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HOPF BIFURCATION PROPERTIES OF HOLLING TYPE
PREDATOR-PREY SYSTEMS

SEONG-A SHIM

ABSTRACT. There have been many experimental and observational evidences which
indicate the predator response to prey density needs not always monotone increas-
ing as in the classical predator-prey models in population dynamics. Holling type
functional response depicts situations in which sufficiently large number of the prey
species increases their ability to defend or disguise themselves from the predator. In
this paper we investigated the stability and instability property for a Holling type
predator-prey system of a generalized form. Hopf type bifurcation properties of the
non-diffusive system and the diffusion effects on instability and bifurcation values
are studied.

1. INTRODUCTION

The classical Lotka-Volterra predator-prey model in mathematical population

dynamics deals with the linear reaction functions as in the following :

ut = u(a; — biu — c1v) for t € (0, 00),

vy = v(az + bau — cov) for t € (0, 00),

u(0) =up >0, v(0)=1yp>0.
Traditionally in many predator-prey models, the predator response to prey density
is assumed to be monotone increasing. This reflects the underlying assumption that
the more prey in the environment, the better off the predator. However, there have
come up experimental as well as observational evidences which indicate that this
assumption may not be always true. We refer the readers to Rosenzweig [16] where
he considered six different mathematical models of prey-predator or parasite-host

interaction and showed that sufficient enrichment or increase of the prey carrying
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capacity can cause destabilization of an otherwise stable interior equilibrium. Us-
ing a truncation for the sakes of biological reality, he also integrates the equation
numerically and obtains extinction of the predator.

The term group defence is used to describe the phenomenon whereby predation
is decreased, or even prevented altogether, due to the increased ability of the prey
to better defend or disguise themselves when their numbers are large enough. This
phenomenon is observed in many situations. For example, it is observed that lone
musk ox is easily attacked by wolves, small herds of musk ox (2-6 animals) are
attacked but with rare success, but there are no successful attacks in large herds.
Also large swarms of insects may be considered as another example. Large swarms
of insects make individual identification difficult for their predators. When micro-
organisms are used for the purpose of water-decomposition of water-purification, an
over abundance of prey can cause certain nutrients to be growth-limiting for the
predators. By adopting Holling-type functional responses in predator-prey systems
we may incorporate group defence with the predator-prey relationship. Since this
type of functional response had first been introduced by Haldane [6] in enzymology
there have been many results on Holling-type predator-prey systems. [1], [2], [3],
(5, (6], [7], (8], [10], [15], (16], [17], [18], [19], [20], [21] are a few of them.

Sugie, Kohno and Miyazaki [20] investigated a necessary and sufficient conditions

for the uniqueness of limit cycles of a predator-prey system of the following form :

utzru(lp— 3 - a’fgp for ¢t € (0, 00),
(1.1) v =v(fm — D) for t € (0, 00),
w(0) =up >0, v(0)=1v9>0,
where the coefficients r, k, y, D and p are positive parameters, and ¢(u) = 5%

represents a functional response. The parameter r is the intrinsic growth rate. k
is the carrying capacity for the prey population. p and D are the birth rate and
the death rate for the predator, respectively. The predator consumes the prey with
functional response ¢(u). The predator converts consumed prey into new predators
with efliciency pu.

When p = 1 or p = 2, the function ¢(u) is often called a functional response of
Holling type. If p <1, it is said to belong to Holling type II. If p > 1, Holling type
III. Here {/a is the half-saturation constant for the predator. As an example they
considered the case in whichp =1, D=1, u=2,a =1, and k > 3 for system (1.1).

{ut:ru(l—%)—ﬁ”—u

1.2
(1.2) v = (2 — 1),
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In this case the conditions y > D, A1 = H“_DD =a < k = Dk, and (D+ p)\ =
3 < Dk = k areall satisfied. Hence ()1, 1) is the only critical point of system (1.2)
in the first quadrant. And system (1.2) has a unique stable limit cycle. If 1 < k < 3,
then (u*,v*) is stable steady-state of system (1.2). The value k* = 3 is the Hopf
type bifurcation value of the parameter k in system (1.2).

For a prey-predator systems with Holling type IV functional response Bhat-
tacharyya, et al. [2] obtained some results on diffusion-driven instability phenome-

non. They studied the following system

dv __ Béuv
d_: = DQ’UQ;;L- -+ (_U%Fm - 6'0.

and proved that the instability to small perturbations may arise because of the

{ & = Ditez +u(1 - 3) ~ woraiier

presence of diffusion coefficients 1 and Ds.
We investigate in this paper the stability and instability property system (1.3).

us = diUze + u{ag — bju - ﬁrl;’u) in [0, 1] x (0, 00).
(1.3) v = dyvgg + v(ag + £2%) in [0,1] x (0, 00),
ug(z,t) = vz, t) =0 at x =0,1,

u(x,0) = ug{x) >0, v(z,0)=vo(z) >0 in[0,1],

where Q@ C R! is a bounded smooth domain. The coefficients d;, b;, ¢; (i = 1,2),
g, and a; are positive constants. Only as may be nonpositive. Throughout this
paper we assume that the initial functions ug(x), vo(x) are not identically zero. For
details in the biological background of cross-diffusions, we refer the reader to the
monograph of Okubo and Levin [14]. a; and a are the growth rates, and £ is the

carrying capacity of the prey species. % measures the extent of protection by the

environment to both species u and v. %’ is the maximum value which per capita
reduction rate of u can attain. And % has means similarly to v for the predator
species v. More explanations for the response functions of this type are found in [4],
[8], [9], [10], [19] and references therein.

In order to study the asymptotic behavior of the solution to system (1.3) we
first investigate its kinetic system which is the corresponding non-diffusive system.
Theorem 2.1 shows the necessary conditions on the parameters a;, b;, ¢; (i = 1,2)
and q for the non-diffusive system to have the unique positive steady-state (@, 7).
The results on the Hopf type bifurcation phenomenon for system (2.4) is shown in
Theorem 2.2. For the diffusive system (1.3) the effects of diffusions are investigated.
Theorem 3.1 presents the property of the diffusion coeflicients that they shift the
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bifurcation value of the parameter ¢ for the diffusive system (1.3) compared to the
non-diffusive system (2.4). It is proved Theorem 3.2 that diffusions may cause the
instability of the positive constant steady-state (@,7) under the assumptions that
assures the stability of (u,?) for the non-diffusive system (2.4).

This paper consists of seven sections : Section 1. Introduction. In Section 2
we present the Hopf type bifurcation properties of the non-diffusive system (2.4).
Section 3 has the results on the diffusion effects in the aspect of instability and

bifurcation values.

2. HoPF BIFURCATION FOR THE KINETIC SYSTEM OF (1.3)

For system (2.4) which is the kinetic system of (1.3) :

utzu(al—blu—ﬁ%) for t € (0, 00),
(2.4) vy = v(ag + llf;"u) for t € (0, 00),

u(0) =up >0, v(0)=wy >0,

we investigate the classical Hopf bifurcation phenomenon near a positive steady-

state (w,V) as ¢, the the reciprocal of the extent of protection by the environment

q

where A = % (tr A+ 4/(tr A)2 — 4det A), an eigenvalue of A = (

e B

of the prey passes through the values ¢}, which satisfies the following conditions :
(H1) tr A =0 and det A > 0 when ¢ = ¢3.
d(Rex
(H2) 4E22) 2,
=q}

af

dv

Qg )

dv / (4,7)
with f(u,v) =u (a1 —bu— 1‘2;’u> and g(u,v) =v (a2 + 1?51;)'
The condition (H1) provides that the eigenvalues of the matrix A are purely imag-
inary. If, in addition, the transversality condition (H2) is satisfied, then the Hopf
bifurcation occurs at (%,7) with ¢ = ¢}. At such a Hopf bifurcation for g near g}
small amplitude oscillations (limit cycles) exists.

System (1.3) possesses a unique positive constant steady-state (7, v) under some

conditions on the parameters a;, b;, ¢; (¢ = 1,2), and ¢. To find such conditions

we have to analyze its’ kinetic system (2.4). We state a result on the existence of a

unique positive steady-state for system (2.4).

Theorem 2.1. Assume that as < 0 and 0 < ¢ < —(& + 2—22) for system (2.4). Then

a1
system (2.4) has a unique positive steady-state (U, D), where
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ba(arazq + a1bg + azb;)
c1(azq + b2)?

— a2 = 1 = 7Y =
(25) U = m, v = a(l—%qu)(m ““blu) =

If g =0, then (@,7) is given by

(1_1: "U) _ _% a1b2 + (lzbl
' bQ ’ b201 '

Proof. A steady-state (u.7) is obtained by solving the equations

(2.6) (a7 — hiu)(1 + qu) — cyv =0,
and
(2.7) as+ 2 g
’ T irqu
From (2.7) we have that
2.8 U= —F.
( ) ¢ asq + by
Since g, b2 > 0 in systems (1.3) and (2.4) we notice that @ > 0 if and only if
b
az < 0 and O§q<»——3.
az

And in order to have 7 > 0 it must hold that & < %ll, or equivalently
b b
0<g< - (—1 + —2> .
ai a9

Here, from the assumption ai, b, > 0 it holds that

b b b
_ <_1 N _2> < b
ay  ap ag
Hence we conclude that system (2.4) has a unique positive steady-state (u,7) if

b b
as < 0 and O§q<—(——l—+—2>.
a;  a

from (2.6) and (2.8), it is obtained that

1 asq ) ( azby )
= —_— 1 — —— al + [,
] azq + bg asq + by

Lz ((u + ———221—>
1 azq + ba asq + b
_ balarazg + ajbe + azby)
B c1(azq + ba)?
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and if we assume that ¢ = 0, then

u=—— and U= b + azby
- b2 B b261 )
a

Theorem 2.2. Assume that aa < 0 and 0 < ¢ < _(% + %) for system (2.4). Also
suppose that

by b \?  byb
(2.9) (—1+—2> +4212 5 0.

a az aia2

Then for system (2.4) Hopf bifurcation near (,v) occurs at the parameter values

1 by b by b \?  byb
. _<_1+_2>i\/(_1+_2_> | 4 hibo
2 a as ay az ajaz

That is, (u,V) is asymptotically stable if 0 < ¢ < ¢* or ¢ > ¢} . and unstable if
¢t <g<gqji.

q = q}, where

Proof. Let us denote that

_ B _av ) (a3 — b1u)(1 + qu) — v
f(u,v)—u(al hu _1+qu>~u( 1+ qu

bou by by
s = =+ = + = - —— N
glu.v) = v (a2 1+ qu) ? (a2 7 ¢+ U)>

From Theorem 2.1 we have that @ > 0, v > 0, and

and

_ balarazq + a1bs + ah)

—az - _ 1 — —
7= E(l + qu)(a; — 01T) = e1(a2g 1 b3)?

a2q+b2’

U=
For the linear analysis write
z(t) =u(t) -4, yt)=v(t)-7v

which on substituting into system (2.4), linearizing with small |x| and |y| gives

d = ’
% y

df  df . —  c19(1+q@)—c1quv _ qu

Ao @ @ [ @ 2 (T+qu)? Thqu
T\ dg dg o b20(14qT) —boquv an + 22E
du dv / (mm) {Trgz 2T 1w
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Using the equations a; — byw — ﬁ% = 0 and ag + ffgﬁ = ( we may simplify the
components of the community matrix A as
S
- by 0
(1+qu)?

_ —biw + 111;% - (lJcrlq%)? ”1?:;%
- boT 0
(1+qu)?
( —biT+ e T )
- .
[Traa)? 0

Hence for the corresponding characteristic equation A2 — (tr A)A+det A = 0 we find
that

det A = 248 > 0

trA = -bia+ (1%‘{%

Hence (%,7) is linearly asymptotically stable if tr A < 0, and unstable if tr A >
0. Thus by solving the equation trA = 0 we find a bifurcation parameter for
system (2.4). Now, through simple computations we note that

trA = —biu+ u;—gg%
= —-biu + %2‘ . (1 -+ qﬂ)(al —_ b]ﬂ)

= —bu+ T% . (a1 — blﬂ)

(210) - bl'ﬁ(1+qﬂ)+qﬂ(a1—blﬂ)
- (1+qa)
__ u(--2bigutai1qg—b1)
- 1+qu
= — 32 (-2bi1qu + a19 — by),
and
__ 2a3b
—2b1qu +a1g — by = B +aig - b
— 2a3b19+(a1q—b1)(azq+bo)
azq+bz
__ 2azbigtarazqg®+(a1bz—azbi )g~b1b2
- azg+b2
_ a1a2q2+(a1b2+a2b1)q—b1b2
- a2q+ba

— 2 b b bib
= oty (7 + (B o+ B)e - B2

= -a1% (q2 + (B + B)g - b)Y,

ayaz
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since T = HJ;bLZ Also, from the conditions ap < 0 and 0 < ¢ < —(2 o T %) we see
that , ,
0<¢< —(—1+—2—>q,
ay  az
and so ; ) -
q2+<—1+—2)q<0 and - —2 > 0.
ay az a1an
Hence , ) -
trA <0 ifandonlyif ¢?+ (_1+_2)q_ 12 S0,
ay as a1a9
e b b b1b
trA>0 ifandonlyif ¢°+ (—1+—2->q_ 12 <.
a a2 a1a2

Solving the equation tr A = 0, equivalently ¢ + (& + 22)g — 21b2 — () we determine
a1

a2 ajas
the bifurcation value ¢} for the parameter ¢ > 0 as

(2.11) ql:%( (by b2y \/_L+g _ﬂg)

ayaz

under the assumption (2.9), that is, (%} + gz.) +48% 0. Also the transversality

ay1ag
condition (2.12) below has to be satisfied in order to guarantee the occurrence of

the Hopf bifurcation at ¢ = ¢ :
d(Re )\+)

(2.12) i

#0’

g=q%

where Ay = % (trA + /(tr A)2 — 4det A), an eigenvalue of A. Since det A > 0 and
tr A =0 at ¢ = ¢}, we see that (tr A)? — 4det A < 0 near q = ¢}, and thus

Re/\+ = %tI‘A

Hence the transversality condition (2.12) reduces to

d
d_ (tr A) 7é 0,
q q:q;:

and further to

d
(2.13) d—(—%lqE +a19 — b1) # 0,
q 9=q%
by (2.10). Here we notice that % = T2, since T = o q+b2 and = (—‘a%i—):—z?. Thus

we have that
%(—leqﬂ +a1q9 — bl) = -2b1T — 2b1qﬂ2 +a
= —2b1ﬂ(1 + qﬁ) +a
_ _2a3b1by
T (a2g+b2) +ar.
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Hence (2.13) becomes

2a2b1b2
—— = +4a; #0,
oz + 6P 7
equivalently,
b \*  2bib
(2.14) (q; + —2> 4212 2.
az aiag

By (2.11) the condition (2.14) is rewritten as
2 2
b b bib b b b bib
(218)  (B4lz) +abbi(2-o ) \/(a—iJrﬁ) +alz 2
Since az < 0 and ay, b;, ¢;, (1 = 1,2) are all positive constants, it trivially holds that
2 2
by |, b bib by b by | b bib
(216) (&4 k) +4i&2¥_<a§'a—i)\/(ﬁ+a_i) +4bb 20

2
by the assumption (2.9), that is. (2—’1 + —2—3) 44l 50

ajaz

From the following steps of (i(’lll[)lltati()I]S
2 bib 1? 2 b 2 b ’
b b 5 b b b ba
(_all+_ai) +4ai—a; - (_gaz - _ai> (\/(_Clll+_0§) +4'ai_az

2 1 2 2
bi 4 b biba | (b2 & bi oy by biba |
(a1 + az) +4a1a2 (ag al) [(al + az) +4a;ag] !

2 2 2 2 2
_ b b bi1d b b b1 b b b b1 b2
= [(Brn) vasm] [(8)" 4 (2) o - (8) - (2) +oiie]
2
_ Qbibe b b biby
T Yajag [(ai + ai) +4aia2] ’

it holds that
2 2
b b bib b b b b biba
(2.17) (af + l) MECT (% - a‘;) \/(f + —"’;) e 70

under the assumption (2.9). Finally (2.16) and (2.17) together prove that the
transversality condition (2.15) holds.

We also see that (u,7) is asymptotically stable if 0 < ¢ < ¢* or ¢ > g%. and
unstable if ¢* < ¢ < ¢} . since

trA <0 if 0<g<g® or g¢g>qj,
and

trdAd >0 if ¢ <g<gq}.
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Note. By noticing that

2 2 2
(2_11_*_.3%) +49.Lbz:(h) +<.IZ.2_) +6b1b2

aijaz ai a a

b b
- (B ++2v2)8)
> 0.

and using the conditions that ap < 0 and a1, b;, ¢, (i = 1,2) are all positive
constants, we may restate the condition (2.9) in Theorem 2.2 in an equivalent form
as the following :

(2.18) 0<Z<-B-2v2)2 o 0<-(B+2v2)2 <l

ai

3. THE EFFECT OF DIFFUSION TO THE STABILITY

Now we observe system (1.3) to investigate the effect of diffusion to system (2.4)
about the positive constant steady-state (7, 7). First, in Theorem 3.1 we observe that
diffusions may cause the instability of the positive constant steady-state (%, 7) under
the assumptions that assures the stability of (7, ) for the non-diffusive system (2.4).
The result in Theorem 3.2 shows the effect of diffusions to shift the bifurcation
value of the parameter g for the diffusive system (1.3) compared to the non-diffusive

system (2.4).

Theorem 3.1. For the diffusive system (1.3) assume the condition (2.9) and that
as < 0. Also assume that

(3.1) ¢ <g<q}.

The positive constant steady-state (@,v) is unstable for system (1.3) if

ds 4bsc1T
(32) di Z = 73 1 €19t 2~

Proof. In order for system (1.3) to possess the unique positive constant steady-state
(@, 7) the condition 0 < ¢ < —(311- + %) is required to hold, and it is shown from the
condition (3.1) and that 0 < ¢* < g% < —(&

ay

=3 (BB Bl )

ajaz

b2
+ 22) because

The characteristic equation of the linearization of the diffusive system (1.3)

around (%, ) is given as
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(3 3)
(14 a0+ 07— i) A+ (8% 4 b — i) 4 (R =0

where the solutions of system (1.3) of the form v = @+ aje*cosBz and v =

T + ape cos B are considered. For system (1.3) the positive constant steady-state
becomes unstable if
"1qUD bocyuv
3.4 k(@) = (d 2+b—__(1ﬂv_)d 2y AW
(34) (8%) < 18° + b it )2 208 e

By regarding K as a quadratic function in 32
byc1uv
K(82) = dida(B2)? +dy [ by — — ) g2 4 2
(B%) = d1da(B°)" + do | 1T T+ qa g e

we find the minimum value K;, of the function K ([32). We see that K, exists as
K. = bycyut _ da b — ¢ guv 2
min = ({5qu)% — ad; \"1% ~ (Trqu)?

(3.5) bos N2
~ (e - 4 (b - ) ) ,
qu) 4d1 1+qw)

provided that

. C1quU

U~ ———5 | =trd >0,
( U+ qﬁ)2>

which is guaranteed by the condition (3.1), that is, ¢* < g < ¢}, where g} are the

solutions of the equation tr A = 0, and

trA = w&(q 4oy l) - b )
Finally we conclude that Ky, < 0 if
d e dbyerT _
G (- guemy) T - i)

g

Theorem 3.2. Assume that az < 0 and the conditions (2.9), (3.1) for the diffusive
system (1.3). Also assume that dy > dy. Then there exits an bifurcation value
q; > 0 of the parameter q for system (1.3).

And if condition (2.9) is also assumed, then it holds that

(3.6) 3 > 9%

where ¢ is the Hopf bifurcation value of the parameter q for the non-diffusive sys-
tem (2.4) which is the kinetic system corresponding to system (1.3).
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Proof. In order to find the bifurcation value of the parameter ¢ for system (1.3) we

observe Kpn in (3.5) from the proof of Theorem 3.1 and solve the equation

Kunin = 0,
that is,
bac1T dot c1qU 2
3.7 BLChe LA L " L Y
37 g () =
Equation (3.7) is reduced as
douu
(3.8) boc1B(1 + qu) — 4271 (b1(1 + q@)? — c1q0)? = 0.

By substituting
7= (1 + qu)(a1 — bi)

in to (3.8) we have

doT
ba(1 + g7)*(ay — by) — 4271 (b1 (1 + q7)2 — g1 + qT) (a1 — b1'ﬂ))2 =0,

and so

doT
(3.9) ba(ar = by) = 2= (b (1+ q7) - g(en — byw)” =0,
Now let us substitute

T = 2
l asq + by

into (3.9) to obtain

ba(a1a2q + a1by + agby) L& (@) (162 — g(ara2q + a1bs + azby)}? —0
azq + b2 4 \dy (azq +b2)3 ’
equivalently
(3.10)
as [d
bg(alagq + aibs + azbl)(azq + b2)2 + ZQ (d—2> [[blbg — q(alazq + a1by + a2b1)]2 =0.
1

Here we observe (3.10) as an equation in the variable ¢ and let ¢ be the root of
equation (3.10). We note that the diffusion pressures d; and ds are chosen indepen-
dent of the parameters a;, b;, ¢; (i = 1,2) and ¢ in system (1.3). Thus when d; > do
the root of equation (3.10) g is approximated by the root of the equation

(3.11) ba(a1a2q + a1by + agby)(azq + b2)* = 0.

From the assumption in the statement of the present theorem that

b b
as < 0 and 0§q<—<—1+—2>
al a
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we have
b b b
0<q<-— (_1_ 4 _2> b
ay  ag as
Hence we conclude that
by bo
3.12 0<ghi = —{ — 4+ =
(3.12) <qq (a1 + a2)

if dy > ds.

Now we remind a result in Theorem 2.2 where condition (2.9) is also assumed

that
1 b by b bh\® | bib
t==|-|—+=1% —+ = 4
=5 <a1 + a2> \/(a1 + ag + ayas

for the non-diffusive system (2.4) which is the corresponding kinetic system of (1.3).

By noting that
b b
0<q*i<—<-—l+—2—>
ai as
we conclude that

a7 > 43
when d; > do. ]
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