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LIPSCHITZ AND ASYMPTOTIC STABILITY OF PERTURBED
FUNCTIONAL DIFFERENTIAL SYSTEMS

Sang Il Choi a and Yoon Hoe Goo b, ∗

Abstract. The present paper is concerned with the notions of Lipschitz and as-
ymptotic for perturbed functional differential system knowing the corresponding
stability of functional differential system. We investigate Lipschitz and asymptotic
stability for perturbed functional differential systems. The main tool used is integral
inequalities of the Bihari-type, and all that sort of things.

1. Introduction

Dannan and Elaydi introduced a new notion of uniformly Lipschitz stability
(ULS)[8]. This notion of ULS lies somewhere between uniformly stability on one
side and the notions of asymptotic stability in variation of Brauer[4] and uniformly
stability in variation of Brauer and Strauss[3] on the other side. An important fea-
ture of ULS is that for linear systems, the notion of uniformly Lipschitz stability
and that of uniformly stability are equivalent. However, for nonlinear systems, the
two notions are quite distinct. Also, Elaydi and Farran[9] introduced the notion
of exponential asymptotic stability(EAS) which is a stronger notion than that of
ULS. They investigated some analytic criteria for an autonomous differential sys-
tem and its perturbed systems to be EAS. Gonzalez and Pinto[10] proved theorems
which relate the asymptotic behavior and boundedness of the solutions of nonlinear
differential systems. Choi et al.[6, 7] examined Lipschitz and exponential asymp-
totic stability for nonlinear functional systems. Also, Goo et al.[11, 13] investigated
Lipschitz and asymptotic stability for perturbed differential systems.

In this paper, we investigate Lipschitz and asymptotic stability for solutions of the
functional differential systems using integral inequalities. The method incorporating
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integral inequalities takes an important place among the methods developed for
the qualitative analysis of solutions to linear and nonlinear system of differential
equations. In the presence the method of integral inequalities is as efficient as the
direct Lyapunov’s method.

2. Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-space. We
assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on R+ × Rn

and f(t, 0) = 0. Also, consider the perturbed functional differential system of (2.1)

(2.2) y′ = f(t, y) +
∫ t

t0

g(s, y(s), T y(s))ds + h(t, y(t), T y(t)), y(t0) = y0,

where g, h ∈ C(R+ × Rn × Rn,Rn), g(t, 0, 0) = h(t, 0, 0) = 0 and T : C(R+,Rn) →
C(R+,Rn) is a continuous operator .

For x ∈ Rn, let |x| = (
∑n

j=1 x2
j )

1/2. For an n× n matrix A, define the norm |A|
of A by |A| = sup|x|≤1 |Ax|.

Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) = x0, existing
on [t0,∞). Then we can consider the associated variational systems around the zero
solution of (2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
Before giving further details, we give some of the main definitions that we need

in the sequel[8].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1)) is called
(S)stable if for any ε > 0 and t0 ≥ 0, there exists δ = δ(t0, ε) > 0 such that if
|x0| < δ , then |x(t)| < ε for all t ≥ t0 ≥ 0,
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(US)uniformly stable if the δ in (S) is independent of the time t0,
(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such that |x(t)| ≤
M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0
(ULSV) uniformly Lipschitz stable in variation if there exist M > 0 and δ > 0 such
that |Φ(t, t0, x0)| ≤ M for |x0| ≤ δ and t ≥ t0 ≥ 0,
(EAS) exponentially asymptotically stable if there exist constants K > 0 , c > 0,
and δ > 0 such that

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < δ,
(EASV) exponentially asymptotically stable in variation if there exist constants K >

0 and c > 0 such that

|Φ(t, t0, x0)| ≤ K e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < ∞.

Remark 2.2 ([10]). The last definition implies that for |x0| ≤ δ

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t.

We give some related properties that we need in the sequel.
We need Alekseev formula to compare between the solutions of (2.1) and the

solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.5)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the solution
of (2.5) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of constants
formula due to Alekseev [1].

Lemma 2.3. Let x and y be a solution of (2.1) and (2.5), respectively. If y0 ∈ Rn,
then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds,

where Φ(t, s, y(s)) is a fundamental matrix of (2.4).

Lemma 2.4 ([14]). Let u, p, q, w, and r ∈ C(R+) and suppose that, for some c ≥ 0,
we have
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u(t) ≤ c +
∫ t

t0

p(s)
∫ s

t0

[q(τ)u(τ) + w(τ)
∫ τ

t0

r(a)u(a)da]dτds, t ≥ t0.

Then

u(t) ≤ c exp(
∫ t

t0

p(s)
∫ s

t0

[q(τ) + w(τ)
∫ τ

t0

r(a)da]dτds), t ≥ t0.

Lemma 2.5 ([7]). (Bihari− type Inequality) Let u, λ ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c +
∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) , W−1(u) is the inverse of W (u), and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ(s)ds ∈ domW−1
}

.

Lemma 2.6 ([12]). Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u) be nonde-
creasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c +
∫ t

t0

λ1(s)w(u(s))ds +
∫ t

t0

λ2(s)(
∫ s

t0

λ3(τ)u(τ)dτ)ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.5, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds ∈ domW−1
}

.

Lemma 2.7 ([12]). Let u, p, q, v, r ∈ C(R+), w ∈ C((0,∞)) and w(u) be nonde-
creasing in u, u ≤ w(u). Suppose that for some c ≥ 0,

u(t) ≤ c +
∫ t

t0

p(s)
∫ s

t0

(q(τ)w(u(τ)) + v(τ)
∫ τ

t0

r(a)u(a)da)dτds, t ≥ t0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(p(s)
∫ s

t0

(q(τ) + v(τ)
∫ τ

t0

r(a)da)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.5, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(p(s)
∫ s

t0

(q(τ) + v(τ)
∫ τ

t0

r(a)da)dτ)ds ∈ domW−1
}

.
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Lemma 2.8 ([5]). Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u) be nonde-
creasing in u. Suppose that for some c > 0,

u(t) ≤ c +
∫ t

t0

λ1(s)w(u(s))ds +
∫ t

t0

λ2(s)
∫ s

t0

λ3(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.5, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds ∈ domW−1
}

.

3. Main Results

In this section, we investigate Lipschitz and asymptotic stability for solutions of
the perturbed functional differential systems.

We need the lemma to prove the following theorem.

Lemma 3.1. Let u, λ1, λ2, λ3, λ4, w ∈ C(R+), w ∈ C((0,∞)), and w(u) be nonde-
creasing in u, u ≤ w(u). Suppose that for some c ≥ 0,
(3.1)

u(t) ≤ c +
∫ t

t0

λ1(s)
[ ∫ s

t0

(λ2(τ)w(u(τ)) + λ3(τ)
∫ τ

t0

k(r)u(r)dr)dτ + λ4(s)w(u(s))
]
ds,

for t ≥ t0 ≥ 0 and for some c ≥ 0. Then

(3.2) u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ1(s)
(∫ s

t0

(λ2(τ) + λ3(τ)
∫ τ

t0

k(r)dr)dτ + λ4(s)
)
ds

]
,

for t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 2.5, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ1(s)
(∫ s

t0

(λ2(τ)

+ λ3(τ)
∫ τ

t0

k(r)dr)dτ + λ4(s)
)
ds ∈ domW−1

}
.

Proof. Define a function v(t) by the right member of (3.1) . Then

v′(t) = λ1(t)
[ ∫ t

t0

(λ2(s)w(u(s)) + λ3(s)
∫ s

t0

k(τ)u(τ)dτ)ds + λ4(t)w(u(t)
]
,

which implies



6 Sang Il Choi & Yoon Hoe Goo

v′(t) ≤ λ1(t)
[ ∫ t

t0

(λ2(s) + λ3(s)
∫ s

t0

k(τ)dτ)ds + λ4(t)
]
w(v(t)),

since v and w are nondecreasing, u ≤ w(u), and u(t) ≤ v(t) . Now, by integrating
the above inequality on [t0, t] and v(t0) = c, we have

(3.3) v(t) ≤ c +
∫ t

t0

λ1(s)
[ ∫ s

t0

(λ2(τ) + λ3(τ)
∫ τ

t0

k(r)dr)dτ + λ4(s)
]
w(v(s))ds.

Then, by the well-known Bihari-type inequality, (3.3) yields the estimate (3.2). ¤

Theorem 3.2. For the perturbed (2.2), we assume that

(3.4) |g(t, y, Ty)| ≤ a(t)w(|y(t)|) + |Ty(t)|
and

(3.5) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds, |h(t, y(t), T y(t))| ≤ c(t)w(|y|),

where a, b, c, k ∈ C(R+), a, b, c, k ∈ L1(R+), w ∈ C((0,∞)), and w(u) is nonde-
creasing in u, u ≤ w(u), and 1

vw(u) ≤ w(u
v ) for some v > 0,

(3.6) M(t0) = W−1
[
W (M) + M

∫ ∞

t0

(
∫ s

t0

(a(τ) + b(τ)
∫ τ

t0

k(r)dr)dτ) + c(s))ds
]
,

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2.2) is ULS whenever
the zero solution of (2.1) is ULSV.

Proof. Using the nonlinear variation of constants formula of Alekseev[1], the solu-
tions of (2.1) and (2.2) with the same initial value are related by

y(t, t0, y0)=x(t, t0, y0)+
∫ t

t0

Φ(t, s, y(s))
(∫ s

t0

g(τ, y(τ), T y(τ))dτ+h(s, y(s), T y(s))
)
ds.

Since x = 0 of (2.1) is ULSV, it is ULS([8],Theorem 3.3) . Using the ULSV condition
of x = 0 of (2.1), (3.4), and (3.5), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ), Ty(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ M |y0|+
∫ t

t0

M |y0|
[
(
∫ s

t0

[a(τ)w(
|y(τ)|
|y0| ) + b(τ)

∫ τ

t0

k(r)
|y(r)|
|y0| dr]dτ)

+c(s)w(
|y(s)|
|y0| )

]
ds.

Set u(t) = |y(t)||y0|−1. Now an application of Lemma 3.1 yields

|y(t)| ≤ |y0|W−1
[
W (M) + M

∫ t

t0

(
∫ s

t0

(a(τ) + b(τ)
∫ τ

t0

k(r)dr)dτ + c(s))ds
]
,
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Thus, by (3.6), we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 whenever |y0| < δ.
So, the proof is complete. ¤

Remark 3.3. Letting c(t) = 0 in Theorem 3.2, we obtain the same result as that
of Theorem 3.6 in [13].

Theorem 3.4. For the perturbed (2.2), we assume that

(3.7)
∫ t

t0

|g(s, y(s), T y(s))|ds ≤ a(t)w(|y(t)|) + |Ty(t)|

and

(3.8) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds, |h(t, y(t), T y(t))| ≤ c(t)w(|y|),

where a, b, c, k ∈ C(R+), a, b, c, k ∈ L1(R+), w ∈ C((0,∞)), and w(u) is nonde-
creasing in u, u ≤ w(u), and 1

vw(u) ≤ w(u
v ) for some v > 0,

(3.9) M(t0) = W−1
[
W (M) + M

∫ ∞

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
,

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2.2) is ULS whenever
the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Since x = 0 of (2.1) is ULSV, it is ULS . Applying Lemma 2.3, (3.7),
and (3.8), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))(|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ + |h(s, y(s), T y(s))|ds

≤ M |y0|+
∫ t

t0

M |y0|(a(s) + c(s))w(
|y(s)|
|y0| )ds

+
∫ t

t0

M |y0|b(s)
∫ s

t0

k(τ)
|y(τ)|
|y0| dτds.

Set u(t) = |y(t)||y0|−1. Now an application of Lemma 2.6 yields

|y(t)| ≤ |y0|W−1
[
W (M) + M

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
.

Hence, by (3.9), we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 whenever |y0| < δ.
This completes the proof. ¤

Remark 3.5. Letting c(t) = 0 in Theorem 3.4, we obtain the same result as that
of Theorem 3.5 in [13].
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Theorem 3.6. For the perturbed (2.2), we assume that

(3.10) |g(t, y, Ty)| ≤ a(t)w(|y(t)|) + |Ty(t)|
and

(3.11) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds, |h(t, y(t), T y(t))| ≤
∫ t

t0

c(s)w(|y(s)|)ds,

where a, b, c, k ∈ C(R+), a, b, c, k ∈ L1(R+), w ∈ C((0,∞)), and w(u) is nonde-
creasing in u, u ≤ w(u), and 1

vw(u) ≤ w(u
v ) for some v > 0,

(3.12) M(t0) = W−1
[
W (M) + M

∫ ∞

t0

∫ s

t0

(a(τ) + c(τ) + b(τ)
∫ τ

t0

k(r)dr)dτds
]
,

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2.2) is ULS whenever
the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Since x = 0 of (2.1) is ULSV, it is ULS. Using the nonlinear variation
of constants formula and the ULSV condition of x = 0 of (2.1), (3.10), and (3.11),
we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ), Ty(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ M |y0|+
∫ t

t0

M |y0|
∫ s

t0

(a(τ) + c(τ))w(
|y(τ)|
|y0| )dτds

+
∫ t

t0

M |y0|
∫ s

t0

b(τ)
∫ τ

t0

k(r)
|y(r)|
|y0| drdτds.

Set u(t) = |y(t)||y0|−1. Now an application of Lemma 2.7 and (3.12) yield

|y(t)| ≤ |y0|W−1
[
W (M) + M

∫ t

t0

∫ s

t0

(a(τ) + c(τ) + b(τ)
∫ τ

t0

k(r)dr)dτds
]
,

Thus we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 whenever |y0| < δ, and so the
proof is complete. ¤

Remark 3.7. Letting c(t) = 0 in Theorem 3.6, we obtain the same result as that
of Theorem 3.6 in [13].

Theorem 3.8. Let the solution x = 0 of (2.1) be EASV. Suppose that the perturbing
term g(t, y, Ty) satisfies

(3.13) |g(t, y(t), T y(t))| ≤ e−αt
(
a(t)|y(t)|+ |Ty(t)|

)

and
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(3.14) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds, |h(t, y(t), Ty(t))| ≤
∫ t

t0

e−αsc(s)|y(s)|ds,

where α > 0, a, b, c, k ∈ C(R+), a, b, c, k ∈ L1(R+). If
(3.15)

M(t0) = c exp(
∫ ∞

t0

Meαs

∫ s

t0

[a(τ) + c(τ) + b(τ)
∫ τ

t0

k(r)dr]dτds) < ∞, t ≥ t0,

where c = |y0|Meαt0, then all solutions of (2.2) approch zero as t →∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Since the solution x = 0 of (2.1) is EASV, it is EAS by remark 2.2.
Using Lemma 2.3, (3.13), and (3.14), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣+|h(s, y(s), T y(s))|)ds

≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−α(t−s)

∫ s

t0

[e−ατ (a(τ) + c(τ))|y(τ)|

+e−ατ b(τ)
∫ τ

t0

k(r)|y(r)|dr]dτds

≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−α(t−s)

∫ s

t0

[(a(τ) + c(τ))|y(τ)|eατ

+b(τ)
∫ τ

t0

k(r)|y(r)|eαrdr]dτds.

Set u(t) = |y(t)|eαt. An application of Lemma 2.4 and (3.15) obtain

|y(t)| ≤ ce−αt exp(
∫ t

t0

Meαs

∫ s

t0

[a(τ) + c(τ) + b(τ)
∫ τ

t0

k(r)dr]dτds) ≤ ce−αtM(t0),

t ≥ t0, where c = M |y0|eαt0 . Hence, all solutions of (2.2) approch zero as t →∞. ¤

Theorem 3.9. Let the solution x = 0 of (2.1) be EASV. Suppose that the perturbed
term g(t, y, Ty) satisfies

(3.16)
∫ t

t0

|g(s, y(s), T y(s))|ds ≤ e−αt
(
a(t)w(|y(t)|) + |Ty(t)|

)

and

(3.17) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)w(|y(s)|)ds, |h(t, y(t), T y(t))| ≤ e−αtc(t)w(|y|),

where α > 0, a, b, c, k, w ∈ C(R+), a, b, c, k ∈ L1(R+) and w(u) is nondecreasing in
u, and 1

vw(u) ≤ w(u
v ) for some v > 0. If
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(3.18) M(t0) = W−1
[
W (c)+M

∫ ∞

t0

(a(s)+c(s)+b(s)
∫ s

t0

k(τ)dτ)ds
]

< ∞, b1 = ∞,

where c = M |y0|eαt0, then all solutions of (2.2) approch zero as t →∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Since the solution x = 0 of (2.1) is EASV, it is EAS. Using Lemma
2.3, (3.16), and (3.17), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣+|h(s, y(s), T y(s))|)ds

≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−α(t−s)[e−αsa(s)w(|y(s)|)

+e−αsb(s)
∫ s

t0

k(τ)w(|y(τ)|)dτ + e−αsc(s)w(|y(s)|)]ds

≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−αt(a(s) + c(s))w(|y(s)|eαs)ds

+
∫ t

t0

Me−αtb(s)
∫ s

t0

k(τ)w(|y(τ)|eατ )dτ ]ds.

Set u(t) = |y(t)|eαt. Since w(u) is nondecreasing, an application of Lemma 2.8 and
(3.18) obtain

|y(t)| ≤ e−αtW−1
[
W (c) + M

∫ t

t0

(a(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
≤ e−αtM(t0),

where c = M |y0|eαt0 . Therefore, all solutions of (2.2) approch zero as t →∞. ¤

Acknowledgement. The authors are very grateful for the referee’s valuable com-
ments.
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