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ON THE CONVERGENCE OF NEWTON’S METHOD AND
LOCALLY HOLDERIAN OPERATORS

IoANNIS K. ARGYROS

ABSTRACT. A semilocal convergence analysis is provided for Newton's method in
a Banach space setting. The operators involved are only locally Holderian. We
make use of a point-based approximation and center-Holderian hypotheses. This

approach can be used to approximate solutions of equations involving nonsmooth
operators.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unigue
solution =* of equation |

(1) F(z) =0,

where F' is a continuous operator defined on a closed subset D of a Banach space X
with values in a Banach space Y.

The most popular method for approximating z* are undoubtedly Newton’s meth-
od and its variations the so-called Newton-like methods. A survey on locan and
semilocal convergence results for such methods can be found in [1]-[3] and the ref-
erences there. Newton’s method of classical analysis is based on its linearization
F(z) + F'(z)(z — z), where for given x we compute 2. This is possible only if the
Fréchet-derivative F’ of operator F' exists. If this is not the case such a linearization
is no longer available.

In [5] a point-based approximation was considered to show that Newton’s method
converges. The method of nondiscrete mathematical induction was utilized for the

semilocal convergence analysis of Newton’s method. Under Newton-Kantorovich
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type hypotheses the quadratic convergence is ensured. Certain assumptions on lo-
cally Lipschitz operators are made.

Here we provide a semilocal convergence analysis based on assumptions made on
locally p-Holderian operators for p € (0, 1]. This allows us to consider a wider range
of problems than before (see [4], [5], and the references there).

It turns out that even if p = 1 our approach provides a larger convergence radius
than the corresponding one in [5|, and under the same computational cost. This

observation is important in computational mathematics [1]-[3].

2. PRELIMINARY RESULTS

We need the following definition of a point-based approximation for p-Holderian

operators:

Definition 1. Let f be an operator from a closed subset D of a metric space (X, d)
to a normed linear space Y, and let zg € D, p € (0,1]. We say f has a point-based
approrimation (PBA) on D at xg € D if there exist an operator A: D x D — Y and

scalars £, ¢y such that for each u, and v in D,

(2) 1f(v) — Au,v)|| < fd(u,v)

(3) 1A(u, z) — A(v, x)] — [A(u,y) — A(v,y)]l| < 2€d(u, v)”
and

(4) o ”[A(u’ U) —.A(:Co, 'T)] o [A(ua y) T A("L'Oa y)]” S 2€0d(ua U)p

for all x,y € D.

Assume X is also a normed linear space and D is a convex set. Then this
definition is suitable for operators f where Fréchet derivative f’ is (p — 1)-Ho6lderian

with modulus pf and (p — 1)-center Holderian with modulus péy. Indeed if we set

Alu,v) = f(u) + f'(w) v — 0),
then (1) says
IP(v) - () — £/ —w)ll < v —ul?,

where as parts (2) and (3) are equivalent to the Hélderian and center Hoélderian
property of f’.
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The following lemma can be regarded as an extension of the Banach lemma

on invertible operators [3, Th. 4(2.V)] from linear operators to locally Holderian
operators.

We first need the following:

Definition 2. Let f be an operator from a metric space (X, d) into a normed linear
space Y. We let

(5) O(f,X) = inf { “F(;L()u_vl;(v)”, uFv, UvE X} .

Operator f is one-to-one on X if and only if §(f, X) # 0. Note that by (5) it follows
F~1 (if it exists) is %—Hélderian with modulus &(f, X)~1/P. We also define

| F'(w) — F(zo)]
d(u, ﬂio)p

50(f,X)=inf{ , U F T, ’U,?.’L"()ED}.

Set § = &(f, D) and 8, = do(f, D).

Lemma 1. Let (X,d) be a Banach space, D a closed subset of X, and Y a normed
linear space. Let f,y be operators from D into Y, g being p-Holderian with modulus

¢ and center p-Hélderian with modulus ¢y. Let xog € D with f(xg) = yo. Assume
that:

(6) Ulyo,a) ={y €Y | ly —woll < a} € F(D);
(7) 0<?<6;

(8) U (o, (87 ') /?) C D;

and

(9) 6 = (1—£d; o — |lg(zo)|| > 0.

Then the following hold:

(10) (f + 9)(U(=zo, (87 *e)/P) 2 U(yo, 6)

and

(11) 5(f+9,D)>6—0>0.
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Proof. For y € U(yo,0) and = € U(xzo, (§; *a)'/P), define Ty(z) = f~(y — g(z)).
Then we have

ly = 9(=) — yoll < lly — woll + lly(z) — g(za)ll + llg(zo)ll
<6+ £Lo(6; /PP + lg(o) =a.

That is Ty(x) is a nonempty set. But since § > 0, Ty is a singleton set. Therefore
Ty is an operator on U(zo, (67 ' a)/P). Moreover by Definition 2

d(Ty(z), o) = d(f (y — g(x)), F " (v0)) < (67 )7,

Hence we deduce operator Ty maps U(xg, (67 'a)'/?) into itself,
Furthermore, let x, 2z € U(xo, (6; '@)/P), then again by Definition 2

d(Ty(z), Ty(z)) = d(f "y — g9(z)), f (v — 9(2)))

< §TVPEHP|z — 2.

It follows by hypothesis (10) and the fact operator Ty maps closed set
Ulxo, (6, 'a)1/P) into itself that T’y is a strong contraction and as such it has unique
fixed point z(y) in U(xg, (0; 'a)'/P) (by the contraction mapping principle {3, Th.
1(1.XVI)]).

Clearly (f +¢)(2(y)) = y, and x(y) is the only point in D satisfying this equation

57 + 9.D) = int { ) — SO Vo) — 9O, 0 D}
>4(f,D) — sup{ ”g(g()u"j;iv)” , UWF VU, UV E D}

>6—4£>0 (by hypothesis (2)).

In particular f + ¢ is one-to-one on D. That completes the proof of Lemma 1. [
We need the following result in order to study the uniqueness of the solution z*.

Lemma 2. Let X and Y be normed linear spaces, and let D be a closed subset of
X. Let f: D — Y, and let A be a PBA for f on D at o € D. Denote by d the
quantity 6( A(zo,-), D). If U(xg, p) C D, then

| /
6(f, Ulzo, p)) = 6o — 24y — TS

In particular, if 09 > 20 + Q,%I, then f is one-to-one on U(xg, p).
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Proof. Let x1 and x2 belong to U(zo, p). Set z = £.3%2. Then we can write

flz1) — flz2) = [f{z1) — Az, 1)) + [Alz, 21) — Az, 22)]
+ [A(z, z2) — f(z2)).
By Definition 1 we have for i = 1, 2,

I7(2) ~ A,z < bz — 2P < llar — 2ol

By the triangle inequality we get
|A(z,u) - Az, v)]| > | Azo, u) — Alzo, v)|
— {|lA(z,w) — A(zo, uw)] — [A(z,v) — Alxo, V)],
and

(A(z.), D) = inf{ Az, w) ~ Al v))

lee = w|P

, U F U, u,vED}

A(xo, u)] — [A(z,v) — A(xo, v)]|

> §(A(xg,-), D) — Sup{ LAz, u) —

fu—v|[P |
uUFv, u,vE D}
> dp — 26;.
Hence, we get,
14
1f(z1) = Fx2)ll > (80 — 2€0)||z1 — 22| - =1 171 — 22|l”
¢
> (50 ~ 2o — -2-};_—1) |21 — x|
and for x; # xo,
|/ (z1) = fl=2)]] £
> 0p — 20) — —— .

e

That completes the proof of Lemma 2. O

Remark 1. If p = 1, then for ¢y < ¢ or g > & Lemma 1 improves (enlarges) the
range of #, and Lemma 2 enlarges the radius of convergence for Newton’s method
given in corresponding Lemma 3.1 in [4, p. 298] and Lemma 2.3 in [5, p. 294]
respectively. These observations are important in computational mathematics [1].
Note also that in general £y < £, g > é hold and %, %1 can be arbitrarily large [2].

We need the following result on fixed points:
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Theorem 1. Let : X C X — Y be a continuous operator, let p € [0,1), ¢ > 0
and xo € D be such that

(12) 1Q(z) — QW) < qllz —yl||P forallz,ye D
(13) d e |0,1),

and
(14) U(zo,r) € D
where,

(15) b=qT,

(16) d=b"Y o9 — Qxg)l|, and r= b :

’ 1—dpP

Then sequence {x,} (n > 0) generated by successive substitutions:
(17) Tnt1 = Qzn) (n20)

converges to a fized point x* € U(xg,r) of operator @), so that for alln > O:
(18) |Zn41 — zal < @b,

and

19 4 b

0 — x| < .
(19) Iz~ 2" < ~—

Moreover if

(20) di =07 (llzo — Qzo)ll +4r) < 1,
or
(21) ¢Pr < 1

then x* s the unique fized point of Q in U(xg, 7).

Proof. By hypothesis (14) z; € U(xo, 7). Assume zx € U(zg,r), k = 0,1,...,n.
Then .1 is defined by (18), and using (12) we can have in turn:

| | Tni1 — Tn|| = 1Q(zr) — Q(xrn-1)|| £ gllTn — Tp1llP
< qlallen 1= @n-2lP]” =g Jan-1 ~ zn-af”

1— " n TL
(22) <. < q T ||z~ 2olfP" < @b,

which shows (18].
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Moreover for all m =0,1,2,... we have

[Zntm = znll < [Entm = Tnem—tll + Tn4m-1 — Tnpm—2ll + - + [[Tns1 — 2l
<[d 4 4]

1—dm?
1—dp
It follows from (13) and (23) that sequence {z,} is Cauchy in a Banach space X,
and as such it converges to some z* € U(zg, ) (since U(xg,7) is a closed set). By
letting m — oo in (23) we get (19). In particular for n = 0, and m = n + 1 (22)
gives xp1 € U(xg,r). That is x, € U(xg,r) for all n > 0. By letting n — oo In
(17) we get x* = Q(z*).

To show uniqueness let y* € U(zg,r) be a fixed point of Q. Then as in (22) we
get

(24) 1Zni1 — vl = 1Q(zn) — Q)| < & b.

By letting n — oo in (24), and using hypothesis (20) we get lingo T, = y*. But we
n-—

d"Pb.

(23) < [dmtm=DP 4 g @P) =

showed lim z, = x*. Hence, we deduce z* = y*. Similarly using (21) instead of
n—00

(20) we deduce again =* = y*. That completes the proof of Theorem 1. Il

Remark 2. (a) The case p = 1 is not covered above since it is already well known by

the contraction mapping principle [3]. Simply assume ¢ € [0,1) and U(zo,r1) € D

where r| = ”“’“hl?gm)”. Results corresponding to (19) and (20) will be
(25) [n41 = 2nll < ¢"|lz1 — 2ol
and

qn
(26) on ~2°]| < 7o = Qao)l,
respectively.

(b) If instead of (13) and (20) we assume

(27) h=2dP < 1,
and
(28) 2b < ¢ /P

- then the conclusions of Theorem 2 hold in the ball U (xg, o) where

(29) Ty = 2b.
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We set
(30) |zo — Q(zo)|| < 7.

3. SEMILOCAL CONVERGENCE ANALYSIS

We can state and prove the main semilocal convergence result for Newton’s

method involving a p-(PBA) approximation for f.

Theorem 2. Let X and Y be Banach spaces, D a closed conver subset of X,
xo € D, and F a continuous operator from D into Y. Suppose that F' has a p-

(PBA) approximation at xg. Moreover assume:

(a)
(31) 0(A(xo, ), D) 2 60 > 0,

(32) n<b, 26p<dby, (1—206]" ro)don—EnP >0
and conditions (9), (27), (28) are satisfied for a = don and g = €(8p—24o) 1,

respectively where,
01 = do(A(zo, "), D).
(b) for each y € U(0,600n) the equation A(zg,x) =y has a solution x;
(c) the solution T(xo) of A(xo, T(xg)) = 0 satisfies ||xo — T(xo)|| < n;
and |
(d) U(xg,ro) C D, where rg is given by (29).

Then the Newton iteration defining x,41 by
(33) A(Zp, Tpny1) =0

remains in U(xg,rg), and converges to a solution x* € U(xg,rg) of equation F(x) =
0, so that estimates (18) and (19) hold.

Proof. We use Lemma 1 with quantities f, g, o and yg replaced by A(z,-), A(z1,)—
A(z, ), z1 = T(x0), and O respectively. Hypothesis (6) of Lemma 1 follows from the
fact that A(xg,z) = y has a unique solution x; (since dy > 0). For hypothesis (7)

we have
(34) 0(A(xy,-), D) > 6(A(xg, ), D) — 2£y > b9 — 2¢y > 0.
To show (8) we must have:

U(.’L‘l, 77) C U('TO) TO)&



ON THE CONVERGENCE OF NEWTON’S METHOD 119

which is true since
lzy — zoll + 71 < 25 < 26 = 1.
We also get by (2)
(35) ”A(:I!(),.’L‘l) - A(.CE],LBl)“ < E“‘Tl - LI.T()HP < fnp
We need to find an upper bound on 8 which is given by
(36) 9 2 [1 — 26051_17‘0] 50?7 —_ ”A(:E(),LEl) — A(ml,xl)H.

However the upper bound on 8 given by (36) is nonnegative by (32) and (35), which
shows hypothesis (9) of Lemmma 1. Condition (10) holds by the last hypothesis in
(a) above. Hence all hypotheses of Lemma 1 are satisfied. It follows that for each

y € U(0,79 — ||z1 — x0]]), the equation A(x,z) = y has a unique solution, since
d(A(x1,-), D) > 0. We also have A(xg, 1) = A(x1,22) = 0 and A(z1,71) = F(x1).
By (5) we have

lw2 — z1]| < 8(A(z1,-), D)~ || A(zo, 21) — Flz1)|
(37) < gllzr - zolP.
Hence we showed (18) and
(38) U(znt1,70 — [|Znt1 — zol|) € Ulzn, 1o — [|zn — zol})
hold for n = 0,1. Moreover for every v € U(xy,7r9 — ||z1 — ol]) it follows
lv = 2ol| < [lv — 21| + llz1 — zol| < 7o — [|#1 — zol| + [J21 — 2ol| = 7o,

implies v € Ulxg,rg). Given they hold for alln =0,1,..., 7, then
7+1
|41 = zoll < ) llzi — zial] < 7.

i=1
Then the induction can easily be completed by simply replacing above zq, 1 by zn.

ITn41 respectively. Indeed the crucial upper bound on 6 is

[1 — 2305{17‘0] 507) — HA(J:n, $n+1) - A(mn—}—l: $n+1)|‘

which is bounded above by (since §; > d&g)
[1 — 26061 ' r0]60n — £l|Tnr1 — Tn|P
and the latter is again bounded above by
11— 2505;"17"0]6077 — fnP

which is nonnegative by (32).
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It follows by (18) and (38) that {z,} is a Cauchy in a Banach space X and as
such it converges to some z* € U(zo, 1) (since U(zo, o) is a closed set). By (2) and

Theorem 1 we get

|F(zns1)] = |F(zns1) — Alxn, Zne)|| < |2ne1 — znall?

< gllzpy1 —zn||P = 0 asn — oo.

Therefore || F'(z,41)]| converges to zero as n — oo. By the continuity of F we deduce
F(x*) = 0. That completes the proof of Theorem 2. O

Remark 3. The uniqueness of the solution z* was not considered in Theorem 2.

Using Lemma 2 we can obtain a uniqueness result so that if
¢
To < p and 50 >2€0+-2-p__—1,
then operator I is one-to-one in a neighborhood of x*, since z* € U(xg,r9). That

1S £* 1s an i1solated zero of F' in this case.
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