HILBERT-SCHMIDT INTERPOLATION ON AX = YIN A TRIDIAGONAL ALGEBRA ALG \mathcal{L}

Joo Ho Kang

ABSTRACT. Given operators X and Y acting on a separable complex Hilbert space \mathcal{H} , an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate Hilbert-Schmidt interpolation problems for operators in a tridiagonal algebra and we get the following: Let \mathcal{L} be a subspace lattice acting on a separable complex Hilbert space \mathcal{H} and let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators acting on \mathcal{H} . Then the following are equivalent:

- (1) There exists a Hilbert-Schmidt operator $A = (a_{ij})$ in Alg \mathcal{L} such that AX = Y.
- (2) There is a bounded sequence $\{\alpha_n\}$ in \mathbb{C} such that $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$ and

 $\begin{aligned} y_{1i} &= \alpha_1 x_{1i} + \alpha_2 x_{2i} \\ y_{2k\ i} &= \alpha_{4k-1} x_{2k\ i} \\ y_{2k+1\ i} &= \alpha_{4k} x_{2k\ i} + \alpha_{4k+1} x_{2k+1\ i} + \alpha_{4k+2} x_{2k+2\ i} \text{ for all } i,k \text{ in } \mathbb{N}. \end{aligned}$

1. Introduction

Let \mathcal{H} be a Hilbert space and \mathcal{A} be a subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ of all operators acting on \mathcal{H} . Suppose that X and Y are specified, not necessarily in the algebra. Under what conditions can we expect there to be a solution of the operator equation AX = Y, where the operator A is required to lie in A? We refer to such a question as an interpolation problem. The 'n-operator interpolation problem', asks for an operator A such that $AX_i = Y_i$ for fixed finite collections $\{X_1, X_2, \dots, X_n\}$ and $\{Y_1, Y_2, \dots, Y_n\}$. The n-operator interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison [8]. In case \mathcal{U} is a nest algebra, the (one-operator) interpolation problem was solved by Lance [9]: his result was extended by Hopenwasser [2] to the case that \mathcal{U} is a CSL-algebra. Munch [10] obtained conditions for interpolation in case A is required to lie in the ideal of Hilbert-Schmidt operators

Received by the editors March 10, 2008. Revised September 19, 2008. Accepted October 28, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 47L35.

Key words and phrases. Hilbert-Schmidt interpolation, CSL-algebra, tridiagonal algebra, $Alg\mathcal{L}$. This paper is supported by Daegu University Grant (2007).

in a nest algebra. Hopenwasser [3] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser's paper also contains a sufficient condition for interpolation n-vectors, although necessity was not proved in that paper.

We establish some notations and conventions. A commutative subspace lattice \mathcal{L} , or CSL \mathcal{L} is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space \mathcal{H} . We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. The symbol $\mathrm{Alg}\mathcal{L}$ is the algebra of all bounded operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . If \mathcal{L} is CSL, $\mathrm{Alg}\mathcal{L}$ is called a CSL-algebra. Let x and y be two vectors in a Hilbert space \mathcal{H} . Then $\langle x,y\rangle$ means the inner product of the vectors x and y. Let M be a subset of a Hilbert space \mathcal{H} . Then \overline{M} means the closure of M and \overline{M}^{\perp} the orthogonal complement of \overline{M} . Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers.

2. Results

Let \mathcal{H} be a separable complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \dots\}$. Let x_1, x_2, \dots, x_n be vectors in \mathcal{H} . Then $[x_1, x_2, \dots, x_n]$ means the closed subspace generated by the vectors x_1, x_2, \dots, x_n . Let \mathcal{L} be the subspace lattice generated by the subspaces $[e_{2k-1}], [e_{2k-1}, e_{2k}, e_{2k+1}]$ $(k = 1, 2, \dots)$. Then the algebra Alg \mathcal{L} is called a tridiagonal algebra which was introduced by F. Gilfeather and D. Larson [1]. These algebras have been found to be useful counterexample to a number of plausible conjectures.

Let \mathcal{A} be the algebra consisting of all bounded operators acting on \mathcal{H} of the form

relative to the orthonormal basis $\{e_1, e_2, \dots\}$, where all non-starred entries are zero. It is easy to see that $Alg \mathcal{L} = \mathcal{A}$.

We consider interpolation problems for the above tridiagonal algebra $Alg\mathcal{L}$.

Theorem 2.1. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a separable complex Hilbert space \mathcal{H} and let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators acting on \mathcal{H} . Then the following are equivalent:

- (1) There exists a Hilbert-Schmidt operator $A = (a_{ij})$ in $Alg\mathcal{L}$ such that AX = Y.
- (2) There is a bounded sequence $\{\alpha_n\}$ in \mathbb{C} such that $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$ and

$$y_{1i} = lpha_1 x_{1i} + lpha_2 x_{2i}$$
 $y_{2k \ i} = lpha_{4k-1} x_{2k \ i}$ $y_{2k+1 \ i} = lpha_{4k} x_{2k \ i} + lpha_{4k+1} x_{2k+1 \ i} + lpha_{4k+2} x_{2k+2 \ i}$ for all $i, k \ in \ \mathbb{N}_i$

Proof. Suppose that A is a Hilbert-Schmidt operator $A=(a_{ij})$ in $\mathrm{Alg}\mathcal{L}$ such that AX=Y. Let $\alpha_n=a_{ij}$ for n=i+j-1 and $\{e_n\}$ the standard orthonormal basis for \mathcal{H} . Since A is Hilbert-Schmidt, $\sum_i \|Ae_i\|^2 < \infty$. Hence

$$\begin{split} \sum_{i} \|Ae_{i}\|^{2} &= \sum_{i} \sum_{j} |\langle Ae_{i}, e_{j} \rangle|^{2} \\ &= \sum_{k=1}^{\infty} \langle Ae_{2k-1}, e_{2k-1} \rangle + \sum_{k=1}^{\infty} \langle Ae_{2k}, (e_{2k-1} + e_{2k} + e_{2k+1}) \rangle \\ &= \sum_{k=1}^{\infty} |\alpha_{4k-3}|^{2} + \sum_{k=1}^{\infty} (|\alpha_{4k-2}|^{2} + |\alpha_{4k-1}|^{2} + |\alpha_{4k}|^{2}) \\ &= \sum_{k=1}^{\infty} |\alpha_{k}|^{2} < \infty. \end{split}$$

Since AX = Y, for all i, k in \mathbb{N} ,

$$y_{1i} = \alpha_1 x_{1i} + \alpha_2 x_{2i}$$

$$y_{2k \ i} = \alpha_{4k-1} x_{2k \ i}$$

$$y_{2k+1 \ i} = \alpha_{4k} x_{2k \ i} + \alpha_{4k+1} x_{2k+1 \ i} + \alpha_{4k+2} x_{2k+2 \ i}.$$

Conversely, assume that there is a bounded sequence $\{\alpha_n\}$ in \mathbb{C} such that

$$\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$$

and for all i, k in \mathbb{N} ,

$$y_{1i} = \alpha_1 x_{1i} + \alpha_2 x_{2i}$$
$$y_{2k \ i} = \alpha_{4k-1} x_{2k \ i}$$

$$y_{2k+1 \ i} = \alpha_{4k} x_{2k \ i} + \alpha_{4k+1} x_{2k+1 \ i} + \alpha_{4k+2} x_{2k+2 \ i}.$$

Let A be a matrix with $a_{ij} = \alpha_n$ for i + j - 1 = n. Then A is a Hilbert-Schmidt operator. Since for all i, k in \mathbb{N} ,

$$y_{1i} = \alpha_1 x_{1i} + \alpha_2 x_{2i}$$
 $y_{2k \ i} = \alpha_{4k-1} x_{2k \ i}$
 $y_{2k+1 \ i} = \alpha_{4k} x_{2k \ i} + \alpha_{4k+1} x_{2k+1 \ i} + \alpha_{4k+2} x_{2k+2 \ i},$
 $AX = Y_i$

Theorem 2.2. Let n be a fixed natural number $(n \geq 2)$. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a separable complex Hilbert space \mathcal{H} and let $X_i = (x_{jk}^{(i)})$ and $Y_i = (y_{jk}^{(i)})$ be operators acting on \mathcal{H} for $i = 1, 2, \dots, n$. Then the following are equivalent:

- (1) There exists a Hilbert-Schmidt operator $A = (a_{jk})$ in $Alg\mathcal{L}$ such that $AX_i = Y_i$ for all $i = 1, 2, \dots, n$.
- (2) There is a bounded sequence $\{\alpha_m\}$ in $\mathbb C$ such that $\sum_{m=1}^\infty |\alpha_m|^2 < \infty$ and

$$\begin{split} y_{1j}^{(i)} &= \alpha_1 x_{1j}^{(i)} + \alpha_2 x_{2j}^{(i)} \\ y_{2k\ j}^{(i)} &= \alpha_{4k-1} x_{2k\ j}^{(i)} \\ y_{2k+1\ j}^{(i)} &= \alpha_{4k} x_{2k\ j}^{(i)} + \alpha_{4k+1} x_{2k+1\ j}^{(i)} + \alpha_{4k+2} x_{2k+2\ j}^{(i)} \ \ \textit{for} \ k \in \mathbb{N} \ \textit{and} \ i = 1, 2, \cdots, n. \end{split}$$

Proof. Suppose that A is a Hilbert-Schmidt operator $A=(a_{jk})$ in $\mathrm{Alg}\mathcal{L}$ such that $AX_i=Y_i$ for all $i=1,2,\cdots,n$. Let $\alpha_m=a_{jk}$ for m=j+k-1 and $\{e_m\}$ is the standard orthonormal basis for \mathcal{H} . Since A is Hilbert-Schmidt, $\sum_m \|Ae_m\|^2 < \infty$. Hence

$$\sum_{m} ||Ae_{m}||^{2} = \sum_{m} \sum_{j} |\langle Ae_{m}, e_{j} \rangle|^{2}$$

$$= \sum_{l=1}^{\infty} \langle Ae_{2l-1}, e_{2l-1} \rangle + \sum_{l=1}^{\infty} \langle Ae_{2l}, (e_{2l-1} + e_{2l} + e_{2l+1}) \rangle$$

$$= \sum_{l=1}^{\infty} |\alpha_{4l-3}|^{2} + \sum_{l=1}^{\infty} (|\alpha_{4l-2}|^{2} + |\alpha_{4l-1}|^{2} + |\alpha_{4l}|^{2})$$

$$= \sum_{l=1}^{\infty} |\alpha_{l}|^{2} < \infty.$$

Since $AX_i = Y_i$ for all $i = 1, 2, \dots, n$,

$$\begin{aligned} y_{1j}^{(i)} &= \alpha_1 x_{1j}^{(i)} + \alpha_2 x_{2j}^{(i)} \\ y_{2k\ j}^{(i)} &= \alpha_{4k-1} x_{2k\ j}^{(i)} \\ y_{2k+1\ j}^{(i)} &= \alpha_{4k} x_{2k\ j}^{(i)} + \alpha_{4k+1} x_{2k+1\ j}^{(i)} + \alpha_{4k+2} x_{2k+2\ j}^{(i)} \text{ for } j,k \in \mathbb{N}, \end{aligned}$$

for all $i = 1, 2, \dots, n$.

Conversely, assume that there is a bounded sequence $\{\alpha_m\}$ in $\mathbb C$ such that $\sum_{m=1}^{\infty} |\alpha_m|^2 < \infty$ and

$$\begin{aligned} y_{1j}^{(i)} &= \alpha_1 x_{1j}^{(i)} + \alpha_2 x_{2j}^{(i)} \\ y_{2k\ j}^{(i)} &= \alpha_{4k-1} x_{2k\ j}^{(i)} \\ y_{2k+1\ j}^{(i)} &= \alpha_{4k} x_{2k\ j}^{(i)} + \alpha_{4k+1} x_{2k+1\ j}^{(i)} + \alpha_{4k+2} x_{2k+2\ j}^{(i)} \text{ for } j,k \in \mathbb{N}, \end{aligned}$$

for all $i = 1, 2, \dots, n$. Let A be a matrix with $a_{jk} = \alpha_n$ for j + k - 1 = n. Then A is a Hilbert-Schmidt operator. Since

$$\begin{aligned} y_{j1}^{(i)} &= \alpha_1 x_{j1}^{(i)} + \alpha_2 x_{j2}^{(i)} \\ y_{j\ 2k}^{(i)} &= \alpha_{4k-1} x_{j\ 2k}^{(i)} \\ y_{j\ 2k+1}^{(i)} &= \alpha_{4k} x_{j\ 2k}^{(i)} + \alpha_{4k+1} x_{j\ 2k+1}^{(i)} + \alpha_{4k+2} x_{j\ 2k+2}^{(i)} \text{ for } k \in \mathbb{N}, \end{aligned}$$

for all
$$i = 1, 2, \dots, n, AX_i = Y_i$$
.

By the similar way with the above, we have the following.

Theorem 2.3. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a separable complex Hilbert space \mathcal{H} and let $X_i = (x_{jk}^{(i)})$ and $Y_i = (y_{jk}^{(i)})$ be operators acting on \mathcal{H} for $i = 1, 2, \cdots$. Then the following are equivalent:

- (1) There exists a Hilbert-Schmidt operator $A = (a_{jk})$ in $Alg\mathcal{L}$ such that $AX_i = Y_i$ for all $i = 1, 2, \cdots$.
- (2) There is a sequence $\{\alpha_n\}$ in \mathbb{C} such that $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$ and for all i, j, k in \mathbb{N} ,

$$\begin{aligned} y_{1j}^{(i)} &= \alpha_1 x_{1j}^{(i)} + \alpha_2 x_{2j}^{(i)} \\ y_{2k\ j}^{(i)} &= \alpha_{4k-1} x_{2k\ j}^{(i)} \\ y_{2k+1\ j}^{(i)} &= \alpha_{4k} x_{2k\ j}^{(i)} + \alpha_{4k+1} x_{2k+1\ j}^{(i)} + \alpha_{4k+2} x_{2k+2\ j}^{(i)}. \end{aligned}$$

REFERENCES

- 1. Gilfeather, F. & Larson, D.: Commutants modulo the compact operators of certain CSL algebras. Operator Theory: Adv. Appl. (Birkhauser, Basel) 2 (1981), 105-120.
- 2. Hopenwasser, A: The equation Tx = y in a reflexive operator algebra. *Indiana University Math. J.* **29** (1980), 121-126.
- 3. _____: Hilbert-Schmidt interpolation in CSL algebras. *Illinois J. Math.* **33** (1989), no. 4, 657-672.
- 4. Jo, Y.S.: Isometris of tridiagonal algebras. Pacific J. Math. 140 (1989), 97-115.
- 5. Jo, Y.S. & Choi, T.Y.: Isomorphisms of $Alg \mathcal{L}_n$ and $Alg \mathcal{L}_{\infty}$. Michigan Math. J. 37 (1990), 305-314.
- 6. Jo, Y.S.; Kang, J.H. & Park, D.W.: AX = Y and Ax = y in Alg \mathcal{L} . J. Korean Math. Soc. 43 (2006), 399-411.
- 7. Katsoulis, E.; Moore, R.L. & Trent, T.T.: Interpolation in nest algebras and applications to operator Corona theorems. J. Operator Theory 29 (1993), 115-123.
- 8. Lance, E.C.: Some properties of nest algebras. *Proc. London Math. Soc.* **19** (1969), no. 3, 45-68.
- 9. Munch, N.: Compact causal data interpolation. J. Math. Anal. Appl. 140 (1989), 407-418.

DEPARTMENT OF MATHEMATICS, DAEGU UNIVERSITY, GYEONGSAN, GYEONGBUK 712-714, KOREA Email address: jhkang@daegu.ac.kr