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ON THE CONVERGENCE OF NEWTON’S METHOD AND
LOCALLY HOLDERIAN INVERSES OF OPERATORS

IoannNis K. ARGYROS

ABSTRACT. A semilocal convergence analysis is provided for Newton’s method in a
Banach space. The inverses of the operators involved are only locally Holderian. We
make use of a point-based approximation and center-Holderian hypotheses for the
inverses of the operators involved. Such an approach can be used to approximate
solutions of equations involving nonsmooth operators.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique
solution z* of equation

(1) Fz) =0,

where F is a continuous operator defined on a closed subset D of a Banach space X
with values in a Banach space Y.

Here we continue our work initiated in [3], where Newton’s method was used to
approximate z*. In [3] we assumed that F~! is locally p-Holderian for p € [0, 1).
Here we assume F~! is locally p-“Hélderian” for p > 1. The case p = 1 has been
considered in [6].

The benefits of our approach and the advantages over earlier works (see [5], [6]
and the references there) have already been explained in [3].

2. PRELIMINARIES

We need the following definition of point-based approximation:
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Definition 1. Let f be an operator from a closed subset D of a metric space (X, d)
into a normed linear space Y, let zop € D, and p > 1. We say f has a point-based
approximation (PBA) on D at zy € D if there exist an operator A: D x D =Y

and scalars £, £y such that for each u, and v in D,

(2) 1f(v) = A(u, v)|| < ld(u,v)?

3) I[A(u, z) — A(v, )] - [A(u,y) — A(v, )]l < 2¢d(u,v)”
and

(4) I[A(u, v) — A(zo, z)] — [A(u,y) — A(zo, y)]l| < 2bod(u, v)?

for all z,y € D.

Justifications/choices of operator A have already been given in [3].

To avoid repetitions we assume familiarity of the reader with Definition 2, Lem-
mas 1 and 2 in [3] (which hold for p > 1). Note that according to Definition 2 in (3],
F~1 (if it exists) is %-Hélderian with modulus §~1/7.

From now on we also assume p > 1.

3. SEMILOCAL CONVERGENCE

We need the following result on fixed points:

Theorem 1. Let Q: D C X — X be an operator, p, q scalars withp > 1, ¢ > 0,
and xo a point in D such that

(5) 1Q(z) - QI < qllz — yllP  for all z,y € D;
equation
(6) 2 gr? ~ 7+ ||zo — Q(0)|| = 0

has a unique positive solution r in I = [|lzo — Q(z0)], %qup);
and
U(zo,r) ={z € X ||lz —zo|} <r C D.

Then sequence {z,} (n > 0) generated by successive substitutions

(7) Tnt1 = Q(zn) (n2>0)

converges to a unigue fized point * € U(xp,r) of operator Q, so that for alln > 1

(8) lnt1 = znll < dllTn — Zn_1]] < d"|lzo — Q(z0)]]
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and

) l2a = 2 < £ w0 — Qzo)l
where,

(10) d= (2r)P 1q.

Proof. By the definition of r we have 1 € U(zo,r). Assume zy € U(zg,r) for
k=0,1,...,n. Then z,4,; is defined by (7). By (5) and (7) we can have in turn:

lzni1 — znl = |1Q(zn) — Qxn—1)|l < ql|lTn — Zn-1]?
< qll2n = 2nc P2 — B0
< q(|lzn = ol + llzo — Zno1 )P~z — Tnil
(11) < q(2r)P an = Zn-all = dllzn — Taoa |l < 4w - zoll,

which shows (8).

Moreover for all m = 0,1,2,... we have:

[€ntm = Znll < [1Tnim — Tnsm-1l + | Zrtm-1 = Togm—2l + -+ [Tns1 — @all
< (@ ) oo — Qo)

(12) < = o~ Qlao)).
It follows from (10) and (12) that sequence {z,} is Cauchy in a Banach space X,
and as such it converges to some z* € U(xg,r) (since U(zo,) is a closed set). By
letting m — oo in (12) we get (9). In particular for n = 0, and m = n+1 (12) gives
Tnt+1 € U(zo,r). That is z, € U(xo,r) for all n > 0.

Furthermore by letting n — oo in (7) we get z* = Q(z*) since operator Q is
continuous by (5).

To show uniqueness, let y* € U(zg,r) be a fixed point of @ then by (5) we get
for x* # y*

2" =yl = [Q(z") = QU < qll” — y*|IP < dl|z" — 7|
<flz* =y,

which is a contradiction.
Hence we deduce:

That completes the proof of Theorem 1.
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Remark 1. Conditions can be given to guarantee the existence and uniqueness of

r. Indeed define scalar function h by

(13) h(t) =2P71qtP —t+ 1, |lzo — Q(zo)|| < 1.
By the intermediate value theorem (6) has a solution r in I if
1
(14) h <§q1~:v) <0
or if
. -1
(15) NS 5q77(1-q¢7)=m
and
(16) g>1

This solution is unique if

(17) n<m
where,

. 1 L
(18) = min § no, 5(pg) ™7 ¢ -

Indeed if (16) and (17) hold, it follows that
h’(t) <0 on L=[pm]Cl

Therefore h crosses the t-axis only once (since h is nonincreasing on I).

Set

(19) 7 = min{n, 72}
where,

(20) = (2°g) ™.
It follows from (13) and (19) that if

(21) n <,
then

(22) r < 2n=ry.

We can state and prove the main semilocal convergence theorem for Newton’s
method involving a p-(PBA) (p > 1) approximation for f.



ON THE CONVERGENCE OF NEWTON’S METHOD 17

Theorem 2. Let X and Y be Banach spaces, D a closed conver subset of X,
Zo € D, and F a continuous operator from D into Y. Suppose that F has a p-
(PBA) approzimation at . Moreover assume:
6(A(zo, "), D) > 0o > 0;
(23) 20y < 8o, (1 — 26907 'ro)don — £nP >0
where,
6 = do(A(zo, ), D);
(9) in [2, Lemma 1] and conditions (16), (21) in Remark 1 hold for a = &yn and
g =£(8 — 260)71;
for each y € U(0,6on) the equation A(xo,x) =y has a solution x;
the solution T(xo) of A(xo,T{(xo)) =0 satisfies ||xo — T(zo)| <, and
U(x()v TO) g Da
where vy s given by (25).
Then the Newton iteration defining T,y1 by
A(In;xn—l—l) =0
remains in U(xo,To), and converges to a solution x* € U(xg,70) of equation F(x) =

0, so that estimates (8) and (9) hold.

Proof. It is identical to the proof of Theorem 2 in [3].

Remark 2. For the study of the uniqueness of solution z* we refer the reader to
the corresponding Remark 2 in [3].

Remark 3. Our Theorem 2 compares favorably with Theorem 3.2 in [6, p. 298].
First of all the latter theorem cannot be used when e.g. p € [1,2) (see the example
that follows). In the case p = 2 our condition (23) becomes for dy = d;

(24) ho = 051 (€ + 4bo)n < 1
where as the corresponding one in [5] becomes
(25) h =465 < 1.

Clearly (24) is weaker than (25) if

L4
b = 3

But % can be arbitrarily large [2]. Therefore our Theorem 2 can be used in cases
when Theorem 3.2 in [6] cannot when p = 2.

(26)
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Example 1. Let X = R™!, m > 2 an integer and define matrix operator Qon X
by

(27) Q(Z) :M+M1(Z), &= (21,22,...,Zm._1),
where M is a real (m — 1) x (m — 1) matrix,
0 L F 7,
M = P
&) = { & i=j

and e.g. p€[1,2).

Operators @ of the form (27) appear in many discretization studies in connection
with the solution of two boundary value problems [1]. Clearly no matter how oper-
ator A is chosen the conditions in Definition 2.1 in [6, p. 293] cannot hold, whereas
our result can apply.
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