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ON AN ADDITIVE FUNCTIONAL INEQUALITY IN NORMED
MODULES OVER A C*-ALGEBRA

JonG Su AN

ABSTRACT. In this paper, we investigate the following additive functional inequality

(0.1) If(=) + f(y) + f(2) + f)l| < f(z+y) + flz+ w)l|
in normed modules over a C”-algebra. This is applied to understand homomor-
phisms in C*-algebras.

Moreover, we prove the generalized Hyers-Ulam stability of the functional in-
equality
(0.2) (=) + f(y) + f(2) + f(w)]|

< f (@ +y+ 2+ w)ll + 0l Pyl PP |w] [P

in real Banach spaces, where 8, p are positive real numbers with 4p # 1.

1. INTRODUCTION

Ulam [15] gave a talk before the Mathematics Club of the University of Wisconsin
in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisrs.

We are given a group G and a metric group G' with metric p(-,-). Given € > 0,
does there exist a 6 > 0 such that if f : G — G’ satisfies p(f(zy), f(z)f(y)) < & for
all z,y € G, then a homomorphism h : G — G’ exists with p(f(x), h(z)) < € for all
zeG?

By now an affirmative answer has been given in several cases, and some interesting

variations of the problem have also been investigated.
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Hyers [4] considered the case of approximately additive mappings f : E — E,
where E and E’ are Banach spaces and f satisfies Hyers inequality

If(z+y) - flz) - fFWll < e

for all x,y € E. It was shown that the limit
L(z) = lim 27" f(2"x)
n—oo
exists for all z € E and that L : E — E’ is the unique additive mapping satisfying

|f(z) - L(z)]| <e

No continuity conditions are required for this result, but if f(¢z) is continuous in
the real variable ¢ for each fixed z, then L is linear, and if f is continuous at a single
point of E then L : E — E' is also continuous.

In 1982-1994, a generalization of this result was proved by the author J.M. Ras-
sias. He introduced the following weaker condition (or weaker inequality or Cauchy

inequality)
1f(z+y) = f(=) = F)II < Oll=|Pllyl|?

for all z,y in F, controlled by (or involving) a product of different powers of norms,
where @ > 0 and real p, ¢ : 7 = p+ g # 1, and retained the condition of continuity
of f(tx) in ¢t for fixed x. Besides he investigated that it is possible to replace €
in the above Hyers inequality by a non-negative real-valued function such that the
pertinent series converges and other conditions hold and still obtain stability results.
In all the cases investigated in these results, the approach to the existence question
was to prove asymptotic type formulas of the form

L(z) = nh_)rgo 27 f(2"x),
or
L(z) = T}LH;O 2" f(27"x).

Theorem 1.1 ([7)-[13]). Let X be a real normed linear space and Y a real Banach
space. Assume in addition that f : X — Y is an approzimately additive mapping
for which there erist constant 6 > 0 and p,q € R such thatr =p+q# 1 and f

satisfies the Cauchy-Rassias inequality

£z +y) = f(z) = @I < Oll=]Plly]l*
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for all z,y € X. Then there exists a unique additive mapping L : X — Y salisfying
0
- L <
If(z) — L(z)|| < 3]

for all x € X. If in addition f : X — Y is a mapping such that the transformation
t — f(tx) is continuous in t € R for each fixed z € X, then L is an R-linear

mapping.

ll=Hl"

Gildnyi [2] showed that if f satisfies the functional inequality
(1.1) 12f () +2f () — flz -l < [F (= + )l

then f satisfies the Jordan-von Neumann functional equation

2f(@)+2f(y) = flz+y) + f(z - v)-
See also [14]. Fechner [1] and Gildnyi [3] proved the generalized Hyers-Ulam stability

of the functional inequality (1.1). Park, Cho and Han [6] investigated the functional
inequality

(1.2) Nf(@x)+fw)+ DI < Ifz+y+2)

in Banach spaces, and proved the generalized Hyers-Ulam stability of the functional
inequality (1.2) in Banach spaces.

Throughout this paper, let A be a unital C*-algebra with unitary group U(A)
and unit e, and let B be a C*-algebra. Assume that X is a normed A-module with
norm || - {|x and that Y is a normed A-module with norm {| - |ly.

In this paper, we investigate an A-linear mapping associated with the functional
inequality (0.1). This is applied to understand homomorphisms in C*-algebras.
Moreover, we prove the generalized Hyers-Ulam stability of the functional inequality
(0.2) in real Banach spaces.

2. FUNCTIONAL INEQUALITIES IN NORMED MODULES
OVER A C*-ALGEBRA

Theorem 2.1. Let f : X — Y be a mapping such that
21 |luf@)+ ) + f(2) + F(w)lly < |If(uz +y) + fz +w)lly
forall x,y,z,w € X and all u € U(A). Then the mapping f: X — Y is A-linear.
Proof. Lettingz =y =z=w=0and u=e € U(A) in (2.1), we get
l4£O)lly < l12f(O)lly-
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So f(0) = 0.
Letting z = w = 0 in (2.1), we get

(2.2) () + Wy < Ifz+ Yy

for all z,y € X.
Replacing z and y by z + y and z + w in (2.2), respectively, we get

If@+y)+ Fz+w)lly < [[flz+y+z+w)lly

for all z,y,z,w € X. So

(2.3) (@) + f) + f(2) + fw)lly < fz+y+2+w)ly

for all z,y,2,w € X.
Letting z = w = 0 and y = —z in (2.3), we get

(@) + F(=a)lly < f(O)lly =0

for all z € X. Hence f(—z) = —f(z) for all z € X.
Letting z = —z — y and w = 0 in (2.3), we get

(@) + F(y) — flz+ylly = 1f(@) + f(») + f(=z - Yy < IFO)]ly =0
for all z,y € X. Thus
flz+y)=f(2)+ f(y)

forall z,y € X.
Letting y = —uz and y = w = 0 in (2.1), we get

I f(uz) = fuz)lly = ||f(uz) + f(—uz)lly < [2f(0)fly =0
for all z € X and all u € U(A). Thus
(2.4) f(uz) = uf(z)

forall u e U(A) and all z € X.
Now let a € A (a # 0) and M an integer greater than 4|a|]. Then || < 1<

1- % = % By Theorem 1 of [5], there exist three elements u1,u2,u3 € U(A) such
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that 357 = w1 + ug + uz. So by (2.4)

f(az) :f(%ﬂ%x) =M-f(%-3§4—m>

M M
= ”3‘f<3-ﬁ%m> = —g—f(um: + U -+ ugx)

= S (wm) + f(u2) + f(usa)) = 5 1 + 2 + 05)(2)

M _a
=3 '3Hf(33) = af(z)
forallz € X. So f: X — Y is A-linear, as desired. g

Corollary 2.2. Let f: A — B be a multiplicative mapping such that

(2.5) s () + fy) + f(2) + fF)| < [[flpz +y) + f(z + w)]

forall z,y,2,w € Aand all p € T := {X € C| |A = 1}. Then the mapping
f:A— B is a C*-algebra homomorphism.

Proof. By Theorem 2.1, the multiplicative mapping f : A — B is C-linear, since
C*-algebras are normed modules over C. So the multiplicative mapping f: A — B
is a C*-algebra homomorphism, as desired. ]

3. GENERALIZATION OF CAUCHY-RASSIAS INEQUALITIES

In this section, we prove the generalized Hyers-Ulam stability of the functional
inequality (2.3) in real Banach spaces.

Theorem 3.1. Let X be a real normed linear space and Y a real Banach space.
Assume in addition that f : X — Y is an approzimately additive odd mapping for
which there exist a constant § > 0 and p € R such that 4p # 1 and [ satisfies the
general Cauchy-Rassias inequality

(3.1) 1f(z) + f(y) + f(2) + f(w)]
S f(z+y+z+w)| +0ll=lPllylPll2]P{wl?
for all z,y,z,w € X. Then there exists a unique additive mapping L : X — Y
satisfying
370
(3.2) 1f(z) - L(@)|| < BP 3]
for allx € X. If in addition f: X — Y is a mapping such that the transformation

t — f(tx) is continuous in t € R for each fired x € X, then L is an R-linear
mapping.

[zl
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Proof. Since f is odd, f(0) =0 and f(—z) = —f(z) for all z € X.
Letting y = z = z and w = -3z in (3.1), we get
(3.3) I13f(2) — f(3)|| < 370]|(|*?
forallz € X. So
— z 4p
Hf(m) 3 (3)’ = 27?” =l

for all x € X. Hence
m-—1 :
Le(ZN _qme( % ”<_0_ ¥ 4p
(3.4) |87 (5) - 371 (5=) ~2W§;:Wnn
j=

for all nonnegative integers m and [ withm >l and all z € X.

Assume that p > 1. It follows from (3.4) that the sequence {3k f (3%)} is Cauchy
for all z € X. Since Y is complete, the sequence {3* f (3%)} converges. So one can
define the mapping L: X — Y by

L(z) = lim 3f (%)

for all z € X.
Letting ! = 0 and m — oo in (3.4), we get
3r0 4p
/(&) - L@ < grosllal
for all z € X.

It follows from (3.1) that

[ (ge) %1 (32) +9 () + 3 (56

Tt+y+z+w 3k
o ( )” + g =PI 2] Pllel

(3.5) .

for all z,y,2,w € X. Letting k — oo in (3.5), we get
(3.6) IL(z) + L(y) + L(z) + L(w)|| < | L{z + y + z + w)||

for all z,y,2,w € X. It is easy to show that L : X — Y is odd. Lettingz= -z —y
and w =0 in (3.6), we get L(z + y) = L(z) + L(y) for all z,y € X. So there exists
an additive mapping L : X — Y satisfying (3.2) for the case p > ;11-.
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Now, let T': X — Y be another additive mapping satisfying (3.2). Then we have
T T
I2@) - 1@l =30 () -T ()|

<3 (|1 (5) -1 @+ I (@) -+ (@D

36 2.3¢
]|,

<
~81r-3 8l1¢

which tends to zero as ¢ — oo for all z € X. So we can conclude that L(z) = T(x)

for all z € X. This proves the uniqueness of L.
Assume that p < ;. It follows from (3.3) that

1, ., 1,
yf(31$)—3—,,—,f(3 )

< 37719l

1(z) - 3/(a)

for all x € X. Hence

(3.7)

m-—1 P
81]’]
p—1 § : el 4p
]:

for all nonnegative integers m and | with m > and all z € X.

It follows from (3.7) that the sequence {51,; f(3%z)} is Cauchy for all z € X. Since
Y is complete, the sequence {51,; f(3%z)} converges. So one can define the mapping
L:X—Y by

e = Jim 1 ()

forallz € X.
Letting { =0 and m — oo in (3.7), we get
3P0
— < 4p
1)~ L@l < 5—=le]
forallzx € X.

The rest of the proof is similar to the above proof. So there exists a unique
additive mapping L : X — Y satisfying

370
I1f(z) — L(x)|| < 3] [l

‘P3|
for all z € X.

Assume that f: X — Y is a mapping such that the transformation ¢t — f(tz) is
continuous in ¢ € R for each fixed z € X. By the same reasoning as in the proof of
Theorem 1.1, one can prove that L is an R-linear mapping. 0
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