J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 15, Number 4 (November 2008), Pages 365-375

A COMPARATIVE STUDY BETWEEN CONVERGENCE
RESULTS FOR NEWTON’S METHOD

IoanNIs K. ARGYROS® AND SAID HiLouT?

ABSTRACT. We present a new theorem for the semilocal convergence of Newton's
method to a locally unique solution of an equation in a Banach space setting. Under
a gamma-type condition we show that we can extend the applicability of Newton's
method given in [12]. We also provide a comparative study between results using
the classical Newton-Kantorovich conditions ([6], (7], {10]), and the ones using the
gamma-type conditions ([12], [13]). Numerical examples are also provided.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique

solution z* of equation
(1.1) F(z) =0,

where F is a twice-Fréchet-differentiable operator defined on a convex subset D of
a Banach space X with values in a Banach space ).

A large number of problems in applied mathematics and also in engineering are
solved by finding the solutions of certain equations. For example, dynamic systems
are mathematically modeled by difference or differential equations, and their solu-
tions usually represent the states of the systems. For the sake of simplicity, assume
that a time-invariant system is driven by the equation & = Q(z), for some suitable
operator @, where x is the state. Then the equilibrium states are determined by
solving equation (1.1). Similar equations are used in the case of discrete systems.
The unknowns of engineering equations can be functions (difference, differential,
and integral equations), vectors (systems of linear or nonlinear algebraic equations),
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or real or complex numbers (single algebraic equations with single unknowns). Ex-
cept in special cases, the most commonly used solution methods are iterative—when
starting from one or several initial approximations a sequence is constructed that
converges to a solution of the equation. Iteration methods are also applied for solv-
ing optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the same
recursive structure, they can be introduced and discussed in a general framework.
Newton’s method

(1.2) Tnil = Tn — F'(z,) 1 F(z,) (n>0), (z0€D)

is undoubtedly the most popular method for generating a sequence approximating
z*. Here F'(z) € L(X,)), the space of bounded linear operators from X" into Y,
denotes the Fréchet—derivative of operator F ([6], [10]).

A survey on local as well as semilocal convergence theorems for Newton’s method
(1.2) under Newton-Kantorovich-type or y-type conditions can be found in [6}, [10],
and the references there (see [1]-[5], [7]-]9], [11]-[13]).

In section 3, we provide a new semilocal convergence theorem under a y-type
condition (see (3.7)), which extends the applicability of the corresponding elegant
theorem of Wang [12].

In sections 3 and 4 we compare semilocal and local results on Newton’s method
in order for us to answer to the question: (which is the motivation for writing this
paper)

Can you find conditions under which Newton-Kantorovich-type results can be used
in cases y-type results on Newton’s method (1.2) cannot be used and vice verca ¢

Numerical examples are also provided.

2. PRELIMINARIES

1
Let b > 0, and v > 0 be fixed. It is convient for us to define function f on [0, :y-)
by

v t?

(2.1) f)=b-t+

constants «, ¢ and t7*
1 1

a=br,
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_1+a-—y/(1+a)i-8a

t*
1 4
o 1+a+ \/(1+a)2—8a‘
4
If
(2.2) ‘ a<3-2v3,
then f has t7 and 3* as real roots, and by [12]:
1 1 1 1
2.3 b_<_t*S<1+—)b§(1——-)—=T << —.

3. SEMILOCAL CONVERGENCE ANALYSIS OF NEWTON’S METHOD (1.2)

We state first our semilocal convergence theorem, followed by the corresponding
one by Wang:
Theorem 3.1 ([3]). Let F : DC X — Y be a Fréchet-differentiable operator. If

there exists xo € D with F'(x0)~! € L(Y,X), and non-negative constants ly and 1
such that

(3.1) | F'(z0) ™" F(wo) [I< b,

(3:2) | F'(zo) ™ (F'(@) = F'p)) ISt lz -y,
(33) | F'(zo) ™ (F'(z) = F'(z0)) I< lo || & — o I
for all x, y € D,

(3.4) ho=2Lb<1, L:l;l",

and

(3.5) ﬁ((L‘o,’f‘l = 2b) C D,

then, sequence {x,} (n > 0) generated by the Newton’s method (1.2), is well defined,
remains in U(zo,r1) for all n > 0, and converges to the unique solution z* of
equation F(z) = 0 in U(zo,r1)-

Theorem 3.2 ([13]). Let F : D C X — Y be a twice-Fréchet-differentiable

operator. If there exists xo € D with F'(xo)™! € L(Y, X), and a positive constant «
such that

(36) | F' (o)~ F(o) [|< b,
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(3.7)

(3-8)
and

(3.9)
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- 2y
F/ 1 F// <
| Feo)™ F'@) IS g7 o el €D,

a=by<3-2V72,

U(:L‘(), 7‘0) g D,

then, sequence {x,} (n > 0) generated by the Newton’s method (1.2), is well defined,

remains in U(zo,ro) for all n > 0, and converges to the unique solution x* of

equation F(z) =0 in U(zg,10).

3.1. A COMPARISON STUDY BETWEEN THEOREMS 3.1 AND 3.2

It can then easily be seen by simply comparing the hypotheses of the above

theorems that the following hold true:

ey
(3.10)

()

(3.11)

(3.12)

(3)
(3.13)

(3.14)

Hypotheses of Theorem 3.1 imply hypotheses of Theorem 3.2 provided that
1
L{1-—=)<y<2L(3-2V2).
( V2 ) s7s2L )

In this case we must use the theorem providing the smaller ratio of conver-
gence.

Case favorable to Theorem 3.1: (that is the hypotheses of Theorem 3.1 hold
true, but hypotheses of Theorem 3.2 are violated).

Under the hypotheses of Theorem 3.1, further assume

h<L(1 1)
0 ~ \/i,

1
>L{1-—],
! ( ﬁ)
then Theorem 3.2 cannot apply since r¢ > 7.
Hypotheses of Theorem 3.2 imply hypotheses of Theorem 3.1 provided that

v>2(3-2V2)L,

and

and
o< (1—i) (< 3-2V2).
<3 7
In this case we again use the result providing the smaller ratio of conver-

gence.
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(4) Case favorable to Theorem 3.2: Under the hypotheses of Theorem 3.2, fur-

ther assume

1 1

3.15 S(1-=)<a<3-2V2
1) 3 (1-5) <o

then Theorem 3.1 cannot apply since 1 > rp.

(5) Let [10]:

(3.16) h=2lb<1,
(3.17) Ul(zo,72) C D,

where

1—vV1-2h

(3.18) Ty = ————— l 74_ 0’

] )
Condition (3.16) is the famous Newton—Kantorovich hypothesis, which is
the sufficient condition for the convergence of Newton’s method (1.2) to a
unique solution z* of equation F(z) = 0, provided that U(zo,m2) C D.
Note that in general

(3.19) lo <1

holds and Zl_ can be arbitrarily large [3]-[6]. We also have that
0

(3.20) h<l=>hg<l,

but not vice verca unless if [ = [.
Then under hypotheses of Theorem 3.2, (3.2), further assume

(3.21) 2+ < I < 3.216162028 1,

and

. b(2-b) _ 21

then (3.16) holds. Moreover if r5 < rg, then the hypotheses of Theorem 3.1
imply the Newton—Kantorovich hypotheses (3.16) and (3.17). In this case
we use the results providing the smaller ratio of convergence.

(6) A more intersting case is given below, where we have convergence under hy-
potheses of Theorem 3.2, but not under the Newton-Kantorovich hypotheses
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(3.16) and (3.17). Indeed it can easily be seen that if together with (3.21),
condition
b(2-0b)

el A < 3_
2(4_1))<a_3 22

(3.23)
holds, then A > 1.

3.2. EXAMPLES
1
Example 3.3. Let ¥ =Y = R, D = [a,2 —a}, a € [0, 5], g = 1, and define
function F on D by
(3.24) f(z) =23 —a.

1
Using (3.24), we get b= 3 (1-a),l=2(2-a),lp=3-a,and y=1.
The Newton-Kantorovich hypothesis is violated, since

(3.25) h= %(1 _a)(2-a)>1 forall ae [0,%),
whereas hypothesis (3.4):

(3.26) hO:%(l—a)(3—a+2(2—a))51
provided that a € [5—-_—3——@ %>7

where 5~ 3\/1—3; = .464816242. Moreover hypothesis (2.2):
(3.27) a=b<3-2V2

for

2

Note that in [3] using a variation of hypothesis (3.4) we extended the interval to at

least, [.4505, %) .

ac€ [.485281374, l) .

The next example involves a nonlinear integral equation appearing in radiative
transfer ([4], [8]).

Example 3.4. Let X = C[0, 1] equipped with the sup—norm, A € R, zo(s) = 1,
and define operator G on X by

1 S
(3.28) Glz(s)) = Ax(s) /0 s dt—a(s) +1.
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Let v = 1.0606 A. We have (6], [8], [10]:
| G'(zo(s)) ||< 1.53039421 = by,
and
I G'(2o(s)) ™! Glo(s)) 1< bo || Glao(s)) 1< bo[A]In2,
Set b = by |A\|In2. It can then easily be seen that all hypotheses of Theorem 3.2 are
satisfied provided that
a=by=1125072211|A? <3 —2V2,
which is true for |A] < .390511759. Howeover, our Theorem 3.1 extends the range
of A to
|A] < .394464158.

4. LocaL CONVERGENCE ANALYSIS OF NEWTON’S METHOD (1.2)

We now state four local convergence theorem for Newton’s method in order to
compare them to each other:

Theorem 4.1 ([11]). Let F : D C X — Y be a Fréchet-differentiable operator. If
there exists x* € D with F'(z*)~! € L(V,X), with F(z*) = 0, and constant K > 0
such that

(4.1) I F'(e) ™ (F'@) - F@) IS K e -y,

forallz, yeD..
Then, sequence {x,} (n > 0) generated by the Newton’s method (1.2), is well defined,
remains in U(z*, Ry) for all n > 0, provided that xo € U(z*, R;) and

U(z*, R) C D,
where,
2
2 =
(4.2) Ry 3K

Moreover sequence {x} converges quadratically to z*, so that
K || & —a* |
21— K | 2n -2 |})

| Zn41 — 2" [[< (n20).

Note that it follows from (4.1) that there exists Ky > 0 such that

(43) | F'(z*) 7 (F'(z) = F'(z*)) I< Ko | =~ 2* ||,
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for all z € D.
Then we have

Theorem 4.2 ([3]). Under the hypotheses of Theorem 4.1, the conclusions of The-
orem 4.1 hold in the ball U(z*, Ry), where

2
44 = —
(4.4) R = skt

and )
K o0 |

n > 0).

0K oz 20

| Zni1 — 2" [I<

Note that in general
(4.5) Ko <K
K
holds and — can be arbitrarily large [3]-[6].
Moreover by (4 2), (4.4) and (4.5) we have
(4.6) Ry < Rs.
If strict inequality holds in (4.5), so does in (4.6).

Theorem 4.3 ([13]). Let F : D C X — Y be an analytic operator. Assume there
ezist z* € D F'(z*)™ € L(Y, X), and v* > 0 given by

o3\ —1 (k) (%) || 52T
4.7 v* = sup F(zr) FO(z)
k>2 k!
such that
frosy—1 2 v
(4-8) | F'(z*)™" F'(z) [|I<

A=y z—=z )3
for all © € D, then the conclusions of Theorem 4.1 hold in the ball U(z*, R3), where

(4.9) R3 = — (3 —2V2).

2y*
Theorem 4.4. Under the hypotheses of Theorem 4.3, condition (4.8) is replaced by

(k=1 i 2 B
(4.10) | F'(z*)"" F'(2) < A=~ [z )P

for some v > 0, and all x € D, Then the conclusions of Theorem 4.1 hold true in
the ball U(z*, Ry), where

5—+13
6y

3

(4.11) Ry =
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and

y(1- ” T —* ||) * 2
— ¥ ||I< - > 0).
H Tnt1 — T ”— 2(1 p ” Tn — T ”)2 1 ” Tn—T ” (TL = )

Note that for v = v*
R3 < Ry.
Proof. We use mathematical induction to arrive at the estimates:

(1~ lzn —a* [)?
Q-7 lzn—a[)>-1

(412 | Fan) ™ Fa) I 5

1
|W%W{Aﬂmwﬂ%—mﬂhwmwa—fw

(4.13)

1 w12 (1 k|2

</ 27 ||z —a* ||* (1 g)dts v || 20 —2* | ,

o (I=ylzn—z*| ) 1=y ||z —2z*|

which together with the identity
Tag1 ~ 7t = —(F/(z0)"1 F'(a*)) F'(*)™!
(4'14) ! "y o x * *\2
X Fl(z* + (1 —t) (zn — %)) (1 — t) (zn — ™) dt,
0

lead to

| Zns1 — z* [|<|| 2n — 2* [|< Ra,
which imply that for zg € U(z*, R4), zn € U(z*, Rs), and tlim Ty =2,
—00
That completes the proof of the theorem. 0
In order for us to compare the smaller ratios, and larger radii provided in our
Theorems 4.2 and 4.4, let us denote by p, g the ratios in Theorems 4.2 and 4.4

respectively.
Define scalar function g by
(4.15) g(t) = QK — Ko)t? + (Ko +7—4K)t+2K —~.
Then by (4.4) and (4.11) we have
<1 if 2Kp+ K < 8.605551303 v,
2Ko+ K

@16) 24— 11620406
Ry

=1 if Ko+ K = 8.6055513031,

>1 if 2Kp+ K > 8.605551303 ~.
Concerning the ratios we have the following cases for r = min{Ry, R4} and U(t*,1) C
D:
(1) If (2= V3) v < Ko < (24 v/3) v, then p > q.
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(2 f2-V3)y>Koor Ko > (2++3)v,and2K —v>0, Kg+7—4K >0,
then p > ¢q.

(3) If(2—V3)y>Koor Ko>(2+v3)7,and 2K — 7> 0, Kg+7—-4K <0,
r < Rg < ; min{ Ry, R4}, then p < g, where v Rg is the smaller zero of

function g.

Remark 4.5. An noted in [1], [5], [6], [7], [10], [14] the local results obtained here can
be used for projection method such us Arnold’s, the generalized minimum residual
method (GMRES), the generalized conjugate residual method (GCR), for combined
Newton/finite projection methods, and in connection with the mesh independence

principle to develop the cheapest and most efficient mesh refinement strategies.

Remark 4.6. The local results obtained can also be used to solve equation of the
form F(z) = 0, where F’ satisfies the autonomous differential equation [4]:

(4.17) F'(z) = P(F(a)),

where P : Y — X is a known continuous operator. Since F'(z*) = P(F(z*)) =
P(0), we can apply our results without actually knowing the solution of z* of equa-
tion (1.1).

We compare the results of this section using a numerical example:
Example 4.7. Let X =Y = IR, D = U(0,1), and define function F on D by
(4.18) F(z)=¢"-1.

Note that we can set P(z) =z + 1 in (4.17).

BN =

1
We can easily seen that Ko =e — 1, K = e and we can set vy = 2 with v* <

Therefore we obtain

R, = 245252961, Ry = 324947231,

Rz = .171573 and R4 = .46481624.
Hence, we have
Rl < R2 and R3 < Ry4.

That is our results provide the largest radii under the same computational cost both
under Newton-Kantorovich and gamma-type hypotheses.
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