THE AP-DENJOY INTEGRAL OF BANACH-VALUED FUNCTIONS

JAE MYUNG PARK^a, BYUNG MOO KIM^b AND YOUNG KUK KIM^c

ABSTRACT. In this paper, we define the Denjoy and ap-Denjoy integrals of Banach-valued functions, and we investigate some properties of these two integrals. In particular, we show that a Denjoy integrable function is ap-Denjoy integrable.

1. Introduction and Preliminaries

The ap-Denjoy integral of real valued functions was introduced in [13]. It is known [13] that the ap-Denjoy integral is equivalent to the ap-Henstock integral.

In this paper, we define the Denjoy integral and ap-Denjoy integrals of Banach-valued functions, and we investigate the relationship of these two integrals.

Throughout this paper, X is a Banach space with dual X^* .

For a measurable set E of real numbers we denote by |E| its Lebesgue measure. Let E be a measurable set and let c be a real number. The *density* of E at c is defined by

$$d_c E = \lim_{h \to 0^+} \frac{|E \cap (c-h, c+h)|}{2h}$$

provided the limit exists. The point c is called a point of density of E if $d_cE=1$. The set E^d represents the set of all points $x \in E$ such that x is a point of density of E. A function $F:[a,b] \to X$ is said to be approximately differentiable at $c \in [a,b]$ if there exists a measurable set $E \subseteq [a,b]$ such that $c \in E^d$ and

$$\lim_{\substack{x \to c \\ x \in E}} \frac{F(x) - F(c)}{x - c}$$

exists. The approximate derivative of F at c is denoted by $F'_{ap}(c)$.

Received by the editors May 6, 2008. Accepted July 27, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 28B05, 26A39.

Key words and phrases. Denjoy integral, approximate Lusin function, ap-Denjoy integral.

An approximate neighborhood(or ap-nbd) of $x \in [a, b]$ is a measurable set $S_x \subseteq [a, b]$ containing x as a point of density. For every $x \in E \subseteq [a, b]$, choose an ap-nbd $S_x \subseteq [a, b]$ of x. Then we say that $S = \{S_x : x \in E\}$ is a choice on E. A tagged interval (x, [c, d]) is said to be subordinate to the choice $S = \{S_x\}$ if $c, d \in S_x$. Let $\mathcal{P} = \{(x_i, [c_i, d_i]) : 1 \le i \le n\}$ be a finite collection of non-overlapping tagged intervals. If $(x_i, [c_i, d_i])$ is subordinate to a choice S for each i, then we say that \mathcal{P} is subordinate to S. Let $E \subseteq [a, b]$. If \mathcal{P} is subordinate to S and each $x_i \in E$, then \mathcal{P} is called E-subordinate to S. If \mathcal{P} is subordinate to S and $[a, b] = \bigcup_{i=1}^n [c_i, d_i]$, then we say that \mathcal{P} is a tagged partition of [a, b] that is subordinate to S.

2. The ap-Denjoy Integral of Banach-Valued Functions

Definition 2.1. A function $F:[a,b]\to X$ is AC_s on a measurable set $E\subseteq [a,b]$ if for each $\epsilon>0$ there exist a positive number δ and a choice S on E such that $\|(\mathcal{P})\sum F(I)\|<\epsilon$ for every finite collection \mathcal{P} of non-overlapping tagged intervals that is subordinate to S and satisfies $(P)\sum |I|<\delta$. The function F is ACG_s on E if E can be expressed as a countable union of measurable sets on each of which F is AC_s .

We introduce the notion of the approximate Lusin function. This function is used to define the ap-Denjoy integral. For a function $F:[a,b] \to X$, F can be treated as a function of intervals by defining F([c,d]) = F(d) - F(c).

Definition 2.2. Let $F:[a,b] \to X$ be a function. The function F is an approximate Lusin function (or F is an AL function) on [a,b] if for every measurable set $E \subseteq [a,b]$ of measure zero and for every $\epsilon > 0$ there exists a choice S on E such that $\|(\mathcal{P})\sum F(I)\| < \epsilon$ for every finite collection \mathcal{P} of non-overlapping tagged intervals that is E-subordinate to S.

Theorem 2.3. If $F:[a,b] \to X$ is ACG_s on [a,b], then F is an AL function on [a,b].

Proof. Suppose that $E \subseteq [a, b]$ is a measurable set of measure zero. Let $E = \bigcup_{n=1}^{\infty} E_n$, where $\{E_n\}$ is a sequence of disjoint measurable sets and F is AC_s on each E_n . Let $\epsilon > 0$. For each positive integer n, there exist a choice $S^n = \{S_x^n : x \in E_n\}$ on E_n and a positive number δ_n such that $\|(\mathcal{P}) \sum F(I)\| < \epsilon/2^n$ whenever \mathcal{P} is E_n -subordinate to S^n and $(\mathcal{P}) \sum |I| < \delta_n$. For each positive integer n, choose an open set O_n such that $E_n \subseteq O_n$ and $|O_n| < \delta_n$. Let $S_x = S_x^n \cap O_n$ for each $x \in E_n$.

Then $S = \{S_x : x \in E\}$ is a choice on E. Suppose that \mathcal{P} is E-subordinate to S. Let \mathcal{P}_n be a subset of \mathcal{P} that has tags in E_n and note that $(\mathcal{P}_n) \sum |I| < |O_n| < \delta_n$. Hence, we have

$$\|(\mathcal{P})\sum F(I)\| \leq \sum_{n=1}^{\infty} \|(\mathcal{P}_n)\sum F(I)\| < \sum_{n=1}^{\infty} \epsilon/2^n = \epsilon.$$

Definition 2.4. A function $f:[a,b] \to X$ is ap-Denjoy integrable on [a,b] if there exists an AL function F on [a,b] such that F is approximately differentiable almost everywhere on [a,b] and $F'_{ap} = f$ almost everywhere on [a,b]. The function f is ap-Denjoy integrable on a measurable set $E \subseteq [a,b]$ if $f\chi_E$ is ap-Denjoy integrable on [a,b].

If we add the condition F(a) = 0, then the function F is unique. We will denote this function F(x) by

$$(AD)\int_{a}^{x} f.$$

It is easy to show that if $f:[a,b]\to X$ is ap-Denjoy integrable on [a,b], then f is ap-Denjoy integrable on every subinterval of [a,b]. This gives rise to an interval function F such that

$$F(I) = (AD) \int_{I} f$$

for every subinterval $I \subseteq [a, b]$. The function F is called the primitive of f.

From the definition of the ap-Denjoy integral, we get the following theorem.

Theorem 2.5. Let $f:[a,b] \to X$ be ap-Denjoy integrable on [a,b] and let

$$F(x) = (AD) \int_{a}^{x} f$$

for each $x \in [a, b]$. Then the function F is approximately differentiable almost everywhere on [a, b] and $F'_{ap} = f$ almost everywhere on [a, b].

Theorem 2.6. Let $f:[a,b] \to X$ and let $c \in (a,b)$.

- (a) If f is ap-Denjoy integrable on [a, b], then f is ap-Denjoy integrable on every subinterval of [a, b].
- (b) If f is ap-Denjoy integrable on each of the intervals [a, c] and [c, b], then f is ap-Denjoy integrable on [a, b] and

$$(AD)\int_{a}^{b} f = (AD)\int_{a}^{c} f + (AD)\int_{c}^{b} f.$$

Proof. (a) Let [c,d] be any subinterval on [a,b]. Let

$$F(x) = (AD) \int_{a}^{x} f$$

for each $x \in [a, b]$. Since F is an AL function on [a, b] and $F'_{ap} = f$ almost everywhere on [a, b], F is an AL function on [c, d] and $F'_{ap} = f$ almost everywhere on [c, d]. Hence, f is ap-Denjoy integrable on [c, d].

(b) Since f is ap-Denjoy integrable on each of intervals [a, c] and [c, b], there exist AL functions F and G such that $F'_{ap} = f$ almost everywhere on [a, c] and $G'_{ap} = f$ almost everywhere on [c, b], respectively. Define $H: [a, b] \to X$ by

$$H(x) = \begin{cases} F(x), & \text{if } x \in [a, c]; \\ F(c) + G(x), & \text{if } x \in (c, b]. \end{cases}$$

Then H is an AL function on [a,b] and $H'_{ap}=f$ almost everywhere on [a,b]. Hence f is ap-Denjoy integrable on [a,b] and H(b)=F(c)+G(b), i.e.,

$$(AD)\int_{a}^{b} f = (AD)\int_{a}^{c} f + (AD)\int_{c}^{b} f$$

We can easily get the following theorem.

Theorem 2.7. Suppose that f and g are ap-Denjoy integrable on [a, b]. Then (a) kf is ap-Denjoy integrable on [a, b] and

$$(AD)\int_{a}^{b} kf = k(AD)\int_{a}^{b} f$$

for each $k \in \mathbb{R}$,

(b) f + g is ap-Denjoy integrable on [a, b] and

$$(AD)\int_{a}^{b} (f+g) = (AD)\int_{a}^{b} f + (AD)\int_{a}^{b} g.$$

Theorem 2.8. Let $f:[a,b] \to X$ be ap-Denjoy integrable on [a,b]. Then for each $x^* \in X^*$ the function x^*f is ap-Denjoy integrable on [a,b] and

$$x^*(AD) \int_a^b f = (AD) \int_a^b x^* f$$

Proof. Let $f:[a,b] \to X$ be ap-Denjoy integrable on [a,b]. Then by definition, there exists an AL function F such that F is approximately differentiable almost everywhere on [a,b] and $F'_{ap} = f$ almost everywhere on [a,b]. Since for each $x^* \in X^*$,

 x^*F is an AL function and $(x^*F)'_{ap} = x^*f$ almost everywhere on [a,b], x^*f is appenjoy integrable on [a,b] and

$$x^*F(x) = (AD) \int_a^x x^*f.$$

Hence, for each $x^* \in X^*$

$$x^*(AD)\int_a^b f = x^*F(b) = (AD)\int_a^b x^*f.$$

Theorem 2.9. A function $f:[a,b] \to X$ is ap-Denjoy integrable on [a,b] if and only if there exists an ACG_s function F on [a,b] such that $F'_{ap} = f$ almost everywhere on [a,b].

Proof. Suppose that there exists an ACG_s function F on [a, b] such that $F'_{ap} = f$ almost everywhere on [a, b]. Then F is an AL function by Theorem 2.3. Hence, f is ap-Denjoy integrable on [a, b].

Conversely, suppose that f is ap-Denjoy integrable on [a,b] and let

$$F(x) = (AD) \int_{a}^{x} f$$

for each $x \in [a, b]$. Then F is an AL function such that $F'_{ap} = f$ almost everywhere on [a, b]. Let $E = \{x \in [a, b] : F'_{ap}(x) \neq f(x)\}$. Then |E| = 0. Since F is an AL function, F is AC_s on E. For each positive integer n, let

$$E_n = \{x \in [a,b] - E : n-1 \le ||f(x)|| < n\}.$$

Fix n and let $\epsilon > 0$. Since F is approximately differentiable for each $x \in E_n$, there exist a measurable set A_x containing x as a point of density and a positive number δ_x such that

$$\left\| \frac{F(y) - F(x)}{y - x} - f(x) \right\| < \epsilon$$

i.e.,

$$||F(y) - F(x) - f(x)(y - x)|| < \epsilon |y - x|,$$

if $y \in A_x \cap (x - \delta_x, x + \delta_x)$. For each $x \in E_n$, let

$$S_x = A_x \cap (\dot{x} - \delta_x, x + \delta_x)$$

Then $S = \{S_x : x \in E_n\}$ is a choice on E_n . Suppose that \mathcal{P} is a finite collection of non-overlapping tagged intervals that is E_n -subordinate to S and satisfies $\mu(\mathcal{P}) < \frac{\epsilon}{n}$.

Then since $||F(\mathcal{P}) - f(\mathcal{P})|| < \epsilon \mu(\mathcal{P})$, we have

$$||F(\mathcal{P})|| \le ||F(\mathcal{P}) - f(\mathcal{P})|| + ||f(\mathcal{P})||$$
$$< \epsilon \mu(\mathcal{P}) + n\mu(\mathcal{P})$$
$$< (b - a + 1)\epsilon$$

Hence, F is AC_s on E_n . Since $[a,b] = [\bigcup_{n=1}^{\infty} E_n] \cup E$, F is ACG_s on [a,b].

Theorem 2.10. Let $f:[a,b]\to X$ be ap-Denjoy integrable on [a,b] and let

$$F(x) = (AD) \int_{0}^{x} f$$

for each $x \in [a, b]$. Then F is approximately continuous on [a, b].

Proof. From the definition of the ap-Denjoy integral, F is approximately differentiable almost everywhere on [a,b]. Let E be the set of all non-approximately differentiable points in [a,b]. Then E is a measurable set of measure zero. Since F is approximately continuous on [a,b]-E, it is sufficient to show that F is approximately continuous on E. Let $c \in E$ and let $\epsilon > 0$. Since F is an AL function, there exists a choice $S = \{S_x : x \in E\}$ such that $\|(\mathcal{P}) \sum F(I)\| < \epsilon$ for every finite collection \mathcal{P} of non-overlapping tagged intervals that is E-subordinate to S. If $x \in S_c \cap (c - \eta, c + \eta)$ for some $\eta > 0$, then the tagged interval $(c, [c, x])(\operatorname{or}(c, [x, c]))$ is E-subordinate to S. Hence, $\|F(x) - F(c)\| = \|F([c, x])\| < \epsilon$. This shows that F is approximately continuous on E.

Definition 2.11. Let $F:[a,b] \to X$ and let $E \subseteq [a,b]$. The function F is AC_{δ} on E if for each $\epsilon > 0$ there exist a positive number η and a gauge δ on E such that $\| (\mathcal{P})\Sigma F(I) \| < \epsilon$ whenever \mathcal{P} is E-subordinate to δ and $(\mathcal{P})\Sigma |I| < \eta$. The function F is ACG_{δ} on E if E can be written as a countable union of sets on each of which F is AC_{δ}

It is easy to show that on ACG_{δ} function on [a, b] is continuous on [a, b].

Definition 2.12. A function $f:[a,b] \to X$ is Denjoy integrable on [a,b] if there exists on ACG_{δ} function $F:[a,b] \to X$ such that F'=f almost everywhere on [a,b]. The function f is Denjoy integrable on a measurable set $E \subseteq [a,b]$ if $f\chi_E$ is Denjoy integrable on [a,b].

Theorem 2.13. If a function $f:[a,b] \to X$ is Denjoy integrable on [a,b], then f is ap-Denjoy integrable on [a,b].

Proof. Let $f:[a,b] \to X$ be Denjoy integrable on [a,b]. Then by definition, there

exists on ACG_{δ} function $F:[a,b]\to X$ such that F'=f almost everywhere on [a,b]. It is easy to show that F is an AL function. The proof is similar to the proof that an ACG_{δ} function is an AL function in Theorem 2.3.

Since F' = f almost everywhere on [a, b], F is approximately differentiable almost everywhere on [a, b] and $F'_{ap} = F' = f$ almost everywhere on [a, b]. Hence, f is ap-Denjoy integrable on [a, b].

The following example shows that there exists an ap-Denjoy integrable function that is not Denjoy integrable.

Example 2.14. Let $\{(a_n, b_n)\}$ be a sequence of disjoint open intevals in (a, b) with the following properties;

- (1) $b_1 < b$ and $b_{n+1} < b_n$ for all n;
- (2) $\{a_n\}$ converges to a;
- (3) a is a point of dispersion of

$$O = \bigcup_{n=1}^{\infty} (a_n, b_n).$$

Define $F:[a,b]\to \mathbf{R}$ by F(x)=0 all $x\in [a,b]-O$ and

$$F(x) = \sin^2\left(\frac{x - a_n}{b_n - a_n}\right) \pi$$

for $x \in (a_n, b_n)$. Then it is easy to show that the function F is differentiable on (a, b] and approximately differentiable at a, but F is not continuous at a. Hence $F' = F'_{ap}$ almost everywhere on [a, b], but F'_{ap} is not Denjoy integrable on [a, b], since F is not continuous on [a, b].

To show that F'_{ap} is ap-Denjoy integrable on [a, b], it is sufficient as show that F is an AL function on [a, b].Let E be a measurable set in [a, b] of measure zero and let $\epsilon > 0$.

For each positive integer n, choose an open set O_n such that $E \cap [a_n, b_n] \subseteq O_n$ and $|O_n| < (b_n - a_n)\epsilon/\pi 2^{n+1}$.

For each $x \in E$, define

$$S_{x} = \begin{cases} [a,b] - \bigcup_{n=1}^{\infty} (a_{n}, b_{n}) & \text{if} \quad x = a; \\ (b_{n+1}, a_{n}) & \text{if} \quad b_{n+1} < x < a_{n}, \ n = 1, 2, \dots; \\ (x - \rho(x, O_{n}^{c}), x + \rho(x, O_{n}^{c})) & \text{if} \quad a_{n} \le x \le b_{n}, \ n = 1, 2, \dots; \\ (b_{1}, b] & \text{if} \quad b_{1} < x \le b \end{cases}$$

Then $S = \{S_x : x \in E\}$ is a choice on E. Let \mathcal{P} be a finite collection of non-overlapping tagged intervals that is E-subordinate to S. Then we have

$$(\mathcal{P}) \sum |F([c,d])| = \sum_{n=1}^{\infty} \sum_{x \in (b_{n+1},a_n)} |F([c,d])| + \sum_{n=1}^{\infty} \sum_{x \in [a_n,b_n]} |F([c,d])|$$

$$\leq \sum_{n=1}^{\infty} \sum_{x \in [a_n,b_n]} \frac{2\pi(d-c)}{b_n - a_n}$$

$$\leq \sum_{n=1}^{\infty} \frac{2\pi}{b_n - a_n} |O_n|$$

$$< \sum_{n=1}^{\infty} \frac{\epsilon}{2^n} = \epsilon.$$

Hence, F is an AL function on [a, b]

References

- 1. P.S. Bullen: The Burkill approximately continuous integral. J. Austral. Math. Soc. (Ser. A) 35 (1983), 236-253.
- 2. T.S. Chew & K. Liao: The descriptive definitions and properties of the AP-integral and their application to the problem of controlled convergence. *Real Anal. Exch.* 19 (1994), 81-97.
- 3. R.A. Gordon: Some comments on the McShane and Henstock integrals. *Real Anal. Exch.* 23 (1997), 329-341.
- 4. _____: The integrals of Lebesgue, Denjoy, Perron and Henstock. Amer. Math. Soc. Providence, 1994.
- 5. J. Kurzweil: On multiplication of Perron integrable functions. *Czechoslovak Math. J.* **23** (1973), no. 98, 542-566.
- J. Kurzweil & J. Jarnik: Perron type integration on n-dimensional intervals as an extension of intergration of step funcions by strong equiconvergence. Czechoslovak Math. J. 46 (1996), no. 121, 1-20.
- T.Y. Lee: On a generalized dominated convergence theorem for the AP-integral. Real Anal. Exch. 20 (1995), 77-88.
- 8. K. Liao: On the descriptive definition of the Burkill approximately continuous integral. *Real. Anal. Exch.* **18** (1993), 253-260.
- 9. Y.J. Lin: On the equivalence of four convergence theorems for the AP-integral. *Real Anal. Exch.* **19** (1994), 155-164.
- 10. J.M. Park: Bounded convergence theorem and integral operator for operator valued measures. *Czechoslovak Math. J.* 47 (1997), no. 122, 425-430.
- 11. _____: The Denjoy extension of the Riemann and McShane integrals. *Czechoslovak Math. J.* **50** (2000), no. 125, 615-625.

- 12. J.M. Park, C.G. Park, J.B. Kim, D.H. Lee & W.Y. Lee: The s-Perron, sap-Perron and ap-McShane integrals. *Czechoslovak Math. J.* **54** (2004), no. 129, 545-557.
- 13. J.M. Park, J.J. Oh, C.G. Park & D.H. Lee: The ap-Denjoy and ap-Henstock integrals. *Czechoslovak Math. J.* 57 (2007), no. 132, 689-696.
- 14. A.M. Russell: Stieltjes type integrals. J. Austral. Math. Soc(Ser. A) 20 (1975), 431-448.
- 15. _____: A Banach space of functions of generalized variation. Bull. Aust. Math. Soc. 15 (1975), 431-438.

^aDEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, DAEJON 305-764, KOREA *Email address*: parkjm@cnu.ac.kr

 $^{
m b}$ Department of General Arts, Chungju National University, Chungju, ChungBuk 308-702, Korea

Email address: bmkim@hotmail.com

 $^{
m c}$ Department of Mathematics Education, Seowon University, Cheongju, ChungBuk 361-742, Korea

Email address: ykkim@seowon.ac.kr