*} function $F:[a,b] \to \mathbb{R}$ such that $F'_{\alpha,ap} = f\chi_E$ almost everywhere on [a,b]. By Theorem 3.2, F is an ACG_{*} function on [a,b] such that $F' = \alpha' f \chi_E$ almost everywhere on [a,b]. Hence $\alpha' f \chi_E$ is Denjoy_{*} integrable on [a,b]. Thus $\alpha' f$ is Denjoy_{*} integrable on E.

Conversely, if $\alpha' f$ is Denjoy_{*} integrable on E, then there exists an ACG_{*} function $F:[a,b]\to\mathbb{R}$ on [a,b] such that $F'=\alpha' f \chi_E$ almost everywhere on [a,b]. By Theorem 3.2, F is an α -ACG_{*} function on [a,b] such that $F'_{\alpha,ap}=f\chi_E$ almost everywhere on [a,b]. Hence $f\chi_E$ is α -Denjoy_{*}-Stieltjes integrable on [a,b]. Thus f is α -Denjoy_{*}-Stieltjes integrable on E.

Definition 3.7. Let $\alpha:[a,b]\to\mathbb{R}$ be a strictly increasing function such that $\alpha\in C^1([a,b])$.

(a) $f:[a,b] \to X$ is α -Denjoy_{*}-Stieltjes-Dunford integrable on [a,b] if for each $x^* \in X^*$ x^*f is α -Denjoy_{*}-Stieltjes integrable on [a,b] and if for every interval I in [a,b] there exists a vector $x_I^{**} \in X^{**}$ such that

$$x_I^{**}(x^*) = (D_*S) \int_I x^* f \ d\alpha$$

for all $x^* \in X^*$.

- (b) $f:[a,b] \to X$ is α -Denjoy_{*}-Stieltjes-Pettis integrable on [a,b] if f is α -Denjoy_{*}-Stieltjes -Dunford integrable on [a,b] and if $x_I^{**} \in X$ for every interval I in [a,b].
- (c) $f:[a,b] \to X$ is α -Denjoy_{*}-Stieltjes-Bochner integrable on [a,b] if there exists an α -ACG_{*} function $F:[a,b] \to X$ such that F is α -approximately differentiable almost everywhere on [a,b] and $F'_{\alpha,ap}=f$ almost everywhere on [a,b].

 $f:[a,b]\to X$ is integrable in one of the above senses on a set $E\subset [a,b]$ if $f\chi_E$ is integrable in that sense on [a,b].

Theorem 3.8. Let $\alpha:[a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$ and let $E \subset [a,b]$. Then $f:[a,b] \to X$ is α -Denjoy_{*}-Stieltjes-Bochner integrable on E if and only if $\alpha'f:[a,b] \to X$ is Denjoy_{*}-Bochner integrable on E.

Proof. If $f:[a,b] \to X$ is α -Denjoy_{*}-Stieltjes-Bochner integrable on E, then there exists an α -ACG_{*} function $F:[a,b] \to X$ such that F is α -approximately differentiable almost everywhere on [a,b] and $F'_{\alpha,ap} = f\chi_E$ almost everywhere on [a,b]. By Theorem 3.2, F is ACG_{*} on [a,b]. F is also approximately differentiable almost everywhere on [a,b] and $F'_{ap} = F'_{\alpha,ap}\alpha' = \alpha'f\chi_E$ almost everywhere on [a,b]. Hence $\alpha'f:[a,b] \to X$ is Denjoy_{*}-Bochner integrable on E.

Conversely, if $\alpha'f:[a,b]\to X$ is Denjoy_{*}-Bochner integrable on E, then there exists an ACG_{*} function $F:[a,b]\to X$ such that F is approximately differentiable almost everywhere on [a,b] and $F'_{ap}=\alpha'f\chi_E$ almost everywhere on [a,b]. By Theorem 3.2, F is α -ACG_{*} on [a,b]. F is also α -approximately differentiable almost everywhere on [a,b] and $F'_{\alpha,ap}=\frac{1}{\alpha'}F'_{ap}=f\chi_E$ almost everywhere on [a,b]. Hence $f:[a,b]\to X$ is α -Denjoy_{*}-Stieltjes-Bochner integrable on E.

Theorem 3.9. Let $\alpha:[a,b]\to\mathbb{R}$ be a strictly increasing function such that $\alpha\in C^1([a,b])$ and let $E\subset [a,b]$. Then $f:[a,b]\to X$ is α -Denjoy*-Stieltjes-Dunford integrable on E if and only if $\alpha'f:[a,b]\to X$ is Denjoy*-Dunford integrable on E.

Proof. If $f:[a,b] \to X$ is α -Denjoy_{*}-Stieltjes-Dunford integrable on E, then for each $x^* \in X^*$ x^*f is α -Denjoy_{*}-Stieltjes integrable on E and for every interval I in [a,b] there exists a vector $x_I^{**} \in X^{**}$ such that

$$x_I^{**}(x^*) = (D_*S) \int_I x^* f \chi_E \ d\alpha$$

for all $x^* \in X^*$. By Theorem 3.6, for each $x^* \in X^*$ $\alpha'(x^*f) = x^*(\alpha'f)$ is Denjoy_{*} integrable on E and

$$x_I^{**}(x^*) = (D_*S) \int_I x^* f \chi_E \ d\alpha = (D_*) \int_I x^* (\alpha' f \chi_E)$$

for all $x^* \in X^*$. Hence $\alpha' f : [a, b] \to X$ is Denjoy_{*}-Dunford integrable on E.

Conversely, if $\alpha' f: [a,b] \to X$ is Denjoy_{*}-Dunford integrable on E, then for each $x^* \in X^*$ $x^*(\alpha' f) = \alpha'(x^* f)$ is Denjoy_{*} integrable on E and for every interval I in [a,b] there exists a vector $x_I^{**} \in X^{**}$ such that

$$x_I^{**}(x^*) = (D_*) \int_I x^* (\alpha' f \chi_E)$$

for all $x^* \in X^*$. By Theorem 3.6, for each $x^* \in X^*$ x^*f is α -Denjoy_{*}-Stieltjes integrable on E and

$$x_I^{**}(x^*) = (D_*) \int_I x^*(\alpha' f \chi_E) = (D_*) \int_I \alpha'(x^* f \chi_E) = (D_* S) \int_I x^* f \chi_E \ d\alpha$$

for all $x^* \in X^*$. Hence $f : [a, b] \to X$ is α -Denjoy*-Stieltjes-Dunford integrable on E.

Theorem 3.10. Let $\alpha:[a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$ and let $E \subset [a,b]$. Then $f:[a,b] \to X$ is α -Denjoy*-Stieltjes-Pettis integrable on E if and only if $\alpha'f:[a,b] \to X$ is Denjoy*-Pettis integrable on E.

Proof. The proof is similar to Theorem 3.9.

4. The Denjoy_{*}-Stieltjes Extension of the McShane Integral

In this section we introduce the concept of the Denjoy_{*}-McShane-Stieltjes integral and investigate some properties of this integral.

Definition 4.1. A function $f:[a,b] \to X$ is $Denjoy_*$ -McShane integrable on [a,b] if there exists a continuous function $F:[a,b] \to X$ such that

(i) for each $x^* \in X^*$ x^*F is ACG_{*} on [a, b] and

(ii) for each $x^* \in X^*$ x^*F is differentiable almost everywhere on [a, b] and $(x^*F)' = x^*f$ almost everywhere on [a, b].

In this case, we write

$$(D_*M)\int_a^b f = F(b) - F(a).$$

Definition 4.2. Let $\alpha:[a,b]\to\mathbb{R}$ be a strictly increasing function such that $\alpha\in C^1([a,b])$. A function $f:[a,b]\to X$ is α -Denjoy*-McShane-Stieltjes integrable on [a,b] if there exists a continuous function $F:[a,b]\to X$ such that

- (i) for each $x^* \in X^*$ x^*F is α -ACG, on [a,b] and
- (ii) for each $x^* \in X^*$ x^*F is α -approximately differentiable almost everywhere on [a, b] and $(x^*F)'_{\alpha,ap} = x^*f$ almost everywhere on [a, b].

In this case, we write

$$(D_*MS)\int_a^b f d\alpha = F(b) - F(a).$$

Theorem 4.3. Let $\alpha:[a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$. Then $f:[a,b] \to X$ is α -Denjoy*-McShane-Stieltjes integrable on [a,b] if and only if $\alpha'f:[a,b] \to X$ is Denjoy*-McShane integrable on [a,b].

Proof. If $f:[a,b] \to X$ is α -Denjoy_{*}-McShane-Stieltjes integrable on [a,b], then there exists a continuous function $F:[a,b] \to X$ such that

- (i) for each $x^* \in X^*$ x^*F is $\alpha\text{-ACG}_*$ on [a,b] and
- (ii) for each $x^* \in X^*$ x^*F is α -approximately differentiable almost everywhere on [a,b] and $(x^*F)'_{\alpha,ap} = x^*f$ almost everywhere on [a,b].

From Theorem 3.2 we have

- (i) for each $x^* \in X^*$ x^*F is ACG, on [a, b] and
- (ii) for each $x^* \in X^*$ x^*F is differentiable almost everywhere on [a,b] and

$$(x^*F)' = (x^*F)'_{ap} = (x^*F)'_{\alpha,ap}\alpha' = (x^*f)\alpha' = x^*(\alpha'f)$$

almost everywhere on [a, b].

Hence $\alpha' f : [a, b] \to X$ is Denjoy*-McShane integrable on [a, b].

Conversely, if $\alpha' f : [a, b] \to X$ is Denjoy_{*}-McShane integrable on [a, b], then there exists a continuous function $F : [a, b] \to X$ such that

- (i) for each $x^* \in X^*$ x^*F is ACG_{*} on [a,b] and
- (ii) for each $x^* \in X^*$ x^*F is differentiable almost everywhere on [a, b] and $(x^*F)' = x^*(\alpha'f)$ almost everywhere on [a, b].

From Theorem 3.2 we have

- (i) for each $x^* \in X^*$ x^*F is α -ACG, on [a, b] and
- (ii) for each $x^* \in X^*$ x^*F is α -approximately differentiable almost everywhere on [a,b] and

$$(x^*F)'_{\alpha,ap} = \frac{1}{\alpha'}(x^*F)'_{ap} = \frac{1}{\alpha'}(x^*F)' = \frac{1}{\alpha'}x^*(\alpha'f) = x^*f$$

almost everywhere on [a, b].

Hence $f:[a,b]\to X$ is α -Denjoy_{*}-McShane-Stieltjes integrable on [a,b].

Theorem 4.4. If $f:[a,b] \to X$ is McShane integrable on [a,b], then $f:[a,b] \to X$ is Denjoy*-McShane integrable on [a,b].

Proof. Let $f:[a,b]\to X$ be McShane integrable on [a,b]. Then for each $x^*\in X^*$ x^*f is McShane integrable on [a,b] and hence x^*f is Lebesgue integrable on [a,b]. Let

$$F(t) = (M) \int_{a}^{t} f.$$

Then $F:[a,b]\to X$ is continuous on [a,b] by [5, Theorem 8] and for each $x^*\in X^*$

$$x^*F(t) = (M) \int_a^t x^*f = (L) \int_a^t x^*f.$$

Hence x^*F is AC and so x^*F is ACG_{*} and $(x^*F)' = x^*f$ almost everywhere on [a, b]. Thus $f: [a, b] \to X$ is Denjoy_{*}-McShane integrable on [a, b].

We can obtain the following corollary from Theorem 4.3, 4.4.

Corollary 4.5. Let $\alpha : [a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$ and let $f : [a,b] \to X$. If $\alpha' f : [a,b] \to X$ is McShane integrable on [a,b], then $f : [a,b] \to X$ is α -Denjoy*-McShane-Stieltjes integrable on [a,b].

Theorem 4.6. If $f:[a,b] \to X$ is $Denjoy_*$ -Bochner integrable on [a,b], then $f:[a,b] \to X$ is $Denjoy_*$ -McShane integrable on [a,b].

Proof. Let $f:[a,b] \to X$ be Denjoy_{*}-Bochner integrable on [a,b]. Then there exists an ACG_{*} function $F:[a,b] \to X$ such that $F'_{ap} = f$ almost everywhere on [a,b]. For each $x^* \in X$ x^*F is also ACG_{*} and $(x^*F)' = x^*f$ almost everywhere on [a,b]. Hence f is Denjoy_{*}-McShane integrable on [a,b].

We can obtain the following corollary from Theorem 4.3, 4.6.

Corollary 4.7. Let $\alpha : [a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$ and let $f : [a,b] \to X$. If $\alpha' f : [a,b] \to X$ is Denjoy*-Bochner integrable on [a,b], then $f : [a,b] \to X$ is α -Denjoy*-McShane-Stieltjes integrable on [a,b].

Theorem 4.8. If $f : [a,b] \to X$ is $Denjoy_*$ -McShane integrable on [a,b], then $f : [a,b] \to X$ is $Denjoy_*$ -Pettis integrable on [a,b].

Proof. Suppose that $f:[a,b]\to X$ is Denjoy_{*}-McShane integrable on [a,b]. Let

$$F(t) = (D_*M) \int_a^t f.$$

Since x^*F is ACG_{*} and $(x^*F)' = x^*f$ almost everywhere on [a, b] for each $x^* \in X^*$, x^*f is Denjoy_{*} integrable on [a, b] for each $x^* \in X^*$. For every interval [c, d] in [a, b], we have

$$x^*(F(d) - F(c)) = x^*F(d) - x^*F(c)$$

$$= (D_*) \int_a^d x^*f - (D_*) \int_a^c x^*f$$

$$= (D_*) \int_c^d x^*f.$$

Since $F(d) - F(c) \in X$, $f : [a, b] \to X$ is Denjoy_{*}-Pettis integrable on [a, b].

We can obtain the following corollary from Theorem 4.3, 4.8.

Corollary 4.9. Let $\alpha:[a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$ and let $f:[a,b] \to X$. If $f:[a,b] \to X$ is α -Denjoy*-McShane-Stieltjes integrable on [a,b], then $\alpha'f:[a,b] \to X$ is Denjoy*-Pettis integrable on [a,b].

Theorem 4.10. Let $\alpha : [a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$. If $f : [a,b] \to X$ is α -Denjoy*-McShane-Stieltjes integrable on [a,b] and $T : X \to Y$ is a bounded linear operator, then $T \circ f : [a,b] \to Y$ is α -Denjoy*-McShane-Stieltjes integrable on [a,b].

Proof. If $f:[a,b]\to X$ is α -Denjoy_{*}-McShane-Stieltjes integrable on [a,b], then there exists a continuous function $F:[a,b]\to X$ such that

- (i) for each $x^* \in X^*$ x^*F is α -ACG, on [a, b] and
- (ii) for each $x^* \in X^*$ x^*F is α -approximately differentiable almost everywhere on [a,b] and $(x^*F)'_{\alpha,ap} = x^*f$ almost everywhere on [a,b].

Let $G = T \circ F$. Then $G : [a, b] \to Y$ is a continuous function such that

- (i) for each $y^* \in Y^*$ $y^*G = y^*(T \circ F) = (y^*T)F$ is α -ACG, on [a,b] since $y^*T \in X^*$, and
- (ii) for each $y^* \in Y^*$ $y^*G = y^*(T \circ F) = (y^*T)F$ is α -approximately differentiable almost everywhere on [a,b] and

$$(y^*G)'_{\alpha,ap} = (y^*(T \circ F))'_{\alpha,ap} = ((y^*T)F)'_{\alpha,ap} = (y^*T)f = y^*(T \circ f)$$

almost everywhere on [a, b] since $y^*T \in X^*$.

Hence $T \circ f : [a, b] \to Y$ is α -Denjoy_{*}-McShane-Stieltjes integrable on [a, b]. \square

Theorem 4.11. Let $\alpha : [a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$. If $f : [a,b] \to X$ is α -Denjoy*-Stieltjes-Bochner integrable on [a,b], then $f : [a,b] \to X$ is α -Denjoy*-McShane-Stieltjes integrable on [a,b].

Proof. If $f:[a,b]\to X$ is α -Denjoy*-Stieltjes-Bochner integrable on [a,b], then there exists an α -ACG* function $F:[a,b]\to X$ such that F is α -approximately differentiable almost everywhere on [a,b] and $F'_{\alpha,ap}=f$ almost everywhere on [a,b]. It is easy to show that for each $x^*\in X^*$ x^*F is α -ACG* on [a,b] and x^*F is α -approximately differentiable almost everywhere on [a,b] and $(x^*F)'_{\alpha,ap}=x^*f$ almost everywhere on [a,b]. Hence $f:[a,b]\to X$ is α -Denjoy*-McShane-Stieltjes integrable on [a,b].

Theorem 4.12. Let $\alpha:[a,b]\to\mathbb{R}$ be a strictly increasing function such that $\alpha\in C^1([a,b])$. If $f:[a,b]\to X$ is α -Denjoy_*-McShane-Stieltjes integrable on [a,b], then $f:[a,b]\to X$ is α -Denjoy_*-Stieltjes-Pettis integrable on [a,b].

Proof. Suppose that $f:[a,b]\to X$ is α -Denjoy*-McShane-Stieltjes integrable on [a,b]. Let

$$F(t) = (D_*MS) \int_a^t f d\alpha.$$

Since x^*F is α -ACG_{*} on [a,b] and $(x^*F)'_{\alpha,ap} = x^*f$ almost everywhere on [a,b] for each $x^* \in X^*$, x^*f is α -Denjoy_{*}-Stieltjes integrable on [a,b] for each $x^* \in X^*$. For every interval [c,d] in [a,b] and $x^* \in X^*$, we have

$$x^*(F(d) - F(c)) = x^*F(d) - x^*F(c)$$

$$= (D_*S) \int_a^d x^*f d\alpha - (D_*S) \int_a^c x^*f d\alpha$$

$$= (D_*S) \int_c^d x^*f d\alpha.$$

Since $F(d) - F(c) \in X$. $f : [a, b] \to X$ is α -Denjoy_{*}-Stieltjes-Pettis integrable on [a, b].

REFERENCES

- D.H. Fremlin & J. Mendoza: On the integration of vector-valued functions. Illinois J. Math. 38 (1994), no. 1, 127-147.
- J.L. Gamez & J. Mendoza: On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Math. 130 (1998), no.1-2, 115-133.
- 3. R.A. Gordon: The Denjoy extension of the Bochner, Pettis and Dunford integrals Studia Math. 92 (1989), 73-91.
- 4. _____: The integrals of Lebesgue, Denjoy, Perron and Henstock. Grad. Stud. Math. 4, Amer. Math. Soc., Providence, R.I., 1994.
- 5. ______: The McShane integral of Banach-valued functions. *Illinois J. Math.* **34** (1990), no. 3, 557-567
- S. Hu & V. Lakshmikantham: Some Remarks on Generalized Riemann Integral. J. Math. Anal. Appl. 137 (1989), 515-527.
- 7. C.K. Park & M.N. Oh: On Denjoy_{*}-Stieltjes integral. (submitted).
- 8. J.M. Park & D.H. Lee: The Denjoy extension of the McShane integral. *Bull. Korean Math. Soc.* **33** (1996), no. 3, 411-417.
- 9. S. Saks: Theory of the integral. Dover, New York, 1964.
- *Department of Mathematics, Kangwon National University, Chuncheon. Gangwon 200-701, Korea

Email address: ckpark@kangwon.ac.kr

^bDepartment of Mathematics. Kangwon National University, Chuncheon, Gangwon 200-701, Korea

Email address: mnoh820@yahoo.co.kr