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CHARACTERIZATION OF A REGULAR FUNCTION
WITH VALUES IN DUAL QUATERNIONS

Ji Eun Kim a and Kwang Ho Shon b, ∗

Abstract. In this paper, we provide the notions of dual quaternions and their
algebraic properties based on matrices. From quaternion analysis, we give the con-
cept of a derivative of functions and and obtain a dual quaternion Cauchy-Riemann
system that are equivalent. Also, we research properties of a regular function with
values in dual quaternions and relations derivative with a regular function in dual
quaternions.

1. Introduction

Let T be the set of quaternion numbers constructed over a real Euclidean qua-
dratic four dimensional vector space. In 2004 and 2006, Kajiwara, Li and Shon
[2, 3] obtained some results for the regeneration in complex, quaternion and Clifford
analysis, and for the inhomogeneous Cauchy-Riemann system of quaternions and
Clifford analysis in ellipsoid. Naser [12] and Nôno [13] obtained some properties of
quaternionic hyperholomorphic functions. In 2011, Koriyama, Mae and Nôno [8, 9]
researched for hyperholomorphic functions and holomorphic functions in quaternion
analysis. Also, they obtained some results of regularities of octonion functions and
holomorphic mappings. In 2012, Gotô and Nôno [1] researched for regular func-
tions with values in a commutative subalgebra C(C) of matrix algebra M(4;R). Lim
and Shon [10, 11] obtained some properties of hyperholomorphic functions and re-
searched for the hyperholomophic functions and hyperconjugate harmonic functions
of octonion variables, and for the dual quaternion functions and its applications.
Recently, we [4, 5, 6, 7] obtained some results for the regularity of functions on
the ternary quaternion and reduced quaternion field in Clifford analysis, and for
the regularity of functions on dual split quaternions in Clifford analysis. Also, we
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investigated the corresponding Cauchy-Riemann systems in special quaternions and
properties of each regular functions defined by the corresponding differential opera-
tors in special quaternions.

The aim of the paper is to define the representations of dual quaternions, written
by a matrix form. Also, we research the conditions of the derivative of functions
with values in dual quaternions and the definition of a regular function for Cauchy-
Riemann system in dual quaternions.

2. Preliminaries

The field T of quaternions

z = x0 + e1x1 + e2x2 + e3x3, xj ∈ R (j = 0, 1, 2, 3),

is a four dimensional non-commutative real field such that its four base elements
e0 = 1, e1, e2 and e3 satisfying the following :

e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

The element e0 = 1 is the identity of T . Identifying the element e1 with the
imaginary unit

√−1 in the complex field of complex numbers. The dual numbers
extended the real numbers by adjoining one new non-zero element ε with the prop-
erty ε2 = 0. The collection of dual numbers forms a particular two-dimensional
commutative unital associative algebra over the real numbers. Every dual number
has the form z = x + εy with x and y uniquely determined real numbers. Dual
numbers form the coefficients of dual quaternions. If we use matrices, dual numbers
can be represented as

ε =
(

0 1
0 0

)
, a + bε =

(
a b
0 a

)
.

The sum and product of dual numbers are then calculated with ordinary matrix
addition and matrix multiplication; both operations are commutative and associative
within the algebra of dual numbers.

3. Dual Quaternions

The algebra

DC(2) = {Z = z + εw | z =
3∑

i=0

ejxj , w =
3∑

i=0

ejyj ∈ T } ∼= T × T ,

where xj , yj ∈ R (j = 0, 1, 2, 3), is a non-commutative subalgebra of M2(2;C).
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We define that the dual quaternionic multiplication of two dual quaternions

Z1 = z1 + εw1 =




z1 w1

0 z1


 =




∑3
j=0 ejxj

∑3
j=0 ejyj

0
∑3

j=0 ejxj




and

Z2 = z2 + εw2 =




z2 w2

0 z2


 =




∑3
j=0 ejξj

∑3
j=0 ejηj

0
∑3

j=0 ejξj




is given by

Z1Z2 =




z1z2 z1w2 + w1z2

0 z1z2




=




(
∑3

j=0 ejxj) · (
∑3

j=0 ejξj)
(
∑3

j=0 ejxj)·(
∑3

j=0 ejηj)

+(
∑3

j=0 ejyj)·(
∑3

j=0 ejξj)

0 (
∑3

j=0 ejxj) · (
∑3

j=0 ejξj)


 .

The dual quaternionic conjugate Z∗ of Z is

Z∗ =




z∗ w∗

0 z∗


 =




x0 −
∑3

j=1 ejxj y0 −
∑3

j=1 ejyj

0 x0 −
∑3

j=1 ejxj


 .

Then the modulus |Z| and the inverse Z−1 of Z in DC(2) are defined by the
following :

|Z|2 = ZZ∗ =




zz∗ zw∗ + wz∗

0 zz∗


 =




∑3
j=0 x2

j 2
∑3

j=0 xjyj

0
∑3

j=0 x2
j




and

Z−1 =
Z∗

|Z|2 (Z 6= 0).

By using the multiplication of Z ∈ DC(2), the power of Z is for n ∈ N,



68 Ji Eun Kim & Kwang Ho Shon

Zn = (z + εw)n =




z w

0 z




n

=




zn
∑n

k=1 zn−kwzk−1

0 zn


 .

and the division of two Z, W ∈ DC(2) can be computed as

Z1

Z2
=

z1 + εw1

z2 + εw2
=

z1 + εw1

z2 + εw2

z∗2 + εw∗2
z∗2 + εw∗2

=
z1z

∗
2 + ε(z1w

∗
2 + w1z

∗
2)

z2z∗2 + ε(z2w∗2 + w2z∗2)
.

Since z2z
∗
2 and z2w

∗
2 + w2z

∗
2 are real variables, it can be written by

Z1

Z2
=

1
M2

{z1z
∗
2M + ε(−z1z

∗
2N + z1w

∗
2M + w1z

∗
2M)}

=
z1

z2
+ ε

(z1w
∗
2

z2z∗2
+

w1

z2
− z1w

∗
2

z2z∗2

)
=

Z1

z2
=




z1
z2

w1
z2

0 z1
z2


 ,

where M := z2z
∗
2 and N := z2w

∗
2 + w2z

∗
2 .

We use the following differential operators :

D := Dz + εDw =




Dz Dw

0 Dz


 =




∂
∂z1

+ e2
∂

∂z2

∂
∂w1

+ e2
∂

∂w2

0 ∂
∂z1

+ e2
∂

∂z2




=




∑3
j=0 ej

∂
∂xj

∑3
j=0 ej

∂
∂yj

0
∑3

j=0 ej
∂

∂xj


 ,

D∗ = D∗
z + εD∗

w =




D∗
z D∗

w

0 D∗
z


 =




∂
∂z1

− e2
∂

∂z2

∂
∂w1

− e2
∂

∂w2

0 ∂
∂z1

− e2
∂

∂z2




=




∂
∂x0

−∑3
j=1 ej

∂
∂xj

∂
∂y0

−∑3
j=1 ej

∂
∂yj

0 ∂
∂x0

−∑3
j=1 ej

∂
∂xj


 ,

where ∂
∂zk

, ∂
∂zk

, ∂
∂wk

, ∂
∂wk

(k = 1, 2) are usual complex differential operations.
The Laplacian operator is

|D|2 = DD∗ =




DzD
∗
z DzD

∗
w + DwD∗

z

0 DzD
∗
z


 =




∑3
j=0

∂2

∂x2
j

2
∑3

j=0
∂2

∂xj∂yj

0
∑3

j=0
∂2

∂x2
j


 .
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Let S be a bounded open subset in T × T . A function F (Z) is defined by the
following form in S with values in M(2;C) :

F (Z) = F (z + εw) = f(z, w) + εg(z, w)

=




f(z, w) g(z, w)

0 f(z, w)


 =




f1 + f2e2 g1 + g2e2

0 f1 + f2e2




=




∑3
j=0 ejuj

∑3
j=0 ejvj

0
∑3

j=0 ejuj


 ,

where uj = uj(x0, x1, x2, x3, y0, y1, y2, y3) and vj = vj(x0, x1, x2, x3, y0, y1, y2, y3) are
real valued functions.

Remark 3.1. Using differential operators, we have the following equations:

DF =




Dzf Dzg + Dwf

0 Dzf


 , D∗F =




D∗
zf D∗

zg + D∗
wf

0 D∗
zf


 ,

FD =




fD∗
z fDw + gDz

0 fDz


 , FD∗ =




fD∗
z fD∗

w + gD∗
z

0 fD∗
z


 ,

where

Dzf =
(∂f1

∂z1
− ∂f2

∂z2

)
+

(∂f1

∂z2
+

∂f2

∂z1

)
e2, D∗

zf =
(∂f1

∂z1
+

∂f2

∂z2

)
+

(∂f2

∂z1
− ∂f1

∂z2

)
e2,

fDz =
(∂f1

∂z1
− ∂f2

∂z2

)
+

(∂f1

∂z2
+

∂f2

∂z1

)
e2, fD∗

z =
(∂f1

∂z1
+

∂f2

∂z2

)
+

(∂f2

∂z1
− ∂f1

∂z2

)
e2.

Definition 3.2. Let S be a bounded open subset in T × T . A function F = f + εg

is said to be M-regular in S if f and g of F are continuously differential quaternion
valued functions in S such that D∗F = 0.

Remark 3.3. The equation D∗F = 0 is equivalent to

D∗
zf = 0, D∗

zg + D∗
wf = 0.

Also, it is equivalent to



70 Ji Eun Kim & Kwang Ho Shon

(3.1)





∂f1

∂z1
= −∂f2

∂z2
,

∂f2

∂z1
=

∂f1

∂z2
,

∂f1

∂w1
+

∂g1

∂z1
= − ∂f2

∂w2
− ∂g2

∂z2
,

∂f2

∂w1
+

∂g2

∂z1
=

∂f1

∂w2
+

∂g1

∂z2
.

The above system is called a dual quaternion Cauchy-Riemann system in dual
quaternions.

Let Ω be an open subset of DC(2), for Z0 = z0 + εw0 ∈ Ω,

F : Ω → DC(2)

is called a dual-quaternion function in DC(2).

Definition 3.4. A function F is said to be continuous at Z0 = z0 + εw0 if

lim
Z→Z0

F (Z) = F (Z0),

where the limit has

lim
Z→Z0

F (Z) = lim
z→z0, w→w0

F (Z) = F (Z0).

Definition 3.5. The dual quaternion function F is said to be differentiable in dual
quaternions if the limit

dF

dZ
:= lim

z→z0, w→w0

F (Z)− F (Z0)
Z − Z0

exists and the limit is called the derivative of F in dual quaternions.

Remark 3.6. From the definition of derivative of f and properties of differential
operations of quaternion valued functions, we have

∂f

∂z
:= lim

z→z0

f(z, w)− f(z0, w0)
z − z0

=
3∑

r=0

er lim
xr→x0

r

ur(x0, x1, x2, x3)− ur(x0
0, x

0
1, x

0
2, x

0
3)

xr − x0
r

=
3∑

r=0

er
∂ur

∂xr
,(3.2)

where (z0, w0) = (x0
0, x

0
1, x

0
2, x

0
3) is a constant in a domain of f (see [2, 11]). Since

the equation (3.2) is equivalent to Dzf , we can express ∂f
∂z = Dzf . Hence, by the
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representations of DF and properties of limit, calculating the division for F (Z)−F (Z0)
Z−Z0

,

dF

dZ
=

∂f

∂z
+ ε

∂g

∂z
+ ε lim

z→z0, w→w0

f(z, w)− f(z0, w0)
(z − z0)2

(w − w0)

=




∂f
∂z

∂g
∂z

0 ∂f
∂z


 + ε lim

z→z0, w→w0

f(z, w)− f(z0, w0)
z − z0

(w − w0

z − z0

)2

=




Dzf Dzg

0 Dzf


 +




0 ∂f
∂w

0 0


 = DF.

Therefore, we can represent ∂F
∂Z = DF .

Theorem 3.7. Let F = f + εg be a dual quaternion function in Ω ⊂ DC(2). If
F satisfies the equation Df = 0, then the derivative of F satisfies the following
equation:

dF

dZ
:= lim

Z→Z0

F (Z)− F (Z0)
Z − Z0

= DzF.

Proof. By the division of dual quaternions, we have

F (Z)− F (Z0)
Z − Z0

=
f(z, w)− f(z0, w0)

z − z0
+ ε

g(z, w)− g(z0, w0)
z − z0

+ε
f(z, w)− f(z0, w0)

(z − z0)2
(w − w0).

Then, the limit

lim
Z→Z0

F (Z)− F (Z0)
Z − Z0

= lim
z→z0, w→w0

f(z, w)− f(z0, w0)
z − z0

+ ε lim
z→z0, w→w0

g(z, w)− g(z0, w0)
z − z0

+ε lim
z→z0, w→w0

f(z, w)− f(z0, w0)
(z − z0)2

(w − w0)

=
∂f

∂z
+ ε

∂g

∂z
− ε lim

z→z0, w→w0

f(z, w)− f(z0, w0)
(z − z0)2

(w − w0)

= DzF + ε lim
z→z0, w→w0

f(z, w)− f(z0, w0)
z − z0

w − w0

z − z0

= DzF + ε lim
z→z0, w→w0

f(z, w)− f(z0, w0)
w − w0

(w − w0

z − z0

)2
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exists if and only if w−w0
z−z0

has two cases to deal with
Case 1)

lim
z→z0, w→w0

f(z, w)− f(z0, w0)
(z − z0)2

(w − w0) = lim
z→z0, w→w0

f(z, w)− f(z0, w0)
z − z0

w − w0

z − z0
.

If

lim
z→z0, w→w0

f(z, w)− f(z0, w0)
z − z0

= 0,

then the limit exists and the derivative can be written by

df(Z0)
dZ

= ε
∂g(z0, w0)

∂z
.

Case 2)

lim
z→z0, w→w0

f(z, w)− f(z0, w0)
(z − z0)2

(w−w0) = lim
z→z0, w→w0

f(z, w)− f(z0, w0)
w − w0

(w − w0

z − z0

)2
.

If

lim
z→z0, w→w0

f(z, w)− f(z0, w0)
w − w0

= 0,

then the limit exists and the derivative can be written by

df(Z0)
dZ

= DzF.

Therefore, the equation dF
dZ = DzF is obtained. ¤

Theorem 3.8. Let F = f +εg be a dual quaternion function in Ω ⊂ DC(2). If F is
a M-regular function in dual quaternions, that is, F satisfies the equation D∗F = 0,
then the derivative of F satisfies the following equation:

dF

dZ
= DF =

∂F

∂x0
.

Proof. From the proof of Theorem 3.7, we have

dF (Z0)
dZ

= DzF + ε lim
z→z0, w→w0

f(z, w)− f(z0, w0)
z − z0

w − w0

z − z0

= DzF + ε lim
z→z0, w→w0

f(z, w)− f(z0, w0)
w − w0

(w − w0

z − z0

)2
.

Since F satisfies a dual quaternion Cauchy-Riemann system (3.1), we have
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DzF = Dzf + εDzg =
(∂f1

∂z1
+

∂f1

∂z1

)
+

(∂f2

∂z1
+

∂f2

∂z1

)
e2

+ε
(∂g1

∂z1
+

∂g1

∂z1

)
+ ε

(∂g2

∂z1
+

∂g2

∂z1

)
e2.

Therefore, since ∂
∂z1

+ ∂
∂z1

= ∂
∂x0

, we have

dF (Z0)
dZ

=
∂F (Z0)

∂x0
.

¤
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9. H. Koriyama & K. Nôno: On regularities of octonionic functions and holomorphic
mappings. Bull. Fukuoka Univ. Ed. 60 part III (2011), 11-28.

10. S.J. Lim & K.H. Shon: Properties of hyperholomorphic functions in Clifford analysis.
East Asian Math. J. 28 (2012), no. 5, 553-559.

11. : Dual quaternion functions and its applications. J. Applied Math. Article ID
583813 (2013), 6 pages.



74 Ji Eun Kim & Kwang Ho Shon

12. M. Naser: Hyperholomorphic functions. Silberian Math. J. 12 (1971), 959-968.
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