ON THE PARALLELOGRAM LAW AND BOHR'S INEQUALITY IN G-INNER PRODUCT SPACES

YEOL JE CHO^a, VERA ČULJAK^b AND JOSIP PEČARIĆ^c

ABSTRACT. In this paper, we give some results which are in connection to the parallelogram law in G-inner product spaces and also prove some results related to Bohr's inequality in G-inner product spaces.

1. Introduction

Let X be a linear space over the complex numbers and $\|\cdot,\cdot\|$ be a real-valued function defined on $X \times X$ and satisfying the following conditions:

- $(2N_1) \|a, b\| = 0$ if and only if a and b are linearly dependent,
- $(2N_2) ||a,b|| = ||b,a||,$
- $(2N_3)$ $\|\alpha a, b\| = \alpha \|a, b\|$ for any complex number α ,
- $(2N_4) ||a+a',b|| \le ||a,b|| + ||a',b||.$

Then $\|\cdot,\cdot\|$ is called an 2-norm on X and $(X,\|\cdot,\cdot\|)$ is called a linear 2-normed space.

Let X be a linear space over the complex numbers and $(\cdot, \cdot|\cdot, \cdot)$ be a complex-valued function on $X \times X \times X \times X$ satisfying the following conditions:

- (GI_1) $(a, b \mid a, b) = 0$ if and only if a and b are linearly dependent,
- $(GI_2) (a, b \mid a, b) \ge 0,$
- (GI_3) $(a, b \mid a, b) = (b, a \mid b, a),$
- (GI_4) $(a, b \mid c, b) = \overline{(c, b \mid a, b)},$
- (GI_5) $(\alpha a, b \mid c, b) = \alpha(a, b \mid c, b)$ for any complex number α ,
- (GI_6) $(a + a', b \mid c, b) = (a, b \mid c, b) + (a', b \mid c, b)$ for all $a, a', b, c \in X$.

Then $(\cdot, \cdot|\cdot, \cdot)$ is called an G-inner product on X and $(X, (\cdot, \cdot|\cdot, \cdot))$ is called an G-inner product space.

Received by the editors May 30, 2008. Revised January 6, 2009. Accepted February 2, 2009. 2000 Mathematics Subject Classification. Primary 46C05, 46C99; Secondary 26D15, 26D20. Key words and phrases. G-inner product space, the parallelogram law, Bohr's inequality.

Further, some properties of G-inner product follow immediately from the definition of G-inner product as follows:

 (GI_5') $(a, b \mid \alpha c, b) = \overline{\alpha}(a, b \mid c, b)$ for any complex number α ,

$$(GI_6')$$
 $(a, b \mid c + c', b) = (a, b \mid c, b) + (a, b \mid c', b)$ for all $a, c, b, c' \in X$.

If an G-inner product space $(X, (\cdot, \cdot | \cdot, \cdot))$ is given, then, for any $a, b, c \in X$, we have the following extension of Cauchy-Buniakowski's inequality:

(1)
$$|(a,b \mid c,b)| \leq \sqrt{(a,b \mid a,b)} \sqrt{(c,b \mid c,b)}$$

Moreover, using $(GI_1)\sim(GI_6)$ and (1), it is easy to see that the function $||\cdot,\cdot||$ defined on $X\times X$ by

(2)
$$||a,b|| = \sqrt{(a,b \mid a,b)}$$

is 2-norm for the G-inner product space X.

For the 2-norm defined by (2), we have

(3)
$$(a, c \mid b, c) = \frac{1}{4} \left[\|a + b, c\|^2 - \|a - b, c\|^2 + i\|a + ib, c\|^2 - i\|a - ib, c\|^2 \right]$$

and the following extension of the parallelogram law is also valid:

(4)
$$||a+b,c||^2 + ||a-b,c||^2 = 2 [||a,c||^2 + ||b,c||^2].$$

Further, from (3) and (4), it follows that

(5)
$$||a+b,c||^2 = ||a,c||^2 + ||b,c||^2 + 2Re(a,c \mid b,c)$$

and

(6)
$$||a-b,c||^2 = ||a,c||^2 + ||b,c||^2 - 2Re(a,c \mid b,c).$$

The details on the definitions and results stated above as well as some further results in G-inner product spaces can be found in the book [1].

In this paper, we show that some known results which are in connection to the parallelogram law are also valid in *G*-inner product spaces and give some related inequalities.

2. Rassias, Dragomir and Sándor's Inequality

The following result was proved in [2] and [3]:

Theorem RDS. Let $(X, (\cdot | \cdot))$ be pre-Hilbert space (real or complex). If $0 , then, for any <math>x, y \in X$,

(||x|| + ||y||)^p + |||x|| - ||y|||^p
$$\leq ||x + y||^p + ||x - y||^p$$

(7) $\leq 2(||x||^2 + ||y||^2)^{\frac{p}{2}}$

If p > 2 or p < 0, then the reverse inequalities in (7) hold. Further, for p = 0 and 2, the equalities in (7) hold.

Now, by using some properties of G-inner products and 2-norms, we can extend Theorem RDS to the setting of G-inner product spaces as follows:

Theorem 1. Let $(X, (\cdot, \cdot|\cdot, \cdot))$ be an G-inner product space with the norm defined by (2). If $a, b, c \in X$ and 0 , then

(8)
$$(\|a,c\| + \|b,c\|)^p + \|a,c\| - \|b,c\||^p \le \|a+b,c\|^p + \|a-b,c\|^p \le 2(\|a,c\|^2 + \|b,c\|^2)^{\frac{p}{2}}.$$

If p > 2 or p < 0, then the reverse inequalities in (8) hold. Further, for p = 0 and 2, we have the equalities in (8).

Proof. As in [2] and [3] (see also [4]), we have by, (5) and (6),

$$||a+b,c||^p + ||a-b,c||^p$$

$$= (||a+b,c||^2)^{\frac{p}{2}} + (||a-b,c||^2)^{\frac{p}{2}}$$

$$= (||a,c||^2 + ||b,c||^2 + 2Re(a,c \mid b,c))^{\frac{p}{2}}$$

$$+ (||a,c||^2 + ||b,c||^2 - 2Re(a,c \mid b,c))^{\frac{p}{2}}.$$
(9)

By the Cauchy-Buniakowsky inequality (1), we have

$$\frac{|(a,c \mid b,c)|}{\|a,c\| \|b,c\|} \le 1.$$

So we can set

$$\cos \phi = \frac{Re(a,c\mid b,c)}{\|a,c\|\,\|b,c\|}.$$

Therefore, we can consider the function

$$d(\phi) = (\|a, c\|^2 + \|b, c\|^2 + 2\|a, c\|\|b, c\|\cos\phi)^{\frac{p}{2}} + (\|a, c\|^2 + \|b, c\|^2 - 2\|a, c\|\|b, c\|\cos\phi)^{\frac{p}{2}}$$

for all $\phi \in [0, 2\pi]$. As in [2] or [3], we have that d(0) is a minimum and $d(\frac{\pi}{2})$ is a maximum of the function d.

In fact, if you put ||x|| = ||a,c|| and ||y|| = ||b,c|| in the above function, we can see that $d(\phi)$ is the same with the function considered in [2] or [3] (see also [4]). Then it was proved that d(0) is a minimum and $d(\frac{\pi}{2})$ is a maximum of the function d. Since

$$d(0) = (\|a, c\| + \|b, c\|)^p + (\|a, c\| - \|b, c\|)^p$$

and

$$d\left(\frac{\pi}{2}\right) = 2(\|a,c\|^2 + \|b,c\|^2)^{\frac{p}{2}},$$

it follows from (9) that (8) follows.

If $p \geq 2$, we have (8) with the reverse inequalities. For p = 2, we have the equalities in (8), which, in fact, is the parallelogram law (4). This completes the proof.

Theorem 2. Let X be as in Theorem 1 and $a, b, c \in X$ with $||a, c||, ||b, c|| \neq 0$. If $0 or <math>p \geq 2$, then

$$(\|a+b,c\|^2 + \|a-b,c\|^2)^p$$

$$\geq 2^p ((\|a,c\|^p + \|b,c\|^p)^2 + (2^p - 2^2)\|a,c\|^p \|b,c\|^p).$$

If $p \le 0$ or $1 \le p \le 2$, then we have the reverse inequality of (10).

Proof. For any s, t > 0, define

$$f_p(s,t) = (s^2 + t^2)^p - (s^p + t^p)^2 - (2^p - 2^2)(st)^p.$$

Then $f_p(s,t) \ge 0$ if $0 \le p \le 1$ or $p \ge 2$ and $f_p(s,t) \le 0$ if $1 \le p \le 2$ or $p \le 0$ (see [4]) and so, by the parallelogram law (4), we have the conclusion. This completes the proof.

Remark 1. Theorem 2 is a generalization of Theorem 8 in [4].

3. Klamkin's Inequality

Klamkin [5] has proved the following inequality:

(11)
$$\tilde{S}_{\lambda} \equiv \left(\sum |\pm V_1 \pm \cdots \pm V_n|^{\lambda}\right)^{\frac{1}{\lambda}} \ge 2^{\frac{n}{\lambda}} \left(\sum_{i=1}^n |V_i|^2\right)^{\frac{1}{2}},$$

where $\lambda > 2$, each V_i is vector in \mathbb{R}^s and summation on the left-hand side is taken over all 2^n possible choices of \pm signs. The inequality is reversed for $\lambda < 2 \, (\lambda \neq 0)$, while, for $\lambda = 0$ and 2, we have the equality in (11).

Klamkin also has proved that, for $\lambda \geq 2$,

$$(12) S_{\lambda}^{\lambda} \ge 2^n \sum_{i=1}^n |V_i|^{\lambda}.$$

The generalizations of Klamkin's results were given in [6] and [7].

Now, we shall give some generalizations of such results in G-inner product spaces. First, we shall give a generalization of the parallelogram law (4).

Let $x_i, a \in X$ for $i = 1, \dots, m$. Then we have

(13)
$$\sum \|x_1 \pm \cdots \pm x_m, a\|^2 = 2^{m-1} \sum_{i=1}^m \|x_i, a\|^2,$$

where the summation on the left-hand side is taken over all 2^{m-1} possible choices of \pm signs.

By induction, we shall give the proof of (13). In fact, for m = 2, the equality (13) is the parallelogram law (4). Suppose that (13) is true. Then we have the following generalization of results of the results of Klamkin [5], Pečarić and Janić [7] (see also [4]):

$$\sum \|x_1 \pm \cdots \pm x_m \pm x_{m+1}, a\|^2$$

$$= \sum (\|(x_1 \pm \cdots \pm x_m) + x_{m+1}, a\|^2 + \|(x_1 \pm \cdots \pm x_m) - x_{m+1}, a\|^2)$$

$$= 2 \sum (\|x_1 \pm \cdots \pm x_m, a\|^2 + \|x_{m+1}, a\|^2)$$

$$= 2 \sum \|x_1 \pm \cdots \pm x_m, a\|^2 + 2^m \|x_{m+1}, a\|^2$$

$$= 2^m \sum_{i=1}^{m+1} \|x_i, a\|^2.$$

The equality (13) can be rewritten in the form:

$$\sum \| \pm x_1 \pm \cdots \pm x_m, a \|^2 = 2^m \sum_{i=1}^m \|x_i, a\|^2.$$

If we use the notations:

$$S_{\lambda} \equiv \left(\sum \|\pm x_1 \pm \cdots \pm x_n, a\|^{\lambda}\right)^{\frac{1}{\lambda}}$$

and

$$Q_{p} = \left(\sum_{i=1}^{m} \|x_{i}, a\|^{p}\right)^{\frac{1}{p}},$$

then, as in [7], we can prove the following generalization of the result of Pečarić and Janić [7], which is in fact a generalization of Klamkin's inequality:

Theorem 3. Let X be a G-inner product space with the norm defined by (2), S_{λ} , Q_p be defined as above and let $x_1, \dots, x_m, a \in X$.

(1) If $\lambda > 2$, then

$$(14) S_{\lambda} \ge 2^{\frac{m}{\lambda}} Q_2,$$

while, for $\lambda < 2$ ($\lambda \neq 0$), the reverse inequality holds. For $\lambda = 2$, we have the equality in (14).

If $\lambda \geq 2$, then

(15)
$$S_{\lambda}^{\lambda} \ge 2^m \sum_{i=1}^m \|x_i, a\|^{\lambda}.$$

(2)

(i) If $p, \lambda \geq 2$, then

(16)
$$2^{\frac{m}{\lambda}}Q_p \le S_{\lambda} \le m^{\frac{1}{2} - \frac{1}{p}} 2^{\frac{m-1}{2} + \frac{1}{\lambda}}Q_p.$$

For 0 < p and $\lambda \le 2$, the reverse inequalities in (16) are valid.

(ii) If
$$0 < \lambda \le 2$$
 and $p \ge 2$, then

(17)
$$2^{\frac{m-1}{2} + \frac{1}{\lambda}} Q_p \le S_{\lambda} \le m^{\frac{1}{2} - \frac{1}{p}} 2^{\frac{m}{\lambda}} Q_p.$$

For $0 and <math>\lambda \ge 2$, the reverse inequalities in (17) are valid.

(iii) If
$$\lambda > 0$$
 and $p < 0$, then we have

(18)
$$S_{\lambda} \ge m^{\frac{1}{2} - \frac{1}{p}} 2^{\frac{m-1}{2} + \frac{1}{\lambda}} Q_{p}.$$

(iv) If $\lambda > 2$ and p < 0, then we have

(19)
$$S_{\lambda} \ge m^{\frac{1}{2} - \frac{1}{p}} 2^{\frac{m}{\lambda}} Q_{p}.$$

For $\lambda < 0$ and p > 2, we have the reverse inequality in (19).

(v) If $\lambda < 0$ and 0 , then we have

$$(20) S_{\lambda} \le 2^{\frac{m}{\lambda}} Q_{p}.$$

4. Bohr's Inequality

Some generalizations of the parallelogram law (4) were obtained in [16]. For example, the following identity is valid:

(21)
$$(m-2) \sum_{k=1}^{m} \|x_k, a\|^2 + \left\| \sum_{k=1}^{m} x_k, a \right\|^2 = \sum_{1 \le i < j \le m} \|x_i + x_j, a\|^2.$$

Now, we shall give some inequalities of Bohr's type in G-inner product spaces. Bohr has proved the following [8] (see also [5]):

Theorem B. If z_1, z_2 are complex numbers and c is a positive number, then

$$|z_1 + z_2|^2 \le (1+c)|z_1|^2 + \left(1 + \frac{1}{c}\right)|z_2|^2$$

with the equality if and only if $z_1 = z_2$.

Various generalizations of this inequality for the norms are given in [5] and [9]. The following generalization of Borh's inequality was obtained by Pečarić and Rassias [10], which is a further generalization of the result in Rassias [11]:

Theorem R. Let x_i $(i = 1, \dots, n)$ be elements of an unitary vector space X and a_{ij} $(1 \le i < j \le n)$ be positive numbers. Then

(22)
$$\left\| \sum_{i=1}^{n} x_i \right\|^2 \le \sum_{k=1}^{n} \|x_k\|^2 \left(1 + \sum_{j=k+1}^{n} a_{kj} + \sum_{i=1}^{k-1} \frac{1}{a_{ik}} \right).$$

In this section, we shall extend Theorem R to the setting of G-inner product spaces.

Let $b_1, \dots, b_m, a \in X$ and p_1, \dots, p_m be nonnegative numbers. A simple consequence of $(2N_3)$ and $(2N_4)$ is

(23)
$$\left\| \sum_{i=1}^{m} p_i b_i, a \right\| \leq \sum_{i=1}^{m} p_i \|b_i, a\|.$$

Set $P_m \equiv \sum_{i=1}^m p_i$. Then, by Jensen's inequality for nondecreasing convex function $f: R^+ \to R^+$, we have

(24)
$$f\left(\frac{1}{P_m} \left\| \sum_{i=1}^m p_i b_i, a \right\| \right) \le \frac{1}{P_m} \sum_{i=1}^m p_i f(\|b_i, a\|).$$

Moreover, if f is a nondecreasing concave function such that f(0) = 0 and $p_i \ge 1$ $(i = 1, \dots, m)$, then (24) and Petrović's inequality give

(25)
$$f\left(\left\|\sum_{i=1}^{m} p_{i} b_{i}, a\right\|\right) \leq \sum_{i=1}^{m} p_{i} f(\|b_{i}, a\|).$$

Note that the last two inequalities are generalizations of the results from [13] and [14].

For $p_i \equiv 1$ and $f(x) = x^r$, where $r \geq 0$, we can get a generalization of Delbosco's inequality [12] as follows:

where $C_{r,m} = m^{r-1}$ $(r \ge 1)$ and $C_{r,m} = 1$ $(0 \le r < 1)$. If we put

$$f(x) = x^r, b_i = \frac{x_i}{p_i}, p_i = q_i^{\frac{1}{1-r}}$$

for any $r \geq 1$, it follows from (24) that

(27)
$$\left\| \sum_{i=1}^{m} x_i, a \right\|^r \le \left(\sum_{i=1}^{m} q_i^{\frac{1}{1-r}} \right)^{r-1} \sum_{i=1}^{m} q_i \|x_i, a\|^r$$

and, for $0 \le r < 1$ with $q_i \ge 1$, $(i = 1, \dots, m)$, from (25) that

(28)
$$\left\| \sum_{i=1}^{m} x_i, a \right\|^r \le \sum_{i=1}^{m} q_i \|x_i, a\|^r.$$

In a special case, (27) gives Bohr's inequality for norms, i.e., if c is a positive number and $x_1, x_2, a \in X$, then

(29)
$$||x_1 + x_2, a||^2 \le (1+c)||x_1, a||^2 + \left(1 + \frac{1}{c}\right)||x_2, a||^2.$$

By the substitutions $q_i \to \frac{1}{p_i}$ $(i = 1, \dots, m)$, since we have, for $1 < r \le 2$,

$$\left(\sum_{i=1}^{m} p_i^{\frac{1}{r-1}}\right)^{r-1} \le \sum_{i=1}^{m} p_i,$$

it follows from (27) that the inequality holds:

(30)
$$\frac{\left\| \sum_{i=1}^{m} x_i, a \right\|^r}{\left(\sum_{i=1}^{m} p_i \right)} \le \frac{\sum_{i=1}^{m} \|x_i, a\|^r}{p_i},$$

where $p_i > 0 (i = 1, \dots, m)$.

Moreover, if $p_1 > 0$, $p_i \le 0$ ($i = 2, \dots, m$), $P_m > 0$ and $f: \mathbb{R}^+ \to \mathbb{R}$ is a nondecreasing convex function, then we have, as in [14],

(31)
$$f\left(\frac{1}{P_m} \left\| \sum_{i=1}^m p_i x_i, a \right\| \right) \ge \frac{1}{P_m} \sum_{i=1}^m p_i f(\|x_i, a\|),$$

which is a simple consequence of (24) if we use the substitutions:

$$p_1 \to P_m, \ p_i \to -p_i, \ (i=2,\cdots,m),$$

$$x_1 \to \frac{1}{P_m} \sum_{i=1}^m p_i x_i \ (x_i \to x_i, \ i=2,\cdots,m).$$

In (31), if we put

$$f(x) = x^r (1 \le r \le 2), \ x_i \to \frac{x_i}{p_i}, \ p_i |p_i|^{-r} \to q_i,$$

then we get

(32)
$$\left\| \sum_{i=1}^{m} x_i, a \right\|^r \ge \left(\sum_{i=2}^{m} q_i |q_i|^{\frac{1}{1-r}} \right)^{1-r} \sum_{i=1}^{m} q_i ||x_i, a||^r,$$

where

$$0 < q_1 \le \left(\sum_{i=2}^m |q_i|^{\frac{1}{1-r}}\right)^{1-r}$$

and $q_i \leq 0$ $(i = 2, \dots, m)$. If we now set $q_i \rightarrow p_i^{-1}$ $(i = 1, \dots, m)$ and use the following inequality (see [4]):

$$\left(p_1^{\frac{1}{r-1}} - \sum_{i=1}^{m} |p_i|^{\frac{1}{r-1}}\right)^{r-1} \ge p_1 - \sum_{i=1}^{m} |p_i| = \sum_{i=1}^{m} p_i,$$

then we have, for $1 \le r \le 2$

(33)
$$\frac{\left\|\sum_{i=1}^{m} x_{i}, a\right\|^{r}}{\left(\sum_{i=1}^{m} p_{i}\right)} \geq \frac{\sum_{i=1}^{m} \|x_{i}, a\|^{r}}{p_{i}},$$

where $p_1 > 0$, $p_i \le 0$ $(i = 1, \dots, m)$ and $P_m > 0$. From (30) and (33), for m = 2, it follows that

$$\frac{\|x_1 + x_2, a\|^r}{u + v} \le \frac{\|x_1, a\|^r}{u} + \frac{\|x_2, a\|^r}{v}$$

if uv(u+v) > 0.

The reverse inequality holds if uv(u+v) < 0, where $x_1, x_2, a \in X$ and $1 \le r \le 2$.

Remark 2. The last result for r = 2 in the case of complex number was proved by Bergström [15] (see also [4]).

For example, the following result can be proved (see Theorem 4 from [4]):

Let f be a strictly concave function on $I (= [0, +\infty)), f(uv) \leq f(u)f(v)$ for any $u, v \in I$ and

$$\lim_{t\to 0+}\frac{f(t)}{t}=0,\ \lim_{t\to +\infty}\frac{f(t)}{t}=+\infty.$$

If $x_i \in X$ (X is a linear 2-normed space), $i = 1, \dots, m, a \in X$ and p_i are positive numbers for $i = 1, \dots, m$, then

$$f\left(\left\|\sum_{i=1}^{m} x_i, a\right\|\right) \le g\left(\sum_{i=1}^{m} \frac{1}{g^{-1}(p_i)}\right) \sum_{i=1}^{m} p_i f(\|x_i, a\|),$$

where $g(t) = \frac{f(t)}{t}$.

Further, some generalizations of Bohr's type inequalities can be obtained analogously to the results given in [13]. Finally, we shall prove the following result which is in connection to inequalities of Hlawka's and Bohr's type, which is in fact a generalization of the Rassias's inequality [10]:

Theorem 4. Let X be G-inner product space with the norm defined by (2), $a, x_i \in X$ $(i = 1, \dots, m)$ and a_{ij} $(1 \le i < j \le m)$ is positive numbers. Then

(34)
$$\left\| \sum_{i=1}^{m} x_i, a \right\|^2 \le \sum_{k=1}^{m} \|x_k, a\|^2 \left(1 + \sum_{j=k+1}^{m} a_{kj} + \sum_{i=1}^{k-1} \frac{1}{a_{ik}} \right).$$

Proof. It is clear that the identity (21) is equivalent to

$$\left\| \sum_{k=1}^{m} x_k, a \right\|^2 - \sum_{k=1}^{m} \|x_k, a\|^2 = \sum_{1 \le i \le j \le m} \left(\|x_i + x_j, a\|^2 - \|x_i, a\|^2 - \|x_j, a\|^2 \right).$$

Applying (29) to $||x_i + x_j, a||^2$, then we obtain

$$\left\| \sum_{k=1}^{m} x_{k}, a \right\|^{2} - \sum_{k=1}^{m} \|x_{k}, a\|^{2}$$

$$\leq \sum_{1 \leq i < j \leq m} \left((1 + a_{ij}) \|x_{i}, a\|^{2} + \left(1 + \frac{1}{a_{ij}} \right) \|x_{j}, a\|^{2} - \|x_{i}, a\|^{2} - \|x_{j}, a\|^{2} \right),$$

i.e.,

$$\left\| \sum_{k=1}^{m} x_k, a \right\|^2 - \sum_{k=1}^{m} \|x_k, a\|^2 \le \sum_{1 \le i < j \le m} \left(a_{ij} \|x_i, a\|^2 + \frac{1}{a_{ij}} \|x_j, a\|^2 \right),$$

which is equivalent to (34). This completes the proof.

REFERENCES

- 1. Y.J. Cho, Paul C.S. Lin, S.S. Kim & A. Misiak: Theory of 2-Inner Product Spaces, Nova Science Publishers, Inc., New York, 2001.
- 2. Th.M. Rassias: New characterizations of inner product spaces. Bull. Sci. Math. 108(2) (1984), 95-99.
- S.S. Dragomir & I. Sándor: Some inequalities in prehilbertian spaces. Studia Univ Babes-Bolyai, Math. 32 (1987), 71-78.
- D.S. Mitrinović, J.E. Pečarić & A.M. Fink: Classical and New Inequalities in Analysis. Kulwer Academic Publishers, 1993.
- M.S. Klamkin: A vector norm inequality. Amer. Math. Monthly 82 (1975), 829-830.
- 6. T.R. Shore: On an inequality of van der Corput and Beth. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 678-715 (1982), 56-57.
- 7. J.E. Pečarić & R.R. Janić: Note on a vector norm inequality. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 735-762 (1982), 35-38.
- 8. H. Bohr: Zur Theorie der fastperiodischen Funktionen I. Acta Math. 45 (1924), 29-127.

- 9. J.E. Pečarić & R.R. Janić: Some remarks on the paper "Sur une inégalité de la norm" of D. Dellbosco. Facta Univ. (Niš), Ser. Math. Inform. 3 (1988), 39-42.
- 10. J.E. Pečarić & Th.M. Rassias: Variations and generalizations of Bohr's inequality. J. Math. Anal. Appl. 178 (1993), 138-146.
- 11. Th.M. Rassias: On characteraziations of inner product spaces and generalizations of zhe H. Bohr inequality. in: "Topics in Mathematical Analysis" (ed. Th.M. Rassias), Singapore, 1989.
- D. Delbosco: Sur une inégalité de la norm. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 678-715 (1980), 206-208.
- V.L. Kocić & D.M. Maksimović: Variations and generalizations of an inequality due to Bohr. *Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.* No. 412-460 (1973), 183-188.
- 14. J.E. Pečarić & S.S. Dragomir: A refinement of Jensen inequality and applications. *Babes-Bolyai, Mathematica* **34** (1989), 15-19.
- 15. H. Bergström: A triangle-inequality for matrices. Den 11-te Skandinaviske Mathematikerkongress. Trondheim 1949, Oslo, 1952, 264-267.
- 16. Y.J. Cho, M. Matić & J. Pečarić: *Inequalities of Hlawka's type in G-inner product spaces*. Inequality Theory and Applications, Vol. 1., Nova Science Publishers, Inc., New York, 2001.

^aDEPARTMENT OF MATHEMATICS EDUCATION AND THE RINS, COLLEGE OF EDUCATION, GYEONG-SANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA *Email address*: yjcho@gnu.ac.kr

^bDepartment of Mathematics, Faculty of Civil Engineering, University of Zagreb, Kačićeva 26, 10 000 Zagreb, Croatia

Email address: vera@grad.hr

 $^{\rm c}$ Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia

Email address: josip.pecaric@yahoo.com