AN IMPROVEMENT OF THE MADDOX THEOREM ON THE MATRIX CLASS $(\ell^{\infty}(X), c_0(Y))$

Won Sok Yoo

ABSTRACT. A clear-cut characterization of the matrix class $(\ell^{\infty}(X), c_0(Y))$ is obtained for a very general case.

1. Introduction

For Banach spaces X, Y and a matrix $(f_{ij})_{i,j\in\mathbb{N}}$ in L(X,Y), the family of continuous linear operators from X to Y, let

$$R_{ij} = (f_{ij}, f_{ij+1}, f_{ij+2}, \cdots),$$

$$||R_{ij}|| = \sup_{p \in \mathbb{N}, ||(x_k)||_{\infty} \le 1} \left| \sum_{k=i}^{j+p} f_{ik}(x_k) \right||, \ \forall i, j \in \mathbb{N} \ \ (\text{see } [3,4]).$$

Recall that

$$\ell^{\infty}(X) = \{(x_j)_1^{\infty} \subset X : (x_j)_1^{\infty} \text{ is bounded}\}, \ c_0(Y) = \{(y_j)_1^{\infty} \subset Y : y_j \to 0\}$$

and we write $(x_i)_1^{\infty} = (x_i)$, simply. Let

$$(\ell^{\infty}(X), c_0(Y)) = \left\{ (f_{ij})_{i,j \in \mathbb{N}} : f_{ij} \in Y^X, \lim_{i} \sum_{j=1}^{\infty} f_{ij}(x_j) = 0, \ \forall (x_j) \in \ell^{\infty}(X) \right\}$$

(see also C. Swartz [2]).

I.J. Maddox [3,4] gave a characterization of the matrix class

$$(\ell^{\infty}(X), c_0(Y))|_{L} = \{(f_{ij})_{i,j \in \mathbb{N}} \in (\ell^{\infty}(X), c_0(Y)) : \text{each } f_{ij} \text{ is linear and continuous} \}$$
 for Banach spaces X and Y as follows.

Received by the editors June 17, 2008. Revised September 10, 2008. Accepted October 28, 2008. 2000 Mathematics Subject Classification. 46A45, 47H99.

Key words and phrases. summability, uniform convergence, matrices.

Theorem 1 ([3, 4, Theorem 4.8]). Let X and Y be Banach spaces and $f_{ij}: X \to Y$ is a linear continuous operator for $i, j \in \mathbb{N}$. Then $(f_{ij})_{i,j \in \mathbb{N}} \in (\ell^{\infty}(X), c_0(Y))|_{L}$ if and only if

- (1) $\lim_{i} f_{ij}(x) = 0$ for each $j \in \mathbb{N}$ and $x \in X$,
- (2) $||R_{i1}|| < +\infty$ and $\lim_{j} ||R_{ij}|| = 0$ for each i,
- (3) $\lim_{j} \overline{\lim_{i}} ||R_{ij}|| = 0.$

This result is restricted to linear continuous operators between Banach spaces. However, Li Ronglu [7] has obtained a series of summability results for matrices of quasi-homogeneous mappings. Note that the family of quasi-homogeneous mappings includes all linear operators and many nonlinear mappings [7, Example 1].

For topological vector spaces X and Y, $\mathfrak{F}_0(X,Y) = \{f \in Y^X : f(0) = 0\}$ is an extremely large subfamily of Y^X , and quasi-homogeneous mappings between X and Y forms a small subfamily of $\mathfrak{F}_0(X,Y)$. In this paper we would like to establish above Maddox theorem for matrices of mappings in $\mathfrak{F}_0(X,Y)$.

First, we improve Theorem 1 of [5] as follows.

Lemma 1. Let G be an abelian topological group. For every $\Omega \neq \emptyset$ and $\{f_j\} \subset G^{\Omega}$ the following (i) and (ii) are equivalent.

- (i) $\sum_{j=1}^{\infty} f_j(\omega_j)$ converges for each $\{\omega_j\} \subset \Omega$.
- (ii) $\sum_{j=1}^{\infty} f_j(\omega_j)$ converges uniformly with respect to $\{\omega_j\} \subset \Omega$.

Proof. If (i) holds but (ii) fails, then there exists a neighborhood U of $0 \in G$ and integers $m_1 < n_1 < m_2 < n_2 < \cdots$ and $\{\omega_{ij} \in \Omega : m_i \leq j \leq n_i, i \in \mathbb{N}\}$ such that

$$\sum_{j=m_i}^{n_i} f_j(\omega_{ij}) \not\in U,$$

 $i=1,2,3,\cdots$. Pick an $\omega_0\in\Omega$ and let

$$\omega_j = \begin{cases} \omega_{ij}, & m_i \leq j \leq n_i, \ i = 1, 2, 3, \cdots, \\ \omega_0, & \text{otherwise,} \end{cases}$$

then
$$\sum_{j=1}^{\infty} f_j(\omega_j)$$
 diverges. This contradicts (i) and so (i) implies (ii).

Now we state the main result as follows.

Theorem 2. Let X, Y be topological vector spaces where Y is separated and $f_{ij} \in \mathfrak{F}_0(X,Y)$ for all $i,j \in \mathbb{N}$. Then $(f_{ij})_{i,j \in \mathbb{N}} \in (\ell^{\infty}(X), c_0(Y))$ if and only if

- (1) $\lim_i f_{ij}(x) = 0$ for each $j \in \mathbb{N}$ and $x \in X$,
- (4) for every bounded $B \subset X$, $\sum_{j=1}^{\infty} f_{ij}(x_j)$ converges uniformly with respect to both $i \in \mathbb{N}$ and $\{x_i\} \subset B$.

Proof. Suppose that $(f_{ij})_{i,j\in\mathbb{N}}\in (\ell^{\infty}(X),c_0(Y))$. Since each $f_{ij}\in\mathfrak{F}_0(X,Y)$ and $(0,\cdots,0,\stackrel{(j)}{x},0,0,\cdots)\in\ell^{\infty}(X)$ when $j\in\mathbb{N}$ and $x\in X$,

$$\lim_{i} f_{ij}(x) = \lim_{i} \left[\sum_{k=1}^{j-1} f_{ik}(0) + f_{ij}(x) + \sum_{k=j+1}^{\infty} f_{ik}(0) \right] = 0.$$

So (1) holds for $(f_{ij})_{i,j\in\mathbb{N}}$.

If (4) fails to hold for some bounded $B \subset X$, then there is a neighborhood V of $0 \in Y$ such that

$$(*) \ \forall m_0 \in \mathbb{N} \ \exists \ m > m_0 \ \text{and} \ i \in \mathbb{N} \ \text{and} \ \{x_j\} \subset B \ \text{for which} \ \sum_{j=m}^{\infty} f_{ij}(x_j) \not\in V.$$

Pick a neighborhood W of $0 \in Y$ such that $W + W \subset V$. By (*) there exist integers $m_1 > 1$, $i_1 \in \mathbb{N}$ and $\{x_{1j}\} \subset B$ such that

$$\sum_{j=m_1}^{\infty} f_{i_1 j}(x_{1j}) \not\in V$$

but

$$\sum_{j=n_1+1}^{\infty} f_{i_1 j}(x_{1j}) \in W$$

for some $n_1 > m_1$ so

$$\sum_{j=m_1}^{n_1} f_{i_1j}(x_{1j}) \not\in W.$$

Since $\sum_{j=1}^{\infty} f_{ij}(x_j)$ converges for each $\{x_j\} \subset B$ and $i \in \mathbb{N}$, it follows from Lemma 1 that there is an integer $m_0 > n_1$ such that

$$\sum_{i=-\infty}^{\infty} f_{ij}(x_j) \in V \text{ for every } m > m_0, \ 1 \le i \le i_1 \text{ and } \{x_j\} \subset B.$$

Then (*) shows that there exist integers $m_2 > m_0$, $i_2 > i_1$ and $\{x_{2j}\} \subset B$ such that $\sum_{j=m_2}^{\infty} f_{i_2j}(x_{2j}) \notin V \text{ and so } \sum_{j=m_2}^{n_2} f_{i_2j}(x_{2j}) \notin W \text{ for some } n_2 > m_2.$

Proceeding inductively we have integer sequences $i_1 < i_2 < i_3 \cdots, m_1 < n_1 < m_2 < n_2 < \cdots$ and $\{x_{kj} \in B : k, j \in \mathbb{N}\}$ such that

(**)
$$\sum_{j=m_k}^{n_k} f_{i_k j}(x_{k j}) \notin W, \ k=1,2,3,\cdots$$

Consider the matrix $\left[\sum_{j=m_k}^{n_k} f_{i_p j}(x_{k j})\right]_{p,k \in \mathbb{N}}$. As was proved above, $(f_{i j})_{i,j \in \mathbb{N}}$ satisfies the condition (1) and so

$$\lim_{p} \sum_{j=m_k}^{n_k} f_{i_p j}(x_{k j}) = \sum_{j=m_k}^{n_k} \lim_{p} f_{i_p j}(x_{k j}) = 0$$

for each $k \in \mathbb{N}$. If $k_1 < k_2 < \cdots$ in \mathbb{N} and

$$x_j = \begin{cases} x_{k_v j}, & m_{k_v} \leq j \leq n_{k_v}, \ v = 1, 2, 3, \cdots, \\ 0, & \text{otherwise,} \end{cases}$$

then $\{x_j\} \subset B \cup \{0\}$ so $\{x_j\} \in \ell^{\infty}(X)$, it follows from $(f_{ij})_{i,j\in\mathbb{N}} \in (\ell^{\infty}(X), c_0(Y))$ and $f_{ij} \in \mathfrak{F}_0(X,Y)$ that

$$\lim_{p} \sum_{v=1}^{\infty} \sum_{j=m_{k_v}}^{n_{k_v}} f_{i_p j}(x_{k_v j}) = \sum_{j=1}^{\infty} f_{i_p j}(x_j) = 0.$$

Then the Antosik-Mikusinski theorem [2,6,8] implies that

$$\lim_{k} \sum_{j=m_k}^{n_k} f_{i_k j}(x_{k j}) = 0.$$

This contradicts (**) and so (4) holds for $(f_{ij})_{i,j\in\mathbb{N}}$.

Conversely, suppose that (1) and (4) hold for $(f_{ij})_{i,j\in\mathbb{N}}$. For every $\{x_j\}\in\ell^\infty(X)$, $\sum_{j=1}^\infty f_{ij}(x_j)$ converges uniformly with respect to $i\in\mathbb{N}$ and so

$$\lim_{i} \sum_{j=1}^{\infty} f_{ij}(x_j) = \lim_{i} \lim_{n} \sum_{j=1}^{n} f_{ij}(x_j) = \lim_{n} \lim_{i} \sum_{j=1}^{n} f_{ij}(x_j) = \lim_{n} \sum_{j=1}^{n} \lim_{i} f_{ij}(x_j) = 0.$$

Thus,
$$(f_{ij})_{i,j\in\mathbb{N}}\in (\ell^{\infty}(X),c_0(Y)).$$

Let E be a vector space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. A function $\|\cdot\| : E \to [0, +\infty)$ is a paranorm if $\|0\| = 0$, $\|-x\| = \|x\|$, $\|x+y\| \le \|x\| + \|y\|$ and $\|t_n x_n - tx\| \to 0$ when $\|x_n - x\| \to 0$ and $t_n \to t$ in \mathbb{K} , and Fréchet spaces are just separated complete paranormed spaces [1, p. 56]. A paranorm $\|\cdot\| : E \to [0, +\infty)$ is a seminorm if $\|tx\| = |t| \|x\|$ for $t \in \mathbb{K}$ and $x \in E$.

Corollary 1. Let X be a topological vector space and $(Y, \| \cdot \|)$ a Fréchet space. Let $f_{ij} \in \mathfrak{F}_0(X,Y)$ for $i,j \in \mathbb{N}$. Then $(f_{ij})_{i,j \in \mathbb{N}} \in (\ell^{\infty}(X), c_0(Y))$ if and only if

- (1) $\lim_{i} ||f_{ij}(x)|| = 0, \forall x \in X, j \in \mathbb{N},$
- (4') for every bounded $B \subset X$ and $\varepsilon > 0$ there is an $m_0 \in \mathbb{N}$ such that

$$\left\| \sum_{j=m}^n f_{ij}(x_j) \right\| < \varepsilon, \ \forall \, n \geq m > m_0, \ i \in \mathbb{N}, \ \{x_j\} \subset B.$$

Proof. (4) \Longrightarrow (4'): Let $B \subset X$ be bounded and $\varepsilon > 0$. By (4) there is an $m_0 \in \mathbb{N}$ such that

$$\left\| \sum_{j=m}^{\infty} f_{ij}(x_j) \right\| < \varepsilon/2, \ \forall m > m_0, \ i \in \mathbb{N}, \ \{x_j\} \subset B.$$

Hence

$$\left\| \sum_{j=m}^{n} f_{ij}(x_j) \right\| = \left\| \sum_{j=m}^{\infty} f_{ij}(x_j) - \sum_{j=n+1}^{\infty} f_{ij}(x_j) \right\|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \quad \forall n \ge m > m_0, \ i \in \mathbb{N}, \ \{x_j\} \subset B.$$

 $(4')\Longrightarrow (4)$: Let $B\subset X$ be bounded. By (4'), $\left\{\sum_{j=1}^k f_{ij}(x_j)\right\}_{k=1}^\infty$ are uniformly Cauchy with respect to both $i\in\mathbb{N}$ and $\{x_j\}\subset B$. Since $(Y,\|\cdot\|)$ is complete, $\sum_{j=1}^\infty f_{ij}(x_j)$ converge uniformly with respect to both $i\in\mathbb{N}$ and $\{x_j\}\subset B$.

Corollary 2. Let X be a seminormed space and Y a Banach space. Let $f_{ij}: X \to Y$ be a linear continuous operator for all $i, j \in \mathbb{N}$. Then $(f_{ij})_{i,j \in \mathbb{N}} \in (\ell^{\infty}(X), c_0(Y))$ if and only if

- (1) $\lim_i f_{ij}(x) = 0$ for each $j \in \mathbb{N}$ and $x \in X$,
- (5) $\lim_{j} ||R_{ij}|| = 0$ uniformly with respect to $i \in \mathbb{N}$, that is, $\lim_{j} \sup_{i} ||R_{ij}|| = 0$.

Proof. (4') \Longrightarrow (5): Let $B_1 = \{x \in X : ||x|| \le 1\}$ and $\varepsilon > 0$. Thus, by (4') there is an $j_0 \in \mathbb{N}$ such that

$$\|R_{ij}\| = \sup_{p \in \mathbb{N}, \{x_k\} \subset B_1} \left\| \sum_{k=j}^{j+p} f_{ik}(x_k) \right\| \leq \varepsilon$$

for all $j > j_0$ and $i \in \mathbb{N}$.

(5) \Longrightarrow (4'): Let $B \subset X$ be bounded and $\varepsilon > 0$. Then $B \subset n_0 B_1$ for some $n_0 \in \mathbb{N}$. By (5) there is a $j_0 \in \mathbb{N}$ such that $||R_{ij}|| < \frac{\varepsilon}{n_0}$ for all $j > j_0$ and $i \in \mathbb{N}$.

Let $j > j_0$ and $i, p \in \mathbb{N}$. For every $\{x_k\} \subset B$, $\{\frac{1}{n_0}x_k\} \subset B_1$ and

$$\left\| \sum_{k=j}^{j+p} f_{ik}(x_k) \right\| = n_0 \left\| \sum_{k=j}^{j+p} f_{ik}(\frac{1}{n_0} x_k) \right\|$$

$$\leq n_0 \sup_{\{u_k\} \subset B_1} \left\| \sum_{k=j}^{j+p} f_{ik}(u_k) \right\|$$

$$\leq n_0 \sup_{q \in \mathbb{N}, \{u_k\} \subset B_1} \left\| \sum_{k=j}^{j+p} f_{ik}(u_k) \right\|$$

$$= n_0 \|R_{ij}\| < n_0 \frac{\varepsilon}{n_0} = \varepsilon.$$

It is also worthwhile observing that in the condition (2) of the Maddox theorem (Theorem 1 above) the condition " $||R_{i1}|| < +\infty$, $\forall i \in \mathbb{N}$ " can be omitted because the condition " $\lim_j ||R_{ij}|| = 0$, $\forall i \in \mathbb{N}$ " of (2) implies " $||R_{i1}|| < +\infty$, $\forall i \in \mathbb{N}$ ". In fact, since all f_{ij} are linear and continuous [4, p. 51, 53, Theorem 4.7, 4.8] and

$$\lim_{j} \|R_{ij}\| = 0, \quad \|R_{ij_0}\| < 1$$

for some $j_0 > 1$ and

$$||R_{i1}|| = \sup_{p \in \mathbb{N}, ||\{x_j\}||_{\infty} \le 1} \left\| \sum_{j=1}^{p} f_{ij}(x_j) \right\|$$

$$\leq \sup_{k \in \mathbb{N}, ||\{x_j\}||_{\infty} \le 1} \left(\sum_{j=1}^{j_0-1} ||f_{ij}|| + \left\| \sum_{j=j_0}^{j_0+k-1} f_{ij}(x_j) \right\| \right)$$

$$= \sum_{j=1}^{j_0-1} ||f_{ij}|| + ||R_{ij_0}|| < +\infty.$$

Hence our Theorem 2 is a substantial improvement of the Maddox theorem, and Corollary 2 is just a clear-cut version of the Maddox theorem.

Acknowledgment. This research was supported by Kumoh National Institute of Technology in 2007.

REFERENCES

- 1. A. Wilansky: Modern Methods in Topological Vector Spaces. McGraw-Hill, New York (1978).
- 2. C. Swartz: Infinite Matrices and the Gliding Hump. World Scientific, Singapore (1996).
- 3. I.J. Maddox: Matrix maps of bounded sequences in a Banach space. *Proc. Amer. Math. Soc.* **63** (1977), 82-86.
- 4. I.J. Maddox: Infinite Matrices of Operators. Lecture Notes in Math. 786, Springer-Verlag, Berlin-Heidelberg-New York (1980).
- Li Ronglu & Bu Qingying: Locally convex spaces containing no copy of c₀. J. Math. Anal. Appl. 172 (1993), 205-211.
- 6. Li Ronglu & C. Swartz: Spaces for which the uniform boundedness principle holds. Studia Sci. Math. Hungar. 27 (1992), 379-384.
- Li Ronglu & Shin Min Kang: Operator matrices on topological vector spaces. J. Math. Anal. Appl. 274 (2002), 645-658.
- 8. P. Antosik & C. Swartz: *Matrix Methods in Analysis*. Lecture Notes in Math. **1113**, Springer-Verlag, Berlin-Heidelberg-New York (1985).

DEPARTMENT OF APPLIED MATHEMATICS, KUMOH NATIONAL INSTITUTE OF TECHNOLOGY, GUMI, 730-701, KOREA.

Email address: wsyoo@kumoh.ac.kr