J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 15, Number 3 (August 2008), Pages 221-227

RESULTS ON STRONG GENERALIZED NEIGHBORHOOD
SPACES

WoN KEUN MIN

ABSTRACT. We introduce and study the new concepts of interior and closure oper-
ators on strong generalized neighborhood spaces. Also we introduce and investigate
the concept of sgn-continuity on SGNS.

1. INTRODUCTION

Csézar introduced the notions of generalized neighborhood systems and general-
ized topological spaces [1]. The author introduced the strong generalized neighbor-
hood systems [3] which is a generalization of neighborhood systems on a nonempty
set.

The strong generalized neighborhood system induces a strong generalized neigh-
borhood space(briefly SGNS) which implies a generalized neighborhood space. In
this paper, we introduce the new concepts of interior and closure operators on
SGNS’s and we characterize properties of the operators by using the convergence of
m-families on SGNS’s. Alsc we introduce the concept of sgn-continuity on SGNS’s
and we investigate characterizations for the sgn-continuity by using the new interior
and closure operators defined on SGNS'’s.

2. PRELIMINARIES

Let X be a nonempty set and ¥ : X — exp(exp(X)) satisfy z € V for V € (z).
Then V € (z) is called a generalized neighborhood of x € X and v is called a
generalized neighborhood system {1] on X.
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Definition 2.1 ([3]). Let ¢ : X — exp(exp(X)). Then 9 is called a strong general-
1zed neighborhood system on X if it satisfies the following:

(1) z e V for V € 9(x);

(2) for U.V € ¢¥(z), VNU € ¢Y(x).

Then the pair (X,v) is called a strong generalized neighborhood space (briefly
SGNS) on X. Then V € ¢(x) is called a strong generalized neighborhood of x € X.

Definition 2.2 ([3]). Let (X,%) be an SGNS on X and A C X. Then the inte-
rior and closure of A on 1 (denoted by ty(A4), v4(A), respectively) are defined as
following:

ty(A) = {& € A : there exists V € ¢(z) such that V C A};

Yp(A) ={r e X : VNA#Dforall V € ¢(x)}.

Definition 2.3 ([3]). Let (X,) be an SGNS on X and G € X. Then G is called
an sgy-open set if for each x € G, there is V € 1(x) such that V C G.

Let us denote sgy(X) the collection of all sgy-open sets on an SGNS (X, v).
The complements of sg,-open sets are called sg,;,-closed sets. The sg,,-interior of A
(denoted by 144, (A)) is the union of all G C A, G € sgy(X), and the sgy,-closure of
A (denoted by cg,,(A)) is the intersection of all sgy-closed sets containing A.

Definition 2.4 ([3]). Let (X,v) be an SGNS on X.
(1) The empty set is an sgy-open set;
(2) The intersection of two sgy,-open sets is an sgy-open set;
(3) The arbitrary union of sgy-open sets is an sgy-open set.

Definition 2.5 ([3]). Let (X,%) be an SGNS on X and A C X. Then ¢y(4) = A
iff A is sgy-open.

Definition 2.6 ([3]). Let (X,v¢) and (Y,¢) be two SGNS’s. Then f: X — Y is
said to be

(1) sg-continuous if for every A € sg4(Y), f~1(A) is in sgy(X),

(2) (¥, @)-continuous if for x € X and V € ¢(f(x)), there is U € y(x) such that
flU)cv.

For a nonempty set X, a collection H of subsets of X is called an m-famuly [2] on
X if NH # 0. Let ¢ be a generalized neighborhood system on X and let H be an
m-family on X. Then we say that an m-family H converges to z € X if H is finer
than ¥(z) ie., ¥(z) C H.
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3. MAIN RESULTS

Definition 3.1. Let (X, %) be an SGNS and A C X.
(a) I(A) = {re A: Ae ()}
(b) ely(A) ={z e X: X - A ¢ y(z)}.

Theorem 3.2. Let (X,¢)) be an SGNS and A,B C X.
(a) I},(4) € A.
(b) I;,(4)N L(B)C I (AN B).
(c) I3(A) = X —clj(X — A).
(d) IH(A) C w(A).

Proof. (a) Obvious.

(b) Let = € I;(A) N I7(B); then A, B € ¢(x). From the property of strong
generalized neighborhood, it follows that AN B € ¥(z). Hence z € I};(AN B).

(c) Let z € Ij(A) for AC X;then A=X — (X - A)¢€ #(z) and by Definition
3.1, z ¢ cly,(X — A). Thus we have z € X — i (X — A).

The converse is obvious.

(d) Obvious. O

Example 3.3. Let X = {a,b,c} and A = {a,b}. Consider ¥(a) = {{a,b}}. ¥(b) =
{{b}} and 9¥(c) = 0. Then 9 is a strong generalized neighborhood system. Now we
get the following results:

(a) Since I};(A) = {a} and 1y (4) = {a, b}, so I3,(A) # 1y(A).

(b) Let B = X; then A C B but since I},(B) = 0, I},(4) £ I,(B).

(c) Since Ij(AN B) = {a} and [j(A)NI;(B) =0, I;(AN B) ¢ IX(A) N I (B).

(d) Since I(A) = {a} and I}, (I}(A4)) =0, I,(I;,(A)) # I}(A).

Theorem 3.4. Let (X,)) be an SGNS and A C X.

(a) A C clzy(A).

(b)cly, (AU B) C cly(A) U cly,(B).

(c) el (A) = X — II(X — A).

(@) 7(4) € el (4)
Proof. (a), (c) and (d) are obvious.

(b) Let = ¢ cly, (A)Ucli(B): X—A € ¢Y(r)and X -B € ¥ (z). From the property
of strong generalized neighborhood, it follows that (X — A)N(X — B) € ¥(x). Hence
z & cly (AU B).
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The converse is obvious. O

Remark 3.5. From Example 3.3 and Theorem 3.4, we can explain the following
statements are not true:

(a) cly (A) = yy(A) for every A C X.

(b) For every A, BC X, if AC B, then cl;(A) C cl;(B).

(c) el (A) Ucly(B) C cli(AU B) for every A,B C X.

(d) cly(cly,(A)) = cl,(A) for every A C X.

W
Theorem 3.6. Let (X, ) be an SGNS and A C X.
(1) If I}(A) = A, then A is sgy-open.
(2) If cly,(A) = A, then A is sgy-closed.

Proof. (1) If I},(A) = A, then by Theorem 3.2(d), t,(A) = A. From Theorem 2.5,
A is sgy-open.
(2) From Theorem 3.4, it is obvious. O

Example 3.7. Let X = {a,b,¢,d}. Consider an SGNS 1 defined as the following:
Y(a) = {{a,b}}, ¥(b) = {{b,c}}, ¥(c) = {{b,c}} and ¥(d) = 0. Let A = {a,b,c};
then A is sgy-open but I7(A) = 0, that is, I} (4) # A.

Theorem 3.8. Let (X.v) be an SGNS and let B = {A C X : I;(A) = A}. Then

Ve = {Uo : 0 C B} is coarser than the collection sgy(X) of all sgy-open sets on
an SGNS.

Proof. From Theorem 3.2 and definition of ¥+, we have the following:

(1) The empty set is in ¥«

(2) The intersection of any two elements in ¥« is in ¥y«;

(3) The arbitrary union of elements in ¥y« is in ¥y«. Thus from Theorem 2.4
and Theorem 3.6, it follows the collection W« is coarser than sgy(X). g

Theorem 3.9. Let (X,1) be an SGNS and A C X.

(a) I,(A) = {xr € A: A€ H, for every m-family H converging to x}.

(b) cly(4) = {z € X : there erists an m-family H such that H converges to z
and X — A ¢ H}.
Proof. (a) Let x € Ij(A) and an m-family H converge to 2. Then from definition
of convergence of m-family, it follows A € y(x) C H.

Suppose that for every m-family H converging to x, A € H. Then since clearly
() converges to x, by hypothesis, A € ¥)(z), so that z € I7,(A).
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(b) Let x € clj,(A); then X — A ¢ ¥(z). We take H = t(x), then H satisfies the
condition.

For the converse, let H be an m-family converging to « and X — A ¢ H; then
since ¢(z) is contained in H, X — A ¢ ¢(z), so that z € clj,(4). 0

Definition 3.10. Let f : (X,¥) — (Y, ) be a function between SGNS's (X, )
and (Y,¢). Then f is called sgn-continuous if for every A € ¢(f(z)), f 1(A) is in
¥(x). a

Every sgn-continuous function is (i, ¢)-continuous but the converse may not be
true as the following:

Example 3.11. Let X = {a,b,c}. Consider two SGNS’s ¢ and ¢ on X defined as
the following: () = {{a}, {a,b}}, $(6) = {{6}}, ¥(e) = {X}, 6(a) = {{a}, e b}}.
6(8) = {{a,b}} and ¢(c) = {X}.

Let f: (X,v¥) — (X, ¢) be a function defined by f(z) =z, for r € X. Then [ is

(3, ¢)-continuous, but not sgn-continuous.

We get the following implications:

continuous =% sgn-continuous = (¥, ¢)-continuous => sg-continuous

Theorem 3.12. Let f : (X, ) — (Y, ¢) be a function between SGNS’s (X, v) and
(Y, ¢). Then the following are equivalent:

(a) f is sgn-continuous;

(b) fH(I3(B)) C Lj(f 1(B)) for BC Y

() el (f(B)) C £ M(el3(B) for BCY.

Proof. (a) = (b) Suppose f is sgn-continuous and x € f"’l(I;(B)); then 4 € o(f(x)).
~1(B) € y(x) follows from the sgn-continuity, so that x € I;(f‘l(B)).
(b) = (a) It is obtained by Definition 3.1.
(b) ¢ (c) It is obvious by Theorem 3.2 and Theorem 3.4. O

Theorem 3.13. Let f : (X.¢) — (Y. ¢) be a bijective function between SGNS'’s
(X,v) and (Y, ¢). Then f is sgn—contmuous iff flcly,(A)) € cli(f(A)) for AC X.

Proof. Suppose f is sgn-continuous and A C X. From Theorem 3.12, it follows

el (f 1 (f(A)) C £ (cl3(f(A))). Since f is injective, el3,(4) C fH(cly(f(A))).
Suppose f(cly(A)) C cl3(f(A)) for A C X. For BC Y, by hypothesis and

surjectivity. f(cly,(f YB)) C ey (f(f 1(B)) =} +(B). Hence from Theorem 3.12.

it follows f is sgn-continuous. O
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Theorem 3.14. Let f : (X,¢) — (Y,¢) be a bijective function between SGNS’s
(X,v) and (Y,¢). Then f is sgn-continuous iff for an m-family H converging to
z € X, f(H) converges to f(x).

Proof. Suppose f is sgn-continuous and H is an m-family converging to = € X.
It is obvious f(H) = {f(F) : F € H} is an m-family on Y. By hypothesis and
surjectivity, we get ¢(f(z)) C f(v¥(z)) C f(H), so that f(H) converges to f(x).
For the converse, let G € ¢(f(x)) for G C Y. Clearly since ¥(r) converges
to z, by hypothesis, we get ¢(f(z)) C f((x)) for r € X. Since f is injective.
FYG) € ¥(x), so that f is sgn-continuous. O

Definition 3.15. Let f : (X,¢) — (Y, ¢) be a function between SGNS’s (X, )
and (Y, ¢). Then f is said to be sgn-open if for x € X and for every A € 9(x),
f(A) € ¢(f()).
Theorem 3.16. Let f: (X,v¥) — (Y, ¢) be a function between two SGNS’s (X,v)
and (Y, ¢). Then the following are equivalent:

(a) f is sgn-open.

(b) f(I;(A)) C I5(f(A)) for AC X.
Proof. (a) = (b) Suppose that f is sgn-open and y € f(I;;(A)). Then there exists
z € I},(A) such that f(z) = y, and so A € ¥(z). Since f is sgn-open, f(4) € ¢(f(x)),
so that we have y € I3(f(A4)).

(b) = (a) For the converse, let A € 1)(z); then by hypothesis f(z) € f(I7(4)) C
I3(f(A)). Hence we have f(A) € ¢(f(x)). O

Theorem 3.17. Let f: (X,¢) — (Y, @) be a bijection between SGNS’s (X,v) and
(Y,¢). Then f is sgn-open iﬁI;Z(f_l(B)) C f‘l(I;(B)) for BCY.
Proof. Suppose f is sgn-open and z € I;,(f~'(B)) for B CY; then f~!(B) € 9().
Since f is surjective, by hypothesis, B € ¢(f(z)) and f(z) € I3(B). Thus we get
z € f~H(I3(B)).

For the converse, suppose I;Z(f_l(B)) C f“l(Ig(B)) for BCY and A € ¢¥(x);
then z € I} (A). Since f is injective, z € I;‘)f_l(f(A)) and by hypothesis we get
2 € JHI(f(A)), s0 that f(4) € I3(f()). u
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