BCK-ALGEBRAS WITH SUPREMUM

Young Bae Jun^a, Kyoung Ja Lee^b and Chul Hwan Park^{c,*}

ABSTRACT. The notion of a BCK-algebra with supremum (briefly, sBCK-algebra) is introduced, and several examples are given. Related properties are investigated. We show that every sBCK-algebra with an additional condition has the condition (S). The notion of a dry ideal of an sBCK-algebra is introduced. Conditions for an sBCK-algebra to be an spBCK-algebra are provided. We show that every sBCK-algebra satisfying additional condition is a semi-Brouwerian algebra.

1. Introduction

BCK-algebras entered into mathematics in 1966 through the work of Imai and Iséki [3], and have been applied to many branches of mathematics, such as group theory, functional analysis, probability theory and topology. Such algebras generalize Boolean rings as well as Boolean D-posets (= MV-algebras). There is a deep relation between BCK-algebras and posets. A way to make a new BCK-algebra from old is established by Abujabal [1]. Jun et al. [6] gave a method to make a BCK-algebra from a poset and an upper set. Hao [2] gave a method for constructing a proper BCC-algebra by the extension of a BCK-algebra with a small atom. Iséki [4] gave a method to make a BCI-algebra by using a group and a BCK-algebra. Jun et al. [7] gave a method to make a BCK-algebra by using a poset. We show that if a poset has the least element, then the induced BCK-algebra is bounded. In this paper, we introduce the notion of a (positive implicative) BCK-algebra with supremum, and give several examples. We investigate related properties, and show that every sBCK-algebra with an additional condition has the condition (S). We also introduce the notion of a dry ideal of an sBCK-algebra. We show that every sBCK-algebra satisfying additional condition is a semi-Brouwerian algebra, and provide conditions for an sBCK-algerba to be an spBCK-algebra.

Received by the editors November 5, 2007. Revised January 7, 2009. Accepted February 2, 2009. 2000 Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. sBCK-algebra, spBCK-algebra, (dry) ideal, condition (S).

^{*}Corresponding author.

2. Preliminaries

We first display basic concepts on BCK-algebras. Let $K(\tau)$ be the class of all algebras of type τ . A BCK-algebra is a system $(X, *, 0) \in K(\tau)$, where $\tau = (2, 0)$, such that

(a1)
$$(\forall x, y, z \in X)$$
 $(((x * y) * (x * z)) * (z * y) = 0),$

(a2)
$$(\forall x, y \in X) ((x * (x * y)) * y = 0),$$

(a3)
$$(\forall x \in X) (x * x = 0, 0 * x = 0),$$

(a4)
$$(\forall x, y \in X)$$
 $(x * y = 0, y * x = 0 \Rightarrow x = y)$.

We can define a partial ordering \leq by $x \leq y$ if and only if x * y = 0. A BCK-algebra (X, *, 0) is said to be bounded if there exists the bound 1 such that $x \leq 1$ for all $x \in X$. A BCK-algebra (X, *, 0) is said to be positive implicative BCK-algebra (briefly, pBCK-algebra) if it satisfies:

$$(2.1) \qquad (\forall x, y, z \in X) ((x * y) * z = (x * z) * (y * z)),$$

or equivalently it satisfies:

$$(2.2) (\forall x, y \in X) (x * y = (x * y) * y).$$

Note that every pBCK-algebra is a BCK-algebra but the converse is not true. Denote by BCK (resp. bBCK and pBCK) the set of all BCK-algebras (resp. bounded BCK-algebras and positive implicative BCK-algebras).

Let (X, *, 0) be a BCK-algebra, For any $a, b \in X$, consider a set

$$(2.3) X(a,b) := \{x \in X \mid x * a \le b\}$$

A BCK-algebra (X, *, 0) is said to have the condition (S) if it satisfies:

(2.4)
$$(\forall a, b \in X) (X(a, b) \text{ has a greatest element}).$$

In any BCK-algebra (X, *, 0), the following hold:

- (b1) $(\forall x \in X) (x * 0 = x),$
- (b2) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),$
- (b3) $(\forall x, y, z \in X) ((x * z) * (y * z) \le x * y),$
- (b4) $(\forall x, y, z \in X)$ $(x \le y \Rightarrow x * z \le y * z, z * y \le z * x).$

Definition 2.1. A subset A of a BCK-algebra (X, *, 0) is called an *ideal* of X if it satisfies:

- (c1) $0 \in A$,
- (c2) $(\forall x \in A) \ (\forall y \in X) \ (y * x \in A \Rightarrow y \in A).$

Note that every ideal A of a BCK-algebra (X, *, 0) satisfies:

$$(2.5) \qquad (\forall x \in A) (\forall y \in X) (y \le x \Rightarrow y \in A).$$

3. BCK-algebras with Supremum

Example 3.1 ([8]). Let (X, \leq) be a poset with the least element 0. The operation * on X is defined by the following prescription

(3.1)
$$x * y := \begin{cases} 0 & \text{if } x \leq y, \\ x & \text{otherwise.} \end{cases}$$

Then (X, *, 0) is a BCK-algebra.

For any elements x and y of a BCK-algebra (X, *, 0), let $x \vee y$ denote the supremum of $\{x, y\}$ if it exists. Consider the following identity:

$$(3.2) (x \lor y) * z = (x * z) \lor (y * z)$$

where $x, y, z \in X$.

Example 3.2. Let $X = \{0, a, b, 1\}$ be a set with the following Cayley table:

Then $(X, *, 0) \in b\mathbb{BCK}$ in which there exists $x \vee y$ for all $x, y \in X$, and X satisfies the identity (3.2).

We have the following question.

(Q1) In a BCK-algebra (X, *, 0), if every pair of elements of X has supremum, then does the identity (3.2) hold?

Herein, we give answer to this question negatively.

Example 3.3. Using Example 3.1, we make a BCK-algebra. Let $X = \{0, a, b, c, d, 1\}$ be a poset with the following Hasse diagram:

Using (3.1), we have the following Cayley table:

Then $(X, *, 0) \in b\mathbb{BCK}$. Note that every pair of elements of X has supremum. But it does not verify the identity (3.2) since

$$(b \lor c) * b = d * b = d \neq c = 0 \lor c = (b * b) \lor (c * b).$$

Definition 3.4. A BCK-algebra (resp. pBCK-algebra) with supremum (briefly, sBCK-algebra (resp. spBCK-algebra)) is a system $X := (X, *, \lor, 0) \in K(\tau)$, where $\tau = (2, 2, 0)$, such that

- (a5) $(X, *, 0) \in \mathbb{BCK}$ (resp. $(X, *, 0) \in \mathbb{pBCK}$).
- (a6) $(\forall x \in X) (x \lor x = x)$,
- (a7) $(\forall x, y, z \in X)$ $((x \lor y) \lor z = x \lor (y \lor z)),$
- (a8) $(\forall x, y \in X)$ $((x * y) \lor y = x \lor y)$,
- (a9) $(\forall x, y, z \in X)$ $(((x * z) \lor (y * z)) * ((y \lor x) * z) = 0).$

Obviously, every spBCK-algebra is an sBCK-algebra, but the converse is not true as seen in the following example.

Example 3.5. Let X be a set with a special element 0 such that (X, \vee) is a $join(\vee)$ -semilattice. Let * be a binary operation on X defined as (3.1). Then $X := (X, *, \vee, 0)$ is an sBCK-algebra. Here, if (X, *, 0) is not positive implicative, then $X := (X, *, \vee, 0)$ is not an spBCK-algebra.

Example 3.6. Let (X, *, 0) be the BCK-algebra which is described in Example 3.3. Then $X := (X, *, \vee, 0)$ is an spBCK-algebra, where \vee is meant to be the supremum.

Example 3.7. Let $X = \{0, a, b, c, 1\}$ be a bounded BCK-algebra with the following Cayley table and Hasse diagram:

Then $X := (X, *, \vee, 0)$ is an spBCK-algebra, where $x \vee y$ is the supremum of $\{x, y\}$ for all $x, y \in X$.

Example 3.8. (1) Let (X, *, 0) be any BCK-algebra. Define a binary operation \vee on X by $x \vee y = 0$ for all $x, y \in X$. Then (a7), (a8) and (a9) hold, but (a6) does not hold. Hence $X := (X, *, \vee, 0)$ is not an sBCK-algebra.

(2) Let (X, *, 0) be a BCK-algebra which is not bounded. We define a binary operation \vee on X by

(3.3)
$$x \vee y := \left\{ \begin{array}{ll} \sup\{x,y\} & \text{if it exists,} \\ 0 & \text{otherwise.} \end{array} \right.$$

Obviously, (a6) is valid. If we take $x1(\neq 0), y1(\neq 0) \in X$ such that there is no $\sup\{x1, y1\}$, then

$$(x1 \lor y1) \lor y1 = 0 \lor y1 = y1 \neq 0 = x1 \lor y1 = x1 \lor (y1 \lor y1),$$

i.e., (a7) is not valid. Hence $X := (X, *, \vee, 0)$ is not an sBCK-algebra.

- (3) In Example 3.2, $X := (X, *, \vee, 0)$ satisfies (a6), (a7) and (a9), but it does not satisfy the identity (a8) since $(b * a) \vee a = a \vee a = a \neq b = b \vee a$. Hence $X := (X, *, \vee, 0)$ is not an sBCK-algebra.
- (4) Let $X = \{0, a, b, c, 1\}$ be a bounded BCK-algebra with the following Cayley table and Hasse diagram:

*	0	a	b	c	1	1
0	0	0	0	0	0	\wedge
a	a	0	0	0	0	$b \longleftrightarrow c$
0 a b c	b	a	0	a	0	\sqrt{a}
c	c	a	a	0	0	
1	1	b	a	b	0	0

Then (X, \leq) is a join(\vee)-semilattice, and so (a6) and (a7) are valid. On the other hand, (a9) is also valid. But (a8) is not valid since $(c*a) \vee a \neq c \vee a$. Hence $X := (X, *, \vee, 0)$ is not an sBCK-algebra.

(5) Let $X = \{0, a, b, c, d\}$ be a BCK-algebra with the following Cayley table and Hasse diagram:

*	0	a	b	c	d	C
0	0	0	0	0	0	•
a	a	0	0	0	0	b a d
b	b	a	0	0	a	\bigvee_a
c	c	b	a	0	b	
d	d	0 0 a b a	a	a	0	U

We define a binary operation \vee on X by

$$(3.4) x \vee y := \left\{ \begin{array}{ll} \sup\{x,y\} & \text{if it exists,} \\ 0 & \text{otherwise.} \end{array} \right.$$

Then (a9) does not hold since

$$((c*d) \lor (d*d)) * ((d \lor c) * d) = (b \lor 0) * (0*d) = b * 0 = b \neq 0.$$

Hence $X := (X, *, \vee, 0)$ is not an sBCK-algebra.

Theorem 3.9. Let $X := (X, *, \vee, 0)$ be an sBCK-algebra. Then (X, \vee) is a join semilattice.

Proof. Straightforward.

Note that if X is a bounded BCK-algebra, then there is always $\sup\{x,y\}$ for all $x,y\in X$. Hence we can guess that every bounded BCK-algebra is an sBCK-algebra. But this is not valid as seen in the Example 3.8(4). Now consider an sBCK-algebra $X:=(X,*,\vee,0)$ in Example 3.5. If X:=(X,*,0) is a non-bounded BCK-algebras, this shows that an sBCK-algebra is not equivalent to a bounded BCK-algebra in general.

Proposition 3.10. In every sBCK-algebra $X := (X, *, \vee, 0)$, we have the following assertions:

- (i) $(\forall x \in X) (0 \lor x = x)$.
- (ii) $(\forall x, y \in X)$ $(x \lor y = y \lor x)$.
- (iii) $(\forall x, y \in X)$ $(x * y = 0 \Leftrightarrow x \lor y = y)$.
- (iv) $(\forall x, y \in X)$ $(x \lor y = x \lor (y * x)).$

Proof. (i) For every $x \in X$, we have

$$0 \lor x = (x * x) \lor x = x \lor x = x$$

by (a3), (a8) and (a6).

(ii) Let $x, y \in X$. Then

$$y \vee x = (y*0) \vee (x*0) \leq (x \vee y)*0 = x \vee y$$

by (b1) and (a9), and so (ii) is valid.

(iii) Let $x, y \in X$. If x * y = 0, then

$$x \vee y = (x * y) \vee y = 0 \vee y = y.$$

by (a8) and (i). Conversely, assume that $x \lor y = y$. Then

$$0 = ((y * y) \lor (x * y)) * ((x \lor y) * y)$$

$$= (0 \lor (x * y)) * (y * y)$$

$$= (x * y) * 0$$

$$= x * y$$

by (a9), (a3), (i) and (b1).

(iv) For any $x, y \in X$, we have

$$x \lor (y * x) = (y * x) \lor x = y \lor x = x \lor y$$

We have the following question.

(Q2) In an sBCK-algebra $X := (X, *, \vee, 0)$, does the following inequality hold?

$$(3.5) \qquad (\forall x, y \in X) ((x \lor y) * x \le y).$$

Herein, we give answer to this question negatively.

Example 3.11. (1) Consider the sBCK-algebra $X := (X, *, \vee, 0)$ which is described in Example 3.6. Since $(b \vee c) * b = d * b = d \nleq c$, X does not satisfy the inequality (3.5).

(2) Let $X := (X, *, \vee, 0)$ be the sBCK-algebra which is given in Example 3.7. Then the inequality (3.5) does not hold in X since $(a \vee c) * a = 1 * a = 1 \nleq c$.

We provide an sBCK-algebras that satisfy the inequality (3.5).

Example 3.12. Let $X = \{0, a, b, c, 1\}$ be a BCK-algebra with the following Cayley table and Hasse diagram:

Then $X := (X, *, \vee, 0)$ is an sBCK-algebra, where $x \vee y$ is the supremum of $\{x, y\}$ for all $x, y \in X$. We can verify that X satisfies the inequality (3.5).

Theorem 3.13. Let $X := (X, *, \vee, 0)$ be an sBCK-algebra. If X satisfies the inequality (3.5), then X has the condition (S).

Proof. Assume that X satisfies the inequality (3.5). Then $x \vee y \in X(x,y)$ for all $x,y \in X$. Given $x,y \in X$, let $z \in X(x,y)$. Then $z*x \leq y$. It follows from (a8) and Proposition 3.10(ii) that

$$z \le z \lor x = (z * x) \lor x \le y \lor x = x \lor y$$

so that $x \vee y$ is a greatest element of X(x,y). Therefore X has the condition (S). \square

Proposition 3.14. Let $X := (X, *, \vee, 0)$ be an sBCK-algebra that satisfies the inequality (3.5). For every $a, b \in X$, let

$$\mathcal{D} := \{ x \in X \mid a \le b \lor x \}.$$

Then a * b is the least element in \mathcal{D} .

Proof. Since $a * b \le a * b$, we have $a \le b \lor (a * b)$. Hence $a * b \in \mathcal{D}$. Let $x \in \mathcal{D}$. Then $a \le b \lor x$, and so $a * b \le (b \lor x) * b \le x$ by (b4) and (3.5). Therefore a * b is the least element in \mathcal{D} .

Theorem 3.15. Let $X := (X, *, \vee, 0)$ be an sBCK-algebra that satisfies the inequality (3.5). Then

$$(3.7) (\forall a, b \in X) (X(a, b) = \{x \in X \mid x \le a \lor b\}).$$

Proof. It is easy to verify that $X(a,b) \subseteq \{x \in X \mid x \le a \lor b\}$. Let $u \in X$ be such that $u \le a \lor b$. Then $u * a \le (a \lor b) * a$ by (b4). It follows that

$$(u*a)*b = (((u*a)*b)*0)*0$$

$$= (((u*a)*b)*((u*a)*((a \lor b)*a)))*(((a \lor b)*a)*b)$$

$$= (((u*a)*b)*(((a \lor b)*a)*b))*((u*a)*((a \lor b)*a))$$

$$\leq ((u*a)*((a \lor b)*a))*((u*a)*((a \lor b)*a)) = 0$$

so that (u*a)*b=0, that is, $u\in X(a,b)$. This completes the proof.

Proposition 3.16. Let $X := (X, *, \vee, 0)$ be an sBCK-algebra that satisfies the inequality (3.5). Then any ideal A of X satisfies:

$$(3.8) \qquad (\forall x, y \in A) \, (\exists z \in A) \, (x \le z, \, y \le z).$$

Proof. Let $x, y \in A$. Then $(x \vee y) * x \leq y$, which implies from (2.5) and (c2) that $x \vee y \in A$. Moreover, $x \leq x \vee y$ and $y \leq x \vee y$. This completes the proof.

Theorem 3.17. Let $X := (X, *, \vee, 0)$ be an sBCK-algebra that satisfies the inequal-

ity (3.5). If A is an ideal of (X, *, 0) in which there exists a maximal element w, then $A = \{x \in X \mid x \leq w\}$. Moreover, if A is finite, then $A = \{x \in X \mid x \leq a\}$ for some $a \in X$.

Proof. For any $x \in A$, we have $(x \vee w) * w \in A$ by (3.5) and (2.5). It follows from (c2) that $x \vee w \in A$. Since $w \leq x \vee w$ and w is a maximal element in A, we get $w = x \vee w$. Hence $x \leq x \vee w = w$, and so $A \subseteq \{x \in X \mid x \leq w\}$. Obviously, $\{x \in X \mid x \leq w\} \subseteq A$. Now assume that A is finite. Then A has a maximal element, say a. Hence $A = \{x \in X \mid x \leq a\}$ by the above discussion.

Definition 3.18. Let $X := (X, *, \vee, 0)$ be an sBCK-algebra. An ideal A of X is said to be dry if it satisfies:

$$(3.9) \qquad (\forall x, y \in X) (x \in A \Rightarrow (x \lor y) * y \in A).$$

Example 3.19. Consider the sBCK-algebra $X = \{0, a, b, c, 1\}$ which is described in Example 3.12. Then we can verify that $A = \{0, a, b\}$ is a dry ideal of X.

Example 3.20. Let $X := (X, *, \lor, 0)$ be the sBCK-algebra which is given in Example 3.6. Consider subsets $A = \{0, a, b\}$, $B = \{0, a, c\}$ and $C = \{0, a, b, c\}$ of X. Then A, B and C are all ideals of X, but they are not dry since $(b \lor c) *c = d*c = d \notin \{0, a, b\} \subseteq \{0, a, b, c\}$ and $(c \lor b) *b = d *b = d \notin \{0, a, c\} \subseteq \{0, a, b, c\}$. On the other hand, we know that $D = \{0, a, b, c, d\}$ is a dry ideal of X.

Theorem 3.21. In an sBCK-algebra $X := (X, *, \vee, 0)$ that satisfies the inequality (3.5), every ideal is dry.

Proof. Let A be an ideal of X, $x \in A$ and $y \in X$. Then $(x \vee y) * y \leq x$ by (3.5). It follows from (2.5) that $(x \vee y) * y \in A$. Hence A is a dry ideal of X.

Theorem 3.22. Let $X := (X, *, \vee, 0)$ be an sBCK-algebra that satisfies the inequality (3.5). Then a nonempty subset A of X is an ideal of X if and only if it satisfies (2.5) and

$$(3.10) \qquad (\forall x, y \in X) (x, y \in A \Rightarrow x \lor y \in A).$$

Proof. Assume that A is an ideal of X and let $x, y \in A$. Obviously (2.5) is valid. Using (3.5) we have $(x \vee y) * x \leq y$. It follows from (2.5) and (c2) that $x \vee y \in A$. Conversely, let A be a nonempty subset of X that satisfies (2.5) and (3.10). Then there exists x in A. Since $0 \leq x$, we get $0 \in A$ by (2.5). Let $x, y \in X$ be such that $x * y \in A$ and $y \in A$. By Proposition 3.14, we have $x \leq y \vee (x * y)$. On the other

hand, $y \lor (x * y) \in A$ by (3.10). It follows from (2.5) that $x \in A$. Hence A is an ideal of X.

The notion of semi-Brouwerian algebras was introduced by P. V. R. Murty [9] in 1974.

Definition 3.23. A semi-Brouwerian algebra is a system $(X, *, \circ, 0) \in K(\tau)$, where $\tau = (2, 2, 0)$, such that

- (d1) $(\forall x \in X) (x \circ x = x, x * x = 0),$
- (d2) $(\forall x, y \in X)$ $(x \circ y = y \circ x)$,
- (d3) $(\forall x, y \in X)$ $((x * y) \circ y = x \circ y)$,
- (d4) $(\forall x, y, z \in X) ((x * y) * z = x * (y \circ z)).$

Theorem 3.24. Every sBCK-algebra satisfying the inequality (3.5) is a semi-Brouwerian algebra.

Proof. Let $X := (X, *, \vee, 0)$ be an sBCK-algebra that satisfies the inequality (3.5). It is sufficient to show that X satisfies (d4). Let $x, y, z \in X$. Then

$$(x*((x*y)*z))*z = (x*z)*((x*y)*z) \le x*(x*y) \le y,$$

and so $x*((x*y)*z) \le y \lor z$. It follows that $x*(y \lor z) \le (x*y)*z$. On the other hand,

$$(x * y) * (x * (y \lor z)) \le (y \lor z) * y \le z,$$

and thus $(x*y)*z \le x*(y \lor z)$. Therefore (d4) is valid, and the proof is complete. \Box

Theorem 3.25. Every sBCK-algebra satisfying the inequality (3.5) is an spBCK-algebra.

Proof. Let $X := (X, *, \vee, 0)$ be an sBCK-algebra that satisfies the inequality (3.5). It is sufficient to show that X satisfies the identity (2.2). Let $x, y \in X$. Then

$$(x*y)*y = x*(y \lor y) = x*y$$

by (d4) and (a6). Hence $X := (X, *, \vee, 0)$ is an spBCK-algebra.

REFERENCES

- 1. H.A.S. Abujabal: A relative one-point union of BCK-algebras. *Math. Japonica* **45** (1997), no. 1, 103-111.
- 2. J. Hao: Ideal theory of BCC-algebras. Scientiae Mathematicae 1 (1998), no. 3, 373-381.

- 3. Y. Imai & K. Iséki: On axiom systems of propositional calculi. *Proc. Jpn. Acad.* 42 (1966), 19-21.
- 4. K. Iséki: Some examples of BCI-algebras. Math. Seminar Notes 8 (1980), 237-240.
- 5. K. Iséki & S. Tanaka: An introduction to the theory of BCK-algebras. *Math. Japonica* 23 (1978), no. 1, 1-26.
- 6. Y.B. Jun, J.Y. Kim & H.S. Kim: On Q-upper algebras. Order 22 (2005), 191-200.
- 7. Y.B. Jun, K.J. Lee & C.H. Park: A method to make BCK-algebras. Commun. Korean Math. Soc. 22(2007),no. 4,503-508.
- 8. J. Meng & Y.B. Jun: BCK-algebras. Kyungmoon Sa Co. Korea, 1994.
- 9. P.V.R. Murty: Semi-Brouwerian algebras. J. Austral Math. Soc. 18 (1974), 293-302.
- 10. J. Neggers & H.S. Kim: Basic Posets, World Scientific Publishing Co. 1998.

Email address: skywine@gmail.com; http://skywine.blogspot.com

^aDEPARTMENT OF MATHEMATICS EDUCATION (AND RINS), GYEONGSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA

^bDEPARTMENT OF MATHEMATICS EDUCATION, HANNAM UNIVERSITY, DAEJEON 306-791, KOREA *Email address*: kjlee@hnu.kr

^cDepartment of Mathematics, University of Ulsan, Ulsan 680-749, Korea *Email address*: skyrosemary@gmail.com