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EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS
OF CODIMENSION 2

DAE Ho Jin

ABSTRACT. In this paper we study the geometry of Einstein half lightlike subman-
ifolds M of a Lorentz manifold (M(c), §) of constant curvature ¢, equipped with an
integrable screen distribution on M such that the induced connection V is a metric
connection and the operator A, is a screen shape operator.

1. INTRODUCTION

In this paper we develop a theory on differential geometry of Einstein half light-
like submanifolds (M, g) of a semi-Riemannian manifold (M, §) of constant index q.
For this purpose, as the first step, we introduce the induced Ricci curvature tensor
Ric of M, appear in [6]. In general, the induced Ricci type tensor R(*:2) defined
by the method of the geometry of the non-degenerate submanifolds ([1], [10]), is
not symmetric ({4], (5], [8]). Therefore R(*?) has no geometric or physical meaning
similar to the Ricci curvature of the non-degenerate submanifolds and it is just a
tensor quantity. Hence we need the following definition: A tensor field R of
lightlike submanifolds M, given by (29), is called its induced Ricci tensor if it is
symmetric. A symmetric R(®2) tensor will be denoted by Ric. In chapter 3, we find
the geometric conditions so that the tensor field R(®? is Ricci tensor Ric.

A next step is to find screen distributions for lightlike submanifolds of codimen-
sion 2 ([2], [4]). There are two such classes of submanifolds explained as follows:
Let (M, g) be a codimension 2 lightlike submanifold of a semi-Riemannian manifold
(M, g) of constant index g. Then the radical distribution Rad (TM) = TM NTM~*
is a vector subbundle of the tangent bundle TM, of rank 1 or 2, where TM+ is the
normal bundle of M, of rank 2. Thus there exists a complementary non-degenerate
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distribution S(T'M) of Rad (T M) in TM, called a screen distribution on M. Then
we have the following orthogonal decomposition

(1) TM = Rad(TM) ®on S(TM),

where the symbol @, denotes the orthogonal direct sum. As the geometry of
lightlike submanifolds is mainly based on the screen distribution S (T'M), we denote
such a lightlike submanifold by (M, g, S(TM)). The submanifold (M, g, S(TM)) is
called a half lightlike (or coisotropic) submanifold if rank(Rad (TM)) =1 (or 2).

The purpose of this paper is to study the geometry of Einstein half lightlike
submanifolds M of a Lorentz manifold (M(c), ) of constant curvature ¢, equipped
with an integrable screen distribution S(TM) on M such that the induced connection
V is a metric connection and the operator A, is a screen shape operator. This paper
contains several new results which are related to the symmetric Ricci tensor or the
result: M is a locally product manifold M = C x M, x Mg, where C is a null curve,
and M, and Mg are leafs of some integrable distributions of M.

2. HALF LIGHTLIKE SUBMANIFOLS

Let (M,g,5(TM)) be a half lightlike submanifold of an (m 4 3)-dimensional
semi-Riemannian manifold (M, g) of constant index ¢g. Denote by F(M) the algebra
of smooth functions on M and by I'(E) the F(M) module of smooth sections of a
vector bundle E over M. We use the same notation for any other vector bundle.
Then there exist vector fields £ € I'(Rad(TM)) and u € I'(D) such that

g v) =0,  glu,u #0, Yvel(TM),

where D is a supplementary distribution to Rad (T M) in TM+* of rank 1, called a
co-screen distribution on M. Choose u as a unit vector field with g(u, u) = e = £1.
Consider the orthogonal complementary distribution S(TM)* to S(TM) in TM,
of rank 3. Certainly ¢ and u belong to I'(S(TM)'). Hence we have the following
orthogonal decomposition

AS(I‘)M)‘L =D @orth D-La

where D+ is the orthogonal complementary to D in S(TM)™, of rank 2. Then, for
any null section £ of Rad(TM) on a coordinate neighborhood U C M, there exists
a uniquely defined vector field N € T(ntr(TM)) C T(D1) satisfying

2) §(&N)=1, §(N,N)=§N,X)=g(N,u)=0, "X T (S(TM)l)
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if and only if N is given by
1 g(V, V)
(3) N = - {V - A f} )
g v) 2g(¢, V)
where V' is a vector field in D+ C TM such that (&, V) # 0. We call ntr(TM), N

and tr(TM) = D @open, ntr(T M) the null transversal vector bundle, null transversal

vector field and transversal vector bundle of M with respect to S(T M) respectively.
Then TM is decomposed as follows;

TM =TM & tr(TM) = {Rad(TM) & tr(TM)} Gopen S(TM)
(4) = {Rad(TM) ® ntr(TM)} @orn D @orin S(TM).

Let V be the Levi-Civita connection on M, P the projection morphism of I'(T M)
on ['(S(TM)) with respect to the decomposition (1) and 7 a 1-form such that

(5) n(X)=g§(X, N), "X e T(TM).

Then the local Gauss and Weingartan formulas are given by

(6) VxY =VxY + B(X, Y)N + D(X, Y)u,
(7) VxN = —AnX + 7(X)N + p(X)u,

(8) Vxu=—-A,X + ¢(X)N,

9) VxPY = VxPY + C(X, PY),

(10) Vx§=—-A; X — 7(X),

for any X, Y € I'(TM), where V and V* are induced linear connections on TM
and S(T'M) respectively, the bilinear forms B and D on M are called the local
transversal second fundamental form and local screen second fundamental form on
T M respectively, C is called the local radical second fundamental form on S(TM).
AN, AZ and A, are linear operators on I'(TM) and 7, p and ¢ are 1-forms on TM.

Since V is torsion-free, V is also torsion-free and both B and D are symmetric.
From the facts B(X, Y) = g(VxY, &), we know that B is independent of the choice
of a screen distribution. Also from D(X, Y) = €§(VxY, u), we have

(11) B(X,€6) =0, DX, ¢) = —ep(X), "X eT(TM).

But we note that B, C, p, ¢ and 7 depend on the section & € I'(Rad (TM)|y).
Because if we take £ = o for some function «, then N = é—N and from (6), (9), (7)
and (8) we obtain B=aB, C=1C, p= 1p, ¢ =a¢and 7(X) = 7(X)+ X(Ina).
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Taking the exterior derivative d on both sides of the last equation, we have dr = d7.
The induced connection V on T'M is not metric ([2}, [4]) and satisfies

(12) (Vx9)(Y, Z) = B(X, Y)n(Z) + B(X, Z)n(Y), " X, Y, Z e T(TM).

But the connection V* on S(T'M) is metric. It is well known that the second
fundamental forms and the shape operators of a non-degenerate submanifold are
related by means of the metric tensor field. Contrary to this, in the case of lightlike
submanifolds, some of the second fundamental forms and the shape operators are
interrelated by means of the metric tensor field. More precisely, the above three local
second fundamental forms of M and S(T'M) are related to their shape operators by

(13) B(X,Y) = g(AgX, Y), g(AgX, N) =0,
(14) C(X, PY)=g(ANX, PY), J(AnX, N) =0,
(15) eD(X, PY) = g(A, X, PY), G(A X, N) = ep(X),
(16) eD(X,Y) = g(AuX, Y) - o(X)n(Y). |

We show, by (13) and (14), that the operators AZ and Ay are shape operators
related to B and C' respectively, called the radical shape operator and transversal
shape operator on TM and S(TM) respectively and both are I'(S(T'M))-valued.
From (13), the transversal shape operator A is real symmetric and satisfies

(17) Aze =0,

that is, £ is an eigenvector field of A corresponding to the eigenvalue 0. From (9)
and (14), we have

g(AnX, Y) - g(X, ANY) = C(X, Y) - C(Y, X) = 5([X, Y]),

for any X, Y € I'(S(TM)). Thus the radical shape operator Ay is a self-adjoint on
['(T'M) with respect to g (or equivalently, the radical second fundamental form C
is symmetric) if and only if the screen distribution S(T'M) is integrable.

Theorem 1. Let (M, g, S(TM)) be a codimension 2 half lightlike submanifold of a
semi-Riemannian manifold (M, §). Then the following assertions are equivalent:
(1) A, is a self-adjoint on I'(T' M) with respect to g.
(2) D satisfies D{X, &) =0 for all X € T(S(TM)).
(3) ¢(X) =0 for all X € I'(S(TM)).
(4) A& = ep(E)€ i.e., the radical distribution Rad(TM) is invariant vector
bundle under A,.
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(5) eD(X,Y) =g(AuX,Y) — ¢(En(X)n(Y) for all X, Y € T(TM).
Proof. From (16) and the fact that D are symmetric, we have
9(AuX, Y) = g(X, AY) = ¢(X)n(Y) - ¢(Y)n(X), "X, Y € I(TM).
Replace Y by ¢ in this equation and using the fact that X = PX + n(X)&, we have
9(Aug, X) = - ¢(PX).
Also, from the first equation in this proof, we have
9(AuPX, PY) — g(PX, A PY) = g(Au§, §) — 9(§, Au§) =0.

(1) & (3). If (PX) = 0 for all X € I'(TM), then we have g(£, A, X) —
9(Aué, X) = ¢(PX) = 0. Thus g(4,X,Y) = g(X,AY) for all X, Y € I'(TM),
i.e., A, are self-adjoint on I'(T'M) with respect to g. Conversely, if A, are self-
adjoint on ['(TM) with respect.to g, then we have ¢(X)n(Y) = ¢(Y)n(X) for all
X,Y €eI'(TM). Replace X by PX and Y by ¢ in this equation, we have

6(PX) =0

for all X e I'(TM).

(2) & (3). By the second equation of (11), we have (2) < (3).

(3) & (4). If p(PX) =0 for all X € I'(TM), from the second equation in this
proof, we have P(A,£) = 0. In general, since 4, X = ep(X)é + P(A,X), we get

Au€ = 5P(§)§

Conversely if A,§ = ep(§)§, from the second equation in this proof, we have ¢(PX) =
0.

(3) & (5). If ¢(PX) =0, then ¢(X) = n(X)¢(¢). Thus, from (16), we get
eD(X,Y) = g(AuX, Y) = ¢(E)n(X)n(Y)
for all X, Y € I'(TM). From this equation and (16), the converse is also true. O

Definition 1. A self-adjoint A, such that ¢ = 0 on T'(Rad (T'M)) called the screen
shape operators of M.

Theorem 2. Let (M, g, S(TM)) be a codimension 2 half lightlike submanifold of a
semi-Riemannian manifold (M, §) of constant index q. Then the operator Ay, given
by (8), is a shape operator of M if and only if the 1-form ¢ vanishes on any U. In
this case, § is an eigenvector field of A, corresponding to the eigenvalue ep(£).
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Denote by R and R the curvature tensors of the Levi-Civita connection V on
M and the induced connection V on M respectively. Using the Gauss-Weingarten
equations for M and S(T'M), we obtain the Gauss-Codazzi equations for M :

g(R(X, Y)Z, PW)=g(R(X,Y)Z, PW)
+ B(X, Z)C(Y, PW) - B(Y, Z)C(X, PW)
(18) +e{D(X, Z)D(Y,PW) — D(Y, Z)D(X, PW)},
§(R(X,Y)Z, &) = §(R(X,Y)Z, §)
+D(Y, Z)¢(X) — D(X, Z)p(Y)
= (VxB)(Y, Z) - (VyB)(X, Z)
+ B(Y, Z)7(X) - B(X, Z)r(Y)

(19) +D(Y, Z)¢(X) - D(X, Z)¢(Y),
§(R(X,Y)Z, N)=g(R(X,Y)Z, N)

(20) +e{D(X, Z)p(Y) - D(Y, Z)p(X)},
3(R(X, Y)Z, u) = {(VxD)(Y, Z) - (VyD)(X, Z)

(21) +B(Y, Z)p(X) - B(X, Z)p(Y)},

J(R(X, Y)E, N) =g(R(X, Y)E, N) + p(X)¢(Y) — p(Y)p(X)
= g(A;X, ANY) — g(ALY, AnX) = 2d7(X, Y)

(22) + p(X)o(Y) — p(Y)$(X),
§(R(X, Y)E, u) = g(A4; X, AY) — g(AuX, AZY) - 2d¢(X, Y)
(23) + $(X)r(Y) = ¢(Y)7(X),
G(R(X, V)N, u) = e{D(Y, AyX) — D(X, ANY) + 2dp(X, Y)
(24) + p(X)r(Y) — p(Y)r(X)},
3(R(X,Y)PZ, PW) = g(R*(X, Y)PZ, PW)
(25) +C(X, PZ)B(Y, PW) — C(Y, PZ)B(X, PW),

for any X, Y, Z, W € T(T'M)y) where R* is the curvature tensors of the induced
connection V* on S(TM).
The Ricci curvature tensor, denoted by Ric, of M is defined by

(26) Ric(X,Y) = trace{Z — R(X, Z)Y},

for any X, Y € I'(TM). Locally, Ric is given by
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m+3
Ric(X,Y) Zezg (E;, X)Y, E)),

where {E1, ..., En3} is an orthonormal frame field of TM and ¢; (= #1) denotes
the causal character of respective vector field E;. M is called Ricci flat if its Ricci
tensor vanishes on M. If dim(A) > 2 and

Ric =73, # is a constant,
then M is an Einstein manifold. For dim(M) = 2, any M is Einstein but ¥ is not

necessarily constant. The scalar curvature 7 is defined by
m+3 ~
(27) 7= € Ric(E;, E).
i=1
Using the definition of Einstein manifold in (27) implies that M is Einstein if and
only if 7 is constant and

— F
Ric= —— 3.
e m+3g

3. Ricct CURVATURE TENSORS

Consider the induced quasi-orthonormal frame {§; W,} on M, where RadTM =
Span{&} and S(TM) = Span{W,} and let E = {&, W,;u, N} be the corresponding
frame field on M. Then, by using (26), we obtain

™m
Ric(X,Y) =Y e g(R(Wa, X)Y, Wo) + g(R(§, X)Y, N)
a=1
(28) +e§(R(u, X)Y, u) + g(R(N, X)Y, &).
Let R(®2) denote the induced tensor of type (0, 2) on M given by
(29) ROY(X,Y) = trace{Z — R(X, Z2)Y}, "X,Y e (TM).

Using the induced quasi-orthonormal frame {£; W,} on M, we obtain
R®3(X,Y) Zeag (Wa, X)Y, Wa) +§(R(¢, X)Y, N).

Substituting the Gauss-Codazm equations (18) and (20) in (28), then, using the
relations (13) and (14), we obtain

ROD(X,Y)= Rie(X,Y) + B(X, Y)trAy + D(X, Y)trA,
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- 9(ANX, A7Y) — eg(AuX, AY) + p(X)o(Y)
(30) - §(R(€, Y)Xa N) - eg(R(u, Y)X7 u)7
for any X, Y € I'(TM). This shows that R(:?) is not symmetric. A tensor field
R©:2) of M, given by (29), is called its induced Ricci tensor if it is symmetric. From
now and in the sequal, a symmetric R(%2 tensor will be denoted by Ric.
Using (30) and the first Bianchi’s identity, we obtain
RO2(X,Y) = ROD(Y, X) = g(A¢X, AnY) — g(A;Y, AN X)
+p(X)B(Y) — p(Y)$(Y) - G(R(X,Y)E, N).
From this equation and (22), we have

RO, 2)(X, Y) - R(O,Z)(Y’ X)=2d7r(X,Y).

Theorem 3 ([4]). Let (M, g, S(TM)) be a codimension 2 half lightlike submanifold
of a semi-Riemannian manifold (M, §). Then the tensor R©? is a symmetric Ricci
tensor Ric, if and only if, each 1-form 7 is closed, i.e., dr =0, on anylUd C M.

If the ambient manifold (M, §) is a semi-Riemannian manifold (M (c), g) of con-
stant curvature ¢, then we have R(£, Y)X = cg(X, Y)¢, R(u, X)Y = cg(X, Y)u
and Ric(X,Y) = (m + 2)cg(X, Y), Thus we obtain

ROI(X, V) =meg(X, Y) + B(X, Y)trAy + D(X, Y)trA,
(31) - 9(ANX, ATY) — eg(AuX, AY) + p(X)p(Y).
Any geodesic of M with respect to an induced connection V is a geodesic of

M with respect to V, we say that M is a totally geodesic. In this case, we have
B=D=A;=¢=0and A,X = ep(X)¢ on any U C M. Thus we have

Theorem 4. Any totally geodesic codimension 2 half lightlike submanifold M of
a semi-Riemannian manifold (M(c), §) of constant curvature ¢ admits an induced
symmetric Ricci tensor. In particular, M is Einstein manifold.

Now suppose that the induced connection V on M is a metric. It follows from
(12) and (13) that both B and A; vanish on M. Then, using (19), we obtain

D(X, 2)$(Y) = D(Y, Z)$(X),
for any X, Y € I'(TM). From this equation and (16), we have

9 (p(V)AX — ¢(X)AY, Z) =0, YZ eT(TM).
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Thus ¢(X)A,Y — ¢(Y)A,X € T(Rad (TM)). While, using (15) and (22), we have

9 (@(Y)AuX = ¢(X) ALY, N) = e{p(X)p(Y) — p(Y)$(X)} = 2edr(X, Y);
P(Y)AuX = d(X)AY = e{p(X)o(Y) — p(Y)$(X)}¢ = 2edr (X, Y)E.

Set A7 X = A, X —ep(X)E, then A% is T'(S(TM))-valued real symmetric and satisfies
P(Y)A,X = o(X)ALY.

The type number t(x) of M at any point z is the rank of A,. Let t(x) > 2 for any
x € M. Suppose there exists a vector field X, € T'(TM) such that ¢(X,) # 0, then
AYY = fA; X, for any Y € T(T M), where f is a smooth function. It follows that
the rank of A} is 1. It is a contradiction as rank A, > 2. Thus we have ¢ = 0 on U.

Theorem 5. Let (M, g, S(TM)) be a codimension 2 half lightlike submanifold of a
semi-Riemannian manifold (M (c), §) of constant curvature c such that the induced
connection V on M is a metric connction. If the type number satisfies t(x) > 2 for
any z € M, then each 1-form ¢ from (8) vanishes on anyU C M. Consequently A,

is a screen shape operator of M.

From Theorem 5, we know the condition that the operator A, is a screen shape
operator on M is very weak condition. If M is totally geodesic, then #(z) = 1 for
any £ € M. Assume that the induced connection V on M is a metric connection
and the operator A, is a screen shape operator on M. It follow that B, Af and ¢
vanish on any 4 C M. Thus, from (31), we have

Theorem 6. Let (M, g, S(TM)) be a codimension 2 half lightlike submanifold,
equipped with a metric connection V and a screen shape operation A,, of a semi-
Riemannian manifold (M(c), §) of constant curvature c. Then the tensor field R(:?)

of the induced connection V is a symmetric Ricci tensor Ric.

4. FINSTEIN SUBMANIFOLDS

Let M be an Einstein half lightlike submanifold of a Lorentz manifold (M(c), g)
of constant curvature ¢, equipped with an integrable screen distribution S(T'M) on
M such that the induced connection V is a metric and A, is a screen shape operator.
Then S(T'M) is a Riemannian vector bundle and e = 1. Set A5 X = 4, X — p(X)¢,
then A7 is also a shape operator of M related to the local screen second fundamental
form D and satisfies
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(32) D(X,Y)=g(A,X,Y), FAX, N)=0, A£=0.

From the third equation of (32), we know that £ is an eigenvector field of A; corre-
sponding to the eigenvalue 0. Since A}, is ['(S(T'M))-valued real symmetric, A7, have
m real orthonormal eigenvector fields in S(T'M) and is diagonalizable on S(T'M).

Consider a frame field of eigenvectors {£, Ey, ..., Ep} of Al such that {E;}; is
an orthonormal frame field of S(TM). Then

AL E;=ME;, 1<i<m.

Since V is a metric connection and A, is a shape operator of M, we have B = Ag =
¢ =0o0n M. Also, since Ric = vg, the equation (31) reduces to

(33) g(A X, AYY) - sg(ALX, Y) + (v —mec)g(X, Y) =0,

where s = trA4, = trA; + p(€). Put X =Y = E; in (33), ); is a solution of

(34) z? — sz + (v — mc) = 0.

The equation (34) has at most two distinct solutions which are real valued functions.
Assume that there exists p € {0, 1, ..., m} such that \; = --- = X, = o and
Ap+1 = -+ = Ay = [3, by renumbering if necessary. From (34), we have

s=a+f=pa+(m—p)g+p&), af3 = (y — me).
Now we consider the following four distributions Dy, Dg, D}, and D on M:

I'(Dy) ={X €eT(TM) | A X =aPX}, D=Dy,n S(TM),

[(Dg) ={U e I(TM) | AU =BPU}, Dj=Dgn S(TM).
Note that Ey, ..., E, € T'(Dg) and Epy1, - .., Em € T(D3). The equation (34) has
only one solution <= a =0 <= Do = Dg (= TM). If 0 < p < m, then
Dy # Dg and Dy N Dg = Rad (TM). In case m > 2 and Dy # Dg: If p = 0, then
o is not an eigenvalue of A}, but a root of (34) and Dy = Rad(TM); Dg=TM. If

p = m, then [ is not an eigenvalue of A}, but a root of (34) and Do =TM; Dg =
Rad (TM).

Lemma 1. If D, # Dg, then Dy L, Dg and Dy L, Dpg.

Proof. If 0 < p < m, then we have A} PX = A3 X = aPX for any X € I'(D,) and
Ay PU = A;U = BPU for any U € I'(Dg). Thus the projection morphism P maps

I'(Do) onto (D) and T'(Dg) onto I'(D3). Since PX and PU are eigenvector fields
of the real symmetric operator A}, corresponding to the different eigenvalues o and



EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS OF CODIMENSION 2 41

B respectively. Thus PX 1 PU and g(X, U) = g(PX, PU) = 0, that is, Do L, Dg.
Also, since D(X, U) = g(A: X, U) = ag(PX, PU) =0, we get

D(D,, Dg) =0,
that is, Dy 1, Dg. On the other hand, if p = 0 or p = m, then
Dy =Rad(TM); Dg=TM
or
Do =TM; Dg= Rad(TM)
respectively. Thus we have D, L, Dg and Dy L, Dg. O

Lemma 2. If Dy # Dg, then TM = Rad(TM) @opeh DS, @ortn D3. If Do = D,
then TM = Rad(TM) ®oren DS, Gopen {0}

Proof. If 0 < p < m, since {E;}i1<i<p and {Eq}pti<a<m are vector fields of Dg
and Dj respectively and Dj, and Dj are mutually orthogonal vector subbundle of
S(TM), we show that DS and Dj are non-degenerate distributions of rank p and
rank (m — p) respectively and Dj, N Dj = {0}. Thus we have

S(TM) = Dy, ®orth Dg

If Dy # Dg and p =0, then D$, = {0} and D% = S(TM). If Dy # Dg and p = m,
then D = S(T'M) and Dj = {0}. Also we have

S(TM) = D5, ©oren D

Next, if Dy = Dg, then D = Dj = S(T'M). Thus, from (1), we have this lemma.
O

Lemma 3. Im(A] — aP) C ['(D3); Im(A}, — 8P) C I(D3).

Proof. From (33), we show that (A%)? — (a + B)AL + e8P =0.1f 0 < p < m. Let
Y € Im(A}, — aP), then there exists X € I'(T'M) such that

Y = (A% — aP)X.

Then (A4}, — BP)Y =0 and Y € I'(Dg). Thus Im(A}, — aP) C T'(Dg). Since the
morphism A}, — «P maps I'(TM) onto I'(S(TM)), we have

Im(A;, — aP) C T(Dp).

By duality, we also have
Im(A}, — BP) Cc T'(D;).
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While, if p = 0, then, since D} = {0}; Dj = S(T'M) and Dg = TM, we have
Im(A; — aP) CT(S(TM)); Az X = pPX
for all X € I(TM), that is, Im(A}, — BP) = {0} or if p = m, then, since D} =
S(TM); D = {0} and D, = TM, we have A} X = aPX for all [(TM), that is,
Im(A; — aP) = {0}; Im(A}, — BP) C T(S(TM)).
O

Lemma 4. If D, # Dg, then both D, and Dg are integrables. In particular, if
S(TM) is integrable, then D¢, and Dj are also integrables.

Proof. If Dy # Dg, for any X, Y € I'(D,) and any Z € I'(T'M), we have
(VxD)Y, Z) = X (ag(PY, Z)) — g(A;VxY, Z) — ag(PY, VxZ)
= (Xa)g(PY, Z) — g((A;, —aP)VxY, Z).
Using this and the fact that (VxD)(Y, Z) = (VyD)(X, Z), we have
(35) 9 (A, —aP)[X, Y], Z) = (Xa)g(PY, Z) — (Ya)g(PX, Z).
If we take Z = U € T'(Dg), then we have
9((A;, —aP)X,Y],U)=0.
Since the distribution Dj is non-degenerate and Im(4; — aP) C T'(Dj), we have
(4, —aP)[X,Y]=0.

Thus [X, Y] € T(D,) and D, is integrable. By duality, Dg is also integrable. On the
other hand, if S(T M) is integrable, for any X, Y € I'(D%), we have [X, Y] € T'(D,)
and [X, Y] € T(S(TM)). Thus [X, Y] € T'(D5) and Dj, is integrable. Also Dj is
integrable. O

Theorem 7. Let (M, g, S(TM)) be a codimension 2 Einstein half lightlike sub-
manifold of a Lorentz manifold (M(c), §) of constant curvature c, equipped with an
integrable screen distribution S(TM) on M such that the induced connection V is
a metric connection and the operator A, is a screen shape operator. Then M is a
locally product manifold C x My x Mg, where C is a null curve, and My and Mpg
are leafs of some integrable distributions of M.

Lemma 5. If 0 < p < m, then a and § are constants along both D, and Dg.
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Proof. From (35), for X, Y € I'(D,) and any Z € T(T M), we get
do(Y)g9(PX, Z) = da(X)g(PY, Z).
Since S(T'M) is non-degenerate, we have
da(Y)PX = da(X)PY.

Now suppose there exists a vector field X, € I'(D,) such that da(X,) # 0 at each
point z € M, then PY = §PX, for any Y € I'(D,), where § is a smooth function.
It follows that all vectors from the fiber (D,), are colinear with (PX,),. It is a
contradiction as dim ((Dy),) = p+ 1 > 1. Thus we have do = 0 on D,. By duality,
we also have d3 = 0 on Dg. These mean that « is a constant along each vector fields
in D, and § is a constant along each vector fields in Dg. While o and (3 satisfy

af = (v — mc) which is a constant. Thus we have this lemma. O
Lemma 6. If0 <p <m, for any X € T(Dy) and any U € I'(Dg), we have
(36) VxU €T(Dg);  VyX e(Dy).
Proof. From (21), we get

(VxD)(U, Z) = (VyD)(X, Z), “ZeT(TM).
Using this equation and Lemma, 5, we have

9((Ay - BP)VxU, Z) = g (A}, - «P)Vu X, Z),
for any Z € I'(T'M). Since S(T M) is non-degenerate, we have

(A% — BP)VxU = (A’ — aP)Vy X.

Since the left term of the last equation is in ['(D?) and the right term is in (D3)
and Dg N Dj = {0}, we have

(Ay, —BP)VxU = 0, (A;, —aP)VyX = 0.
This imply that VxU € I'(Dg) and Vy X € ['(D,). O
Lemma 7. If0 <p <m, for any X, Y € I'(D,) and U, V € T'(D3), we have
(37) 9(VyX, U) =0; 9(X, VyU) =0.
Proof. Since g(X, U) = 0 and the connection V is a metric one, we have
9(Vy X, U)=-Vy(g(X, U)) +g(Vy X, U) + g(X, VyU) = 0,
9(X, VyU) = - Vy(g(X, U)) + g(VvX, U) + g(X, VyU) = 0.
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Lemma 8. If0 < p < m, then we have c = —af and v = (m — 1)c.

Proof. Using (36) and (37), for any X € I'(D,) and any U € I'(Dg), we have
g(R(X, U)U, X) =g(VxVyU, X).

From the second equation of (37), we know that VyU has no component of D,,.
Since the projection morphism P maps I'(D,) onto I'(Dg) and I'(Dg) onto I'(D3),
and S(TM) = D, @oren Dj, we have

VuU = P(VyU) + n(VyU)e; P(VyU) € T(DY).
It follows that |
(38) o(R(X, U)U, X) = 0.
From (18) and (38), we have
(c+eB)g(X, X)g(U, U) = 0.

Thus ¢ = — af. Since af = (y — mc), we show that v = (m — 1)e. O

Note. Let D, # Dg # S(TM). Thenc=0 < a=00x =0 < y=0
(unless m = 1). In this case, the ambient manifold M is a semi-Euclidean manifold
and the Ricci curvature Ric of M is flat.

Theorem 8. Let (M, g, S(TM)) be a codimension 2 Einstein half lightlike sub-
manifold of a Lorentz manifold (M (c), §) of constant curvature c, equipped with an
integrable screen distribution S(T'M) such that the induced connection V is a metric
one and the operator A, is a screen shape one. Then M is a locally product manifold
C x My x Mg, where C is a null curve, M, and Mg are leafs of some integrable
distributions of M such that

(1) If y # mc: My and Mg are p and (m — p)-dimensional Riemannian mani-
folds of constant curvatures ; M is totally umbilical and My is a point when-
ever p =0 or M is totally umbilical and Mg is a point whenever p = m.

(2) If v = me: M, is a p-dimensional Euclidean manifold or m-dimensio-
nal Riemannian manifold of the constant curvature c; Mg is an (m — p)-
dimensional Riemannian manifold of constant curvature; M is totally um-
bilical and M, is a point whenever p = 0 or M is totally geodesic and Mg
is a point whenever p = m. ’
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Proof. (1) Let v # mec: In case (trd,)? # 4(y — mc). The equation (34) has two

non-vanishing distinct solutions a and 8. From (18) and (25), we have
R*(X,Y)Z = (c+ o®){g(Y,Z)X — g(X,Z)Y} on D},
R*(U V)W = (c+ 8){g(V, W)U — g(U, W)V} on Dj.

If 0 < p < m, then « and 3 are non-zero distinct constants on both D, and Dg.
Thus the leafs M, and My are Rienannian manifolds of constant curvatures (c+ aQ)
and (c+ (3?%) respectively and M is a locally product C x My x Mg, where C is a null
curve and M, and My are Riemannian manifolds of constant curvatures. If p = 0,
then DS = {0}; D% = S(TM) and D(X,Y) = B9(X,Y) for all X,Y € I'(TM),
thus M is totally umbilical, M, is a point and Mp is an m-dimensional Rienannian
manifold of curvature (¢ + 8%). If p = m, then D = S(TM); Dj = {0} and
D(X,Y) =ag(X,Y) for all X, Y € T(TM), thus M is totally umbilical, M, is an
m-dimensional Rienannian manifold of curvature (¢ + a?) and Mg is a point.

In case (trAy)? = 4(y — me). The equation (34) has only one non-zero constant
solution . From (18) and (25), we have

RYX,Y)Z = (c+a>){g(Y,Z2)X — g(X,Z)Y} on S(TM).

Thus M is a locally product C x M* x {z}, where C is a null curve and M™ is a
Riemannian manifolds of constant curvature (¢ + o?). Since D(X,Y) = ag(X,Y)
for all X, Y € I'(TM), thus M is totally umbilical.

(2) Let v = mec. In case trA, # 0. The equation (34) reduces to z(z — s) = 0.
Let « =0 and 8 = s. If 0 < p < m, then, by Lemma 8, we have ¢ = v = 0. Thus
the leaf M, is a Euclidean manifold and the leaf Mg is a Rienannian manifold of
constant curvature s2. If p = m, then we have A = 0 or equivalently D = 0. Thus
M is totally geodesic in M. Since D5 = S(TM); Dj = {0}, the leaf M, of Df is a
m-dimensional Riemannian manifold and the leaf Mg of Dj is a point. Now consider
the frame fields of eigenvectors {¢, Ey, ..., E,,} of A% such that {Eq, ..., En} is
an orthonormal frame field of S(TM). From (18) and (25), we have

9(R(E;, E;)E;, E;) = g(R*(E;i, Ej)Ej, E;) = c.
Thus the sectional curvature K, of the leaf M, is given by
* Ei) j E'a Ez
9(Ei, Ei)g(Ej, Ej) — g*(Ei, Ej)
Thus M is alocally product Cx M, x Mg where C is a null curve, M, is a Riemannian
manifold of the curvature ¢ and Mg is a point. If p = 0. Since D}, = {0}; Dj =
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S(T'M) and D(U,V) = Bg(U,V) for all U, V € I'(T M), M is totally umbilical, M,
is a point and Mg is an m-dimensional Riemannian manifold of constant curvature

(c+ 8%).

In case trA, = 0. The equation (34) has only trivial solution 0. Thus M is a

locally product C x M* x {z}, where C is a null curve and M* is an m-dimensional

Riemannian manifolds of constant curvature c. Since D(X,Y) =0for all X, Y €
[(TM), thus M is totally geodesic. O
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