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REPRESENTATION ALGORITHMS IN SOME FREE GROUPS

Su-Jeong CHoOI

ABSTRACT. This paper is intended to clarify and verify two representation algo-
rithms computing representations of elements of free groups generated by two linear
fractional transformations. Moreover in practice some parts of the two algorithms
are modified for computational efficiency. In particular the justification of the al-
gorithms has been rigorously done by showing how both algorithms work correctly
and efficiently according to inputs with some properties of the two linear fractional
transformations.

1. INTRODUCTION

Grigoriev and Ponomarenko in 2004 presented two representation algorithms
which are used in the decryption scheme of a homomorphic public key cryptosys-
tem [1]. The two representation algorithms compute representations of elements of
free groups generated by two linear fractional transformations. However the details
related to the algorithms were shortened. So due to their importance in a mathemat-
ical viewpoint, through this paper the two representation algorithms are much more
clarified and rigorously verified. Further some parts of the two representation algo-
rithms are modified for computational efficiency and termination of the algorithms.
Particularly this note focuses on the justification of both algorithms to show how
they operate correctly and efficiently according to inputs with some properties of the
two linear fractional transformations. It leads to analysis and improvement of both
algorithms and especially in connection with combinatorial group theory, the two
representation algorithms can play an important role in computing representations

of elements of some specific free groups in practice.

2. REPRESENTATION ALGORITHM IN A FREE GRroUP [,

Let n € N with n > 2 and I, a group generated by two linear fractional trans-
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1 n 10
0 1 JandB”: [n 1
and put X, = {A,,B,}. Every element of I';, can be represented as a reduced

formations A, = } Then I'y, is a free group [2, pp.168]

word in X,* and it is called the Xy-representation. For a given M € Iy, the
Xp-representation of M is one of the following forms

U1 u2 |, Um—1 i,

n't By By A,
Bnul Anu2 T Bnuqunum
Anul Bn'UZ R Anum-anum
Bnul An'U-Z . Anum—anum

where u; is a nonzero integer for me Nand i = 1,2,--- ,m.

If a matrix M is input to the X,-representation algorithm [1], then it outputs a
reduced word in X,¥ as the X,-representation of M. It is the first stage in the de-
cryption process of the cryptosystem. After the X, -representation of M is obtained
from the X,,-representation algorithm, the second stage of the decryption scheme can
go forward. Suppose that n is unknown. Then computation of the X ,-representation
in Ty, becomes one of hard problems involved with the membership problem for I'y,
that security of the cryptosystem replies on. So in the decryption scheme of the
cryptosystem, it is assumed that the natural number n with n > 2 is already set
up in the X,-representation algorithm for computing the X,-representation of an
element of T',.

Let D be a unit open disk in the complex plane C with the center 0, D = {z €
Cllzl <1} and D°=C—-D = {2 € C| |z| > 1} a complement of the closure
of D. (z,2') denotes a pair of complex numbers with |z| < 1 and |2/| > 1. The
fact that there is at most one integer u such that (z € DA A% (2) € D)V (z €
D A Bp*(z) € D°) for z € DU D is observed and it induces the following explicit
formulae to compute the exponent u of A,* and B,*. Moreover related with the
termination of the algorithm, more concrete cases such as Bp%(2) = o0, |Br"(2)] =1
and A,*(z) = 0 are considered because it could run infinitely or crash.

Theorem 2.1. If there exists a nonzero integer u such that |An*(2)| <1 for z € R

Proof. Assume that there is a nonzero integer u such that [4,%(z)| = [nu+ 2| < 1
for z € D°NR, namely, —12 < u < 1=%. Since the distance between —41% and
=z g5 %(_<_ 1), there is at most one integer between them. If one of —HTZ and

—
| 3

142

£ is an integer, then there is no integer between —=-* and 1—;%, and this is in

?|
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contradiction with the assumption. Thus neither —~1+—z nor =% 1 2 is an integer and so

u=[-42] = [ 12). 0O

Theorem 2.2. If there exists a nonzero integer u such that |B,"(z)] > 1 forz € R
and |2] < 1, thenu= [~ - 1] =|-L +1y

Proof. Suppose that there is a nonzero integer w such that |B,"(2)| = |725] > 1

for z € DNR. Then the case of z = 0 is clearly excluded as |B,*(0)| = 0. If z > 0,

then —l—l <u< —%«k%. If 2 < 0, then —%—;ll— <u< —%-{»%. As the distance
{1

between —n ?i and ~% + % is %(S l) there exists at most one integer between
1

1 1. . .
it and —L + . If one of —= — and —;; + - is an integer, then there is
no mteger between —iz — i and - 1 + = and it contradicts the assumption. Hence

11

— 1,1
neither —-- ~ = nor —-- + = is an 1nteger andsou=[-L-1]=[-L+1]. O

Modified Xn—representation algorithm. Let M € T, and I the identity matrix.
1x, denotes the empty word and e does the error message.

Step O

L—M

we1lx,.

Step 1 (1) L(z) =0, |L(z)| =1, L(z) = o0 = output e.

@) |L(2)| > 1= v e [FEE | ang € 4,7,

(3) | L(z)| < 1= v« L—N—le +1] and C« B*.

Step 2

C =1= output ¢. Dtherwise L «- CL and w < wC~!.

Step 3
L =1= output w. Otherwise return Step 1.

If the algorithm outputs the X,-representation of M for z = %, then it is not
1

necessary to run the algorithm for z = 2. If the algorithm outputs ¢ for z = 5 as
an error message, then it has to operate for z = 2 to obtain the X,-representation
of M. Hence the algorithm outputs either the X,,-representation of A or the error
message ¢, and then it terminates. In the three cases of (1) of Step 1, the algorithm
can not work properly and so those of cases end up with the error message €. By
Theorem 2.1 and Theorem 2.2 explicit formulae which find exponents of the two
linear fractional transformations are added in (2) and (3) of Step 1. The statement
of Step 2 that if C = I, then it outputs ¢ is also added related to the termination of

the algorithm.
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From now the algorithm will be justified according to inputs and previously some

characteristics of A,* and B," with a nonzero integer u are shown.
Lemma 2.3. A,%(z) € D¢ for z € D.

Proof. Let z = a+bi € D. Then A,%(z) = (a + nu) + bi with —1 < a < 1. For
u2>l,a+nu>~1+nu>landsoa+nu € D Foru< —1,a+nu<l+nu<—1
and then a + nu € D°. Hence in either case A,,%(z) € D¢ for z € D. O

Lemma 2.4. B,%(z) € D for z € D°.
Proof. Let z = a + bi € D and consider B,"(z) = —L . Then i € D and by

nu-+< z
Lemma 2.3 An“(%) = % + nu € D Hence By%(z) = 7{1#5 eD. O

The following is immediately obtained by Lemma 2.3 and Lemma 2.4.

Theorem 2.5. (1) A,"*B,"? .- By"™-14,¥" € D¢ for z € D.
(2) Bp"1 A2 - Byt Aptm € D for z € D.

(3) A1 ByY2 - AY 1By € D¢ for z € DC.

(4) By"*Ap¥? - - A" 1B, € D for z € D°.

Theorem 2.6. If a matriz M = A,“'1B,%?... B,%m14,%" with odd m > 3 is
imput to the algorithm for z = %, then it outputs A, 1B,%? .- B,,Y™" 1A, %™ qs the
Xy -representation of M.

Proof. For a matrix M = A,"1B,"2--- By¥m-14,"™ € T, (odd m > 3), in Step 1
of the first iteration, by Theorem 2.5 (1),

1
(3)
where 3, = Bp%2-.. B tm-! An"’”(%). By Theorem 2.5 (2), |81] < 1 and so 0 <
% < % < 1. Thus v = [%_‘ = —y; and C = A,° = A,7"'. In Step 2
L=CL=B," - B*"1Ap* # I and w = wC™! = A4,*. So return Step 1.

Assume that for 1 < j < m, in Step 2 of the j — 1th iteration, L = CL =
Bp A% - Bp¥m1 A" and w o= A" Bp¥2 .- A% with even j or L =
Ap"I BpUitt . BpUmet AU and w = A" BRY2 -+ B! with odd ;.

(Case 1) For even j, in Step 1 of the jth iteration, L(%) = B, («;) = ﬁ— where
J o,

= A" (B1)| = [nug + B1] > 1,

1
Anul Bnu2 . Bnu"“l Anum (_2_)

aj = A"+t ... Bp*m1 Ap*(3) and by Theorem 2.5 (2), |L(3)] = |Bx% (a;)| < 1.
By Theorem 2.5 (1), |a;| > 1 and so 0 < %(1—%) <2<1 Thusv= [ﬁ%—)—F%J =
—uj and C = B," = B,”%. In Step 2 L = CL = A"+ --- By" "1 A, %™ # [ and
w=wC"'!=A,"“B,"“ ... A,%-1B,% . So return Step 1.
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(Case 2) For odd j, in Step 1 of the jth iteration, by Theorem 2.5 (1),
1 1 ,
.L(a). = lAnu]-BnuJ+1 e Bptmot Ayt (‘)‘ = |Anu] (ﬁj)l = |TlUj + ﬁ]l >1

2
where §; = Bp"i+1 .. By 1An“"'(%). By Theorem 2.5 (2), |85 < 1 and so
1-3; 2
0< 5 << <1
n n
Thus v = Ll LG )J = —ujand C = A" = Ay ™. InStep2 L = CL =

B Y+l ... B Um- 1An“'"‘ # I and w = wC" b= AW BRY2... BYi-1A,". So re-
turn Step 1.
If j = m, then in Step 1 of the mth iteration, L = A,*™ and by Lemma 2.3
1
()] = (5)] = frm 4 5> 10 = 2 =
and C = 4," = A, "". InStep 2 L = CL = A, " A" =1 and w = wC 1 =
AU B %2 .. B um-1 4, Um  Therefore it outputs A,"*B,"?--- By¥™ 1A, as the

X,-representation of M and it terminates. O

Theorem 2.7. If a matriz M = A" By¥? -+~ Bp'™ ' A" with odd m = 3 is input
to the algorithm for z = 2, then it outpuls .

Proof. For a matrix M = Ap,"' B2 - By¥m 1 A" € I'y (odd m > 3), in Step 1
of the first iteration,

L(2) = A" B2 -+ BpUm 1AM (2) = ApY (61) = nuy + B,

where 31 = Bp"2 .- Bp'™ 1A, (2).

() If n = 2 and wy, = —1, then 4,""(2) = nup + 2 = 0, By"""1(0) = 0 and
Ap¥m=2(0) = num_2 € D°. By Theorem 2.5 (1), |L(2)| = |[A"1 B2 --- Ap¥™ 2(0)]
> 1 and by Theorem 2.5 (2), |61] = |B,"? -+ Ap"™2(0)| < 1.

(i) Ifn = 3 and um = —1, then 4,“"(2) = nu,, +2 = —1 and By"™ '(-1) =
m € D. Put vy = Bp¥m 14,%"(2) and then |y| < 1. By Theorem 2.5 (1),
|L(2)| = |An™ B2 -+ Ap*™ 2(7y)| > 1 and by Theorem 2.5 (2). |81] = [Br"* - -~
Agin-2()] < L.

(iii) If neither n = 2 and u, = —1 nor n = 3 and um = —1, then A,""(2) =
num + 2 € D¢. By Theorem 2.5 (3), |L(2)| = |A,"* B2 - - - By (nuy +2)| > 1
and by Theorem 2.5 (4), |81| = |Bp"2 A" - Bp*" (num + 2)| < 1.

In all cases (i), (ii) and (iii), |L(2)] > 1 and |Bi| < 1, so that 0 < ! ’3’ < 2 <1
v = L%J = —u; and C = A, = A, ". In Step 2 of the ﬁrst. 1t(‘rat10n.
L=CL =B, - -B,"m 14" £ I and w = wC ! = A,"!. So return Step 1.
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Suppose that in Step 2 of the j — 1th iteration, for 1 < j < m ~ 1, L =
Bp AR BRU 1 AU and w o= Ap,"'B,"2 .- A% with even j or L =
ApYI BpUiHl oo Bp¥m-l ApYm and w = A" B2 -+ - Bp"! with odd j.

(Case 1) For even j, in Step 1 of the jth iteration, L(2) = Bp" (o) = ﬁuﬁ where
;= AUt B2 L B Ume1 A U (9),

(i) f n = 2 and upm = -1, then A,""(2) = num +2 = 0, B,*-1(0) = 0 and
A,"m=2(0) = num—2 € D°. By Theorem 2.5 (2), |L(2)| = |B,“ A,"41 -+ A, "m=2(0)]
< 1 and by Theorem 2.5 (1), |a;| = |Ap" ' B,"*2 - .- A,%m-2(0)] > 1.

(i) If n = 3 and uy, = —1, then A,""(2) = nuy +2 = —1 and B,*™ 1(-1) =
ﬁ; € D. Put vy = B,"" 1A, (2) and then |y| < 1. By Theorem 2.5
(2), IL(2)| = [Ba"Ap¥+t .- A¥m-2(y)] < 1 and by Theorem 2.5 (1), |a;| =
|Ap i+t B Ui+ . At ()] > 1

(iii) If neither n = 2 and um = —1 nor n = 3 and u,, = —1, then A,"™(2) =
num + 2 € D°. By Theorem 2.5 (4), |L(2)| = [Bp" A4 - By (nuy, +2)| < 1
and by Theorem 2.5 (3), |a;| = |4+ -+ Bp¥ 1 (num + 2)| > 1.

In all cases (i), (ii) and (iii), —1 < QLJ <land 0 < 2(1- g;) < 2 <1, so that
v = I-m_lz'i + %J = ~uj and C = B," = B, . In Step 2 of the jth iteration,
L=CL=A"" - By 1A% # ] and w = wC~! = A, B2 ... A,%1B,%.
So return Step 1.

(Case 2) For odd j, in Step 1 of the jth iteration, L(2) = A,"/(8;) = nu; + 8; where
Bj = Bptstt ... Bytme1 A Um(2),

(i) fn = 2 and up = -1, then A,*"(2) = nuy, +2 = 0, By""1(0) = 0 and
Ap"m2(0) = num—2 € D°. By Theorem 2.5 (1), |L(2)] = |Ap" By"+1 - - - B,¥m=3
Ap"m™=2(0)] > 1 and by Theorem 2.5 (2), |5;| = |Bp"/*1 --- Ap,*"2(0)] < 1.

(ii) If n = 3 and u,, = —1, then A,""(2) = nu,, +2 = -1, By*1(-1) =
m € D. Put v = By*"*A,%™(2) and then |y| < 1. By Theorem 2.5 (1),
|L(2)} = |An" Br"% - - Ag¥™2(y)| > 1 and by Theorem 2.5 (2), |3;| = |Bp"i+* - --
Ap*m2(7)] < 1.

(iii) If neither n = 2 and 4, = —1 nor n = 3 and u, = —1, then A,*"(2) =
num + 2 € D¢ By Theorem 2.5 (3), |L(2)| = |Ap" B% ! -+ Bp¥ 1 (num +2)| > 1
and by Theorem 2.5 (4), |G;| = |Bp"*1 - - - Bp' (num + 2)| < 1.

In all cases (i), (ii) and (iii), |L(2)| > 1 and |F;]| < 1. Since =1 < F; < 1 and 0 <
I_Tﬁj < % <l,v= L%@)J = —uj and C = A,” ™. In Step 2 of the jth iteration,
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L=CL=B,“+ ... By* 1A% £ ] and w = wC™' = A, "1 B¥2 - B 14,%.
So return Step 1.

If 7 =m — 1, then in Step 1 of the m — 1th iteration, let L = B,*m 1 4,"".
(i) f n = 2 and upy = —1, then A,""(2) = nuy, + 2 = 0, BY™ 1(0) = 0 and
L(2) = B,*™"' A" (2) = 0. Hence it outputs € and then terminates.
(i) If n = 3 and uy, = —1, then

At (2) = nup, + 2 = ~1, By 1(~1) = jra;—,:—_ll—:}-“f cD

and |L(2)| = |Bp,*"'A,""(2)] < 1. Hence v = LEZ_le_) + éJ = —Up-1 and C =
B, = B, %1 In Step 2 of the m — 1th iteration, L = CL = A% # I and
w=wC"1=A,YB,"... A,¥m-2B ¥m-1 S0 return Step 1.

(iii) If neither n = 2 and u,, = —1 nor n = 3 and u,, = —1, then
A (2) = nu, + 2 € D°
and by Lemma 2.4 B,"" '(num, +2) € D. Thus
IL(2)| = [Bn"" " An"(2)] < 1

0<l<1___1_)<.2_g1.
n

n Nl + 2

and so

Hence v = Lﬁi'(lij + %j = —~Up-1 and C = B," = B, "1, In Step 2 of the m — 1th
iteration, L = CL = A" # I and w = A, B,"? -+ A,"" 24, 1. So return
Step 1.

If j = m, then in Step 1 of the j = mth iteration, L = A,*™ and L(2) =
ARY(2) = nupm + 2.
(i) ¥ n = 2 and u, = —1, then in the m — 1th iteration, the algorithm outputs €
and it terminates. So this case is not included.
(ii) f n = 3 and um = —1, then as |L(2)] = 1, it outputs ¢ and terminates.
(iif) Otherwise |L(2)| = |4,""(2)| = [num +2| > 1, so that v = |22 | = ¢, 1
and C = A,” = A, 7% 1. In Step 2 of the mth iteration, L = CL = A, ' # I and
w=wC! = A, By"2 ... BUm=1 4, %m+1 Qo return Step 1.

If j =m+ 1, then in Step 1 of the m + 1th iteration, L(2) = A, 1(2) = —n + 2.
(i) If n = 2, then then as |L(2)| = 0, it outputs € and terminates.
(i1) If n = 3, then then as |L(2)] = 1, it outputs € and terminates.
(iii) If n > 4, then |L(2)] > 1 and so v = [%J = 0. In Step 2 of the m + 1th
iteration, C = A," = I. So it outputs ¢ and terminates. 0
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For the sake of avoiding tiresome similarity in proofs of correctness of the algorithm.
the rest of cases in which the algorithm operates are just stated as follows.

Theorem 2.8. (1) If a matriz M = B,"1A,%2 - -- Bp¥™ 1 A" with even m > 2 is
input to the algorithm for z = %, then it outputs B,"1 A,%2 - Bym-1 A" as the
Xn-representation of M.

(2) If a matric M = B,"1A,"*2--- B,"m~1 A" with even m > 2 is input to the
algorithm for z = 2, then it outputs .

(3) If a matriz M = A" BpY2 - Ap¥™-1By"™ with even m > 2 is input to the
algorithm for z = %, then it outputs e.

(4) If a matriz M = A" BY2 - - A" 1 B with even m > 2 is input to the algo-
rithm for z = 2, then it outputs A"t B,"? - -- A" 1 B,"™ as the X, -representation
of M.

(5) If a matriz M = B,"1A,"2 .. A" 1B, with odd m > 3 is input to the
algorithm for z = %, then it outputs e.

(6) If a matriz M = B,"  A,%% - - A" BpU™ with odd m > 3 is input to the algo-
rithm for z = 2, then it outputs B,"' A,"? - -- A" 1 B,*™ as the X, -representation

of M.
3. REPRESENTATION ALGORITHM IN A FREE GROUP G(n,S)

Let S be a finite set of randomly chosen integers si, 2, ,s; and define each
word by A, % B,A,% with s; € S. Put X(n,S) = {4, % BpA,;% | s; € S} and let
G(n, S) be a group generated by X (n,S). First it will be proved that X(n, S) is a
free basis of G(n,S) and every element of G(n, S) can be represented by elements
of X(n, S)i and it is called the X (n, S)-representation. Let F' be a free group with
a generating set X and U = {u; | ¢ € N} a subset of a free group F'. Elementary

Nielsen transformation on a set U = {u; | ¢ € N} is introduced by [2]

e replace some u; by u; !

e replace some u; by u;u; where j # .

o delete some u; where u; =1
where 1 denotes the empty word. A product of such elementary transformations
is called Nielsen transformation. If all triples v, vz, v3 € U satisfy the following
conditions [2]

e v #1

e v1v2 # 1 implies jvivg| > |v1], |v2|.
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e v1vg # 1 and vouz # 1 implies |vyvevs] > |v1| — |v2| + |v3,
then U is called Nielsen reduced. The Nielsen reduced set plays an important role
as it is a free generating set for the subgroup that it generates. Now it will be shown
that X (n, S) satisfies the three conditions to be Nielsen reduced.

Theorem 3.1. X (n,S) is Nielsen reduced where n > 2 and S C Z with |S| = t.
Proof. Let vy = A7 Bp%An°%, v = Ay’ tB,% A4, and
v3 = Ap By An" € X(n, §)F
where o, 3,y € {1,—1}and s, t, u € S.
1. For vy = A, °B,%A,%, if s = 0, then v; = B,* # 1 and if 5 # 0, then
|v1] = |An " *Bn®An®| =2|s| + 1 #0
and so v; # 1.
2. For v; = A, °B,%A,,° and
vy = Ap 'BpP AR, vive = Ay SB A, tB,P ALY
() If s =t and a = G, then |vjva| = |4, SB®tP ALY = 2|s| + 2 and thus vyvg # 1.
As |v1] = 2|s| + 1 and
lua| = 2{t| + 1, |vivg| = |, [v2l.

(ii) If s = t and a # G, then viva = 4, SB,%A,5 B, At = I and so vyvy = 1.
Hence, this case is excluded.
(i) If s # t and @ = £, then vivy = A, *Bp%4,° BB A, by the triangle
inequality

fvrva| = ||+ |t] +|s —t]| +2 > 2]s| + 2
and

[urve] = [t +Js| + |t — s| +2 = 2{t] + 2.
As |v1| = 2|s| + 1 and |ve| = 2Jt] + 1, |viva| = |u1], |val.
3. For vy = A, °B,%A,)°, vy = An_tBn‘f"Ant and

vs = An “Bp AnY, vivovs = Ay *Bp®AnS tB P A TUBL AR

HIs=t,a=p0t=uand 3=, then

lvivavs| = [An S B2 P TYALY = 2ls| + 3
and |v1| — |vo| + |v3] = 2|s| + 1. Hence

lorvavs| > [v1] = fve| + Jusl.
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(i) If s=t, a =0, t # u and 8 = +~, then by the triangle inequality
[v1veus| = |An *Bp* P A B, ALY
=|s|+2+t—u|+1+ |yl
=Is|+24s—ul+ 1+ |ul
=|s|+24+|u—s|+1+|ul>2Jul+3
and
lor] = |v2] + |vs] = 2[s| + 1 = 2[¢t] — 1 + 2{u| + 1 = 2Ju| + 1.
Thus
[v1vgvg| > |v1| — |ve| + |vs].
(iii) If s 7é t,a =410, t = u and B =+, then by the triangle inequality
|vivaus| = |An‘3Bn“AnS~tBnﬂ+7An”|
=|si+1+[s—t|+2+ |u|
=|s|+1+|s—ul+2+ |yl
> 2|s|+3
and
lv1] = vl + |vs] = 2|8} + 1 — 2f¢} — 1 + 2|u| + 1 = 2|s] + 1.
Hence
lvivavs| > |v1| = [vo| + |vs]-
(iv)If s #¢t, a =10, t# u and § = =+, then
|v1vous| = |An ~*Bn®An® B P AR B ALY
=|s|+1+|s—¢t|+1 4+t —ul+14 ]|y
=|s|+|s—t|+ |t —u|+|ul+3
> 2|s| — 2|¢| + 2|u| + 3
and
|v1| — |val + |vs| = 2|s| — 2|t] + 2|u| + 1.
Thus

lvrvaus| > |v1| — |v2| + |vg].
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Theorem 3.2 ([2]). If F is a free group with a basis X and a subset Y of F is
Nielsen reduced and w = y1 - ym, (m > 0), yi € Y* and all yiyiy1 # 1, then

lw| > m.

Theorem 3.3 ([2]). Let X be a subset of a group G such that X N X~ V£ Q. Then
X is a basis for a free subgroup of G if and only if no product w = x1 - - - Ty, 18 trivial,
wheren > 1, M; € X*, and all x;z;41 # 1.

Theorem 3.4. X(n,S) is a free basis of G(n,S) where n > 2 and S C Z with
|S| =t.

Proof. By Theorem 3.1 X(n, S) is Nielsen reduced and the set ¥ in Theorem 3.2 is
replaced by X(n,S). So it satisfies |w| > m where w = wiwz - wm, With m > 0,
w; € X(n, S)i and all w;w;y1 # 1 and by Theorem 3.3 X(n,S) is a free basis of
G(n,S). O

Since the free group G(n, S) is a subgroup of I',, every element of G(n, §) also has the
X,-representation. As it is mentioned, in the decryption scheme of the cryptosystem.
the X (n, S)-representation algorithm is required after the X,-representation of an
element of G(n, S) is taken from the X,-representation algorithm.

Assume that given M € G(n, S),

Anul BnUZAnu3BnU4 - Anum~ZBnum— lAnum
is the X,-representation of M with odd m > 3 and it is input to the X(n,S5)-
representation algorithm. Then it outputs

Sam- ~Sa Sa
An_sal B’nu2141'1,sﬂl Anisu2Bnu4An" Saz ... An _Té An Tl Bnumi 1A, :
as the X (n, S)-representation of A where for i =1,--- mé'l,
273 S {13 o 7t}» Sa, € 57 —U] = Sgq, U271 = Sa;_y — Sa; (Z 2 2)v Sa;..1 7é Sa; (l Z 2)

and U, = Sq,, ,. Hence the X,,-representation of M can also be written as
7

1 m=-1 mil

mt

Anm Bnu2An— ug AnuHuanm; .. Anz':1 Uy anu’m’ lAnE’:%— ugj lAan u;i 1
where the exponent of the last term A4, is
Um = —(w1 +uz+us +ur+-- -+ uzi-1+ 0+ Ume-2)-

Compare the exponents of the X,-representation of M with those of the X (n.S)-
representation of A/ and then it finds an explicit formula

Sa; = —(u1 +ug +us + -+ uzi1)
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to compute elements of S. So the original algorithm will be changed by adding the
formula for computational efficiency in reality. Let us consider likely inputs of the
X (n, §)-representation algorithm [1] and those of types can be replaced by the right
forms in the following.

(i) Ba Ap¥2 - - B~ A% (even p) = A, B,"A," .- B" AN (uy = 0,
m=p+1,i=23,--- ,m, u; = v;-1)

(i) A1 BR¥2 - A"~ 1 B, (even p) = A,“'B,“2A,"8 ... B"m 14" (1= 1,2,
DU =, m=p+ 1, uy =0)

(iii) Bp" Ap"% -+ Ap% 1By (odd p) = Ap"'Bp"™? - B 1A, (u; =0,1=2,
D2, U = v, M= D 2, Uy = 0)

The modified algorithm takes only one form of the X,-representations, namely,
APt B2 AR - Bp¥ -t ALY as the input unlike the original algorithm. Motiva-
tion of such a change comes from the constant form of elements of X(n,S), ie.,
A, BrA,° with s € S. Additionally the modified algorithm stops with either the
X (n, S)-representation or the error message €. Next the modified algorithm will be
shown and its verification will be followed.

Modified X (n, S)-representation algorithm.
Step O

7+ 1.

we A, B2 . Bytme1 4, Um
w=1lx, = output lx(,g)-

Step 1

e; « —(uy +usz +us+ - +ugi-1)
ei ¢ S = output e.

e; €8 = Cje A, %B,"A,°%.
Step 2

w — C,-_lw

w=1x, = output C;Cy---Cj.
Otherwise,

1e—1+1

1= m;—l = output ¢ and return Step 1.

Theorem 3.5. Given M € T, let A,"*B,¥2 - B,"™ 1 A, "™ be the X, -represen-
tation of M as the input of the algorithm with nonzero integers us, uz, - ,Um—1.

Then it outputs
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Anm Bnu,gAn-—mAnu1+u3Bnu.4An—(u,1+ug) L Anu1+u;3+u5+...+um_2Bnum_1

_An—(u1+u3+u5+~~+um—2)

as the X (n, S)-representation of M. Otherwise, it outputs €.

Proof. If the X, -representation A,“1B,%?--- B,¥"~14,%™ of M is input to the al-
gorithm with each nonzero integer u; (i = 2,3,--- ,m — 1), then in Step 0 of the
first iteration i = 1,

w= A" B,"2 .- By"m-1 A, ™.

In Step 1 of the first iteration, e; = —u;. If e; ¢ S, then it outputs € and
terminates. If e; = —u; € S, then

Ci=A,""B,"2 A, = A, B, "2 A, ™.
In Step 2 of the first iteration,
w=Ci 'w= A" B, A, W AW B 2 A, ... By¥m-14,Um
— Anul +’uanu4 L. Bnum- 1Anum

As w # 1x,, i = 2 and return Step 1.
Assume that for 1 <j - 1< m—;—@, in Step 2 of the ¢ = 7 — 1th iteration.

w= A,mtustust tugjstuz_1)p uzj g uzjt1.. B Um-14 Um

In Step 1 of the jth iteration,
ej = —(ur +uz+us+ -+ ugj-1)
Ife; = —(uy +uz +us+ -+ ugj1) ¢ S, then it outputs ¢ and terminates.
Ife; = —(u1 +us+us+ - +ugj—1) € S. then in Step 2 of the jth iteration,
w = Cj"lw
— Anu1+u3+u5+-~-+uzj_,Bn--uzjAn—(u1+u3+u5+-~-+u2,-_1)
Anm+u3+u5+~-+ug,;3+u2] ,,,BnungnuszBnuzﬁz . Bnum"lAnu'"
— An'llrl+u3+u5+"'+uzj—1+u2]+1 BnU2j+2Anu2j+3 .. Bn""‘”‘An"’"

Asw # 1x,, ¢ =7+ 1 and return Step 1.
Forj+1= mT_l, in Step 1 of the j + 1th iteration,

€m-1 = —(u1 +uzt+us+---+ Um—2)-

2

Ifem_1 ¢S, then it outputs € and terminates.
2
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If em-i € S, then

—€m--1 €m—1
sz»l =A, T B'm 1A, "2

— Anul+u3+u5+.--+um_anum_]An—(u1+u3+U5+---+um_g).

In Step 2 of the  +1 = mT”th iteration,

w= C'mT—x_lw

— Anul+u3+u5+~~~+um_2Bn~um_1An—(u1+u3+u5+--~+um_2)w
— Anul+u3+u5+~-+um_an—um—1 An_(ul+u3+u5+"'+um—2)

. Anul+u3+u5+~~+um_2Bnu,,,_1Anum

— Anul t+uztus+---tum—2tum

If um = —(w1 + ug + us + -+ + um-2), then w = 1y, and it outputs

C]CQCQ. e CmT—ISCm_z—l

— Anul Bnu,gAn—ulAnul+u.anu4An—(u1+u3) .

_Anu1+U3+U5+--~+um-2Bnum—1An—(u1+u3+u5+-~-+um—2)

as the X (n, S)-representation of M.
If um # —(u1 +ug +us + - -+ + Upp—2), then

w = An’ul+’U3+'Ur5+“'+U'1n—2+um. # ]-Xn

and i = mTH Therefore it outputs € and then terminates. 0

4. CONCLUSION

Through this paper two representation algorithms used in the decryption of the
homomorphic public key cryptosystem have been surveyed. Both algorithms are
strictly justified by showing how each step of the algorithms operates according
to inputs and also modified for computational efficiency and termination of the
algorithms. This work takes more cases not appearing in the original algorithms
into account to clarify both algorithms and it leads to more efficient decryption
scheme. Especially for understanding the algorithms those theoretical background
is described clearly in the process. Note that in practice programming both modified

algorithms and its demonstration with experiments are omitted in this note.
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