J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 16, Number 1 (February 2009), Pages 47-57

ON THE PARALLELOGRAM LAW AND BOHR’S INEQUALITY
IN G-INNER PRODUCT SPACES

YEeoL JE CHO?, VERA CULJAK® AND JOSIP PECARIC®

ABSTRACT. In this paper, we give some results which are in connection to the
parallelogram law in G-inner product spaces and also prove some results related to
Bohr’s inequality in G-inner product spaces.

1. INTRODUCTION

Let X be a linear space over the complex numbers and |-, -| be a real-valued
function defined on X x X and satisfying the following conditions:

(2N1) |la,b]l =0 if and only if a and b are linearly dependent,

(2N2) fla,bl| = |1 all,

(2N3) ||aa, bl = alla, b|| for any complex number «,

(2N) lla + @', b < lla,bl] + la’, b].
Then |-, -|| is called an 2-norm on X and (X, ||, -||) is called a linear 2-normed space.

Let X be a linear space over the complex numbers and (-,-|,-) be a complex-
valued function on X x X x X x X satisfying the following conditions:

(GL) (a,b]a,b) =0 if and only if a and b are linearly dependent,

(GIy) (a,b]a,b) >0,

(GIs) (a,b]|a,b) = (b,a]b,a),

(GL) (a,b] ¢,b) = (c,b] a,b),

(GIs) (aa,b|c,b) =ala,b|c,b) for any complex number a,

(GIs) (a+4ad',b|c,b) =(a,b]c,b)+(a,b]|c,b) for all a,a,b,c € X.
Then (-, |-, -) is called an G-inner product on X and (X, (-,|,-)) is called an G-inner
product space.
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Further, some properties of G-inner product follow immediately from the defini-
tion of G-inner product as follows:

(GI) (a,b| ac,b) =a(a,b|c,b) for any complex number a,

(GL}) (a,b|c+d,b)=(a,b|e,b)+ (a,b] ,b) for all a,c,b,cd € X.

If an G-inner product space (X, (-, |,-)) is given, then, for any a,b,c € X, we
have the following extension of Cauchy-Buniakowski’s inequality:

(1) l(a,b1¢,b)] < V(a,b]a,b)v/(c,b]c,b).
Moreover, using (GI1)~(GIg) and (1), it is easy to see that the function [|-,||
defined on X x X by

(2) HCI:, b” = (a'vb ] a, b)

is 2-norm for the G-inner product space X.
For the 2-norm defined by (2), we have

3) f{a,clbe)= % [Ha +b,¢)® - |la — b, ¢||? + ifja + b, cM2 — ifjla — b, cﬂz]

and the following extension of the parallelogram law is also valid:

(4) lla +b,cl® + lla = b,¢ll* = 2 [lla, cll + b, cll] -
Further, from (3) and (4), it follows that

(5) la+ b,c||® = ||a, c||® + ||b, c||* + 2Re(a, c | b,¢)

and ’

(6) lla —b,¢cll? = lla, ci® + ||, cl|* — 2Re(a, ¢ | b,¢c).

The details on the definitions and results stated above as well as some further
results in G-inner product spaces can be found in the book [1].

In this paper, we show that some known results which are in connection to the
parallelogram law are also valid in G-inner product spaces and give some related
inequalities.

2. RAssIAS, DRAGOMIR AND SANDOR’S INEQUALITY

The following result was proved in [2] and [3]:
Theorem RDS. Let (X, (:|')) be pre-Hilbert space (real or complex). If 0 < p < 2,
then, for any x,y € X,

(Nl + P + el = gl < Nz +ylP + lle — yliP
2(Jl]|? + iy 1%

A

(7)

IA
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If p > 2 or p < 0, then the reverse inequalities in (7) hold. Further, for p =0 and
2, the equalities in (7) hold.

Now, by using some properties of G-inner products and 2-norms, we can extend
Theorem RDS to the setting of G-inner product spaces as follows:
Theorem 1. Let (X, (,-]-,-)) be an G-inner product space with the norm defined
by (2). Ifa,b,c€ X and 0 < p <2, then
(la,cll + 115, cll)? + [a, cll = b, clll” < fja + b, cll’ +lla = b,c?
®) < 2(la el + [1b, ¢]*)%.

If p > 2 or p <0, then the reverse inequalities in (8) hold. Further, for p =0 and
2, we have the equalities in (8).

Proof. As in [2] and [3] (see also [4]), we have by, (5) and (6),
lla +b,clP + |la —b,c||P
= (la+b,c|%)% + (Jla - b,clf*)?
= (lla,||® + ||b,¢||® + 2Re(a, ¢ | b,¢))%
9) + (la, el + ||b, | — 2Re(a,c | b,c))?.

By the Cauchy-Buniakowsky inequality (1), we have

(@clbol
la, el |1b, cl|
So we can set
Re(a,c | b,c)
cosp = ————— 17
?= Ta el Tb.cl

Therefore, we can consider the function

4
d(@) = (lla, clf* + |16, cl® + 2lla, cll b, ]| cos §)
+ (lla, cll* + [1B, |* — 2lla, el [|b, cl| cos ¢)
for all ¢ € [0,27]. As in [2] or [3], we have that d(0) is a minimum and d(3) is a
maximum of the function d.
In fact, if you put ||z|| = ||a, || and ||y|| = ||b, ¢|| in the above function, we can see

that d(¢) is the same with the function considered in [2] or [3] (see also [4]). Then it

was proved that d(0) is a minimum and d(%) is a maximum of the function d. Since

d(0) = (lla, cll + 116, cl})” + llla, cll = 1o, ell[?
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and

d(5) = 2(lacll® + .|,
it follows from (9) that (8) follows. ,

If p > 2, we have (8) with the reverse inequalities. For p = 2, we have the
equalities in (8), which, in fact, is the parallelogram law (4). This completes the

proof. ]

Theorem 2. Let X be as in Theorem 1 and a,b,c € X with |la,c||, ||b,c|| # 0. If
O<p<1lorp>2, then
(lla +b,cll* + [la ~ b, c|?)?
(10) > 2 ((lla, cll” + [1b,¢l?)? + (2 — 2)la, c|/? |1b, c|P).
If p <0 or1<p<2, then we have the reverse inequality of (10).
Proof. For any s,t > 0, define
Fo(s,8) = (8 + )P — (" + 17)% — (2F — 2)(st)".

Then fp(s,t) >0if0<p<lorp>2and fp(s,t) <0if 1 <p<2o0rp<O0(see
[4]) and so, by the parallelogram law (4), we have the conclusion. This completes
the proof. 4

Remark 1. Theorem 2 is a generalization of Theorem 8 in [4].

3. KLAMKIN’S INEQUALITY

Klamkin [5] has proved the following inequality:

(11) Si=(D 1EVE £V 'i' Q(Zm?)

where A > 2, each V; is vector in R® and summation on the left-hand side is taken
over all 2" possible choices of + signs. The inequality is reversed for A < 2 (A # 0),
while, for A = 0 and 2, we have the equality in (11).

Klamkin also has proved that, for A > 2,

n
(12) Sz 2y [Vt
i=1
The generalizations of Klamkin’s results were given in [6] and [7].
Now, we shall give some generalizations of such results in G-inner product spaces.

First, we shall give a generalization of the parallelogram law (4).
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Let z;,a € X fori =1, --- ,m. Then we have
m
(13) Yollwt -t am,al? =277 ||z, af?,
i=1

where the summation on the left-hand side is taken over all 2™~ possible choices
of + signs.

By induction, we shall give the proof of (13). In fact, for m = 2, the equality (13)
is the parallelogram law (4). Suppose that (13) is true. Then we have the following
generalization of results of the results of Klamkin [5], Pecari¢ and Janié [7] (see also

[4]):
Sllwr - £ T £ T, af?
=Y (@1 £ £ am) + i, al> + (@1 £ - £ 2) — Ty, al])
=2 (llz1 £+ £ @, al® + |zmir, al)

=23 Nz £ £ T, a2+ 27T, 0l
m+1

=2 3" o alf”.
i=1
The equality (13) can be rewritten in the form:
m
Dtz kzmal®> =2 |lzi,a
i=1

If we use the notations:

Si= (Y l£mttanal)

bl

and

m 1
p
Q= (L lawalr)”
i=1
then, as in [7], we can prove the following generalization of the result of Pecari¢ and

Jani¢ [7], which is in fact a generalization of Klamkin’s inequality:

Theorem 3. Let X be a G-inner product space with the norm defined by (2), Sy,
Qp be defined as above and let 1, - ,Tm,a € X.

(1) If A > 2, then
(14) S/\ 2 2%6227

while, for A < 2 (X # 0), the reverse inequality holds. For X\ = 2, we have the equality
in (14).
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IfA > 2, then
m
(15) S22 2™ i alt
i=1
(2)
(16) 22Q, < Sy <miF 2T HIQ,

For 0 < p and X < 2, the reverse inequalities in (16) are valid.
(i) If0<A<2andp>2, then

(17) 2" +3Q, < 5\ <miT72%Q,.

For 0 < p <2 and X > 2, the reverse inequalities in (17) are valid.
(i) If A > 0 and p < 0, then we have

(18) Sy > m§ P2 T +AQ
(iv) If A > 2 and p < 0, then we have
(19) S >m? 7 2%Q,.

For A < 0 and p > 2, we have the reverse inequality in (19).
(v) If A< 0 and 0 < p < 2, then we have

(20) 5, <2%Q,

4. BOHR’S INEQUALITY

Some generalizations of the parallelogram law (4) were obtained in [16]. For
example, the following identity is valid:

@)  (m-2) lewal®+ ka, = Y et
k=1 1<i<i<m

Now, we shall give some inequalities of Bohr’s type in G—inner product spaces.
Bohr has proved the following (8] (see also [5]):

Theorem B. If 21, 22 are complex numbers and ¢ is a positive number, then
1
|21 + 22|2 < (1 -+ c)|z112 + (1 -+ 2) IZle

with the equality if and only if 21 = z9.
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Various generalizations of this inequality for the norms are given in [5] and [9].
The following generalization of Borh’s inequality was obtained by Pecari¢ and Ras-
sias [10], which is a further generalization of the result in Rassias {11]:

Theorem R. Let z; (i = 1,--- ,n) be elements of an unitary vector space X and

aij (1 <i < j < n) be positive numbers. Then

n n n k—1
(22) (DIE 2§Z|kanz<l+ S akj+z_1_).
=1 k=1

.
j=k+1 i=1 “k

In this section, we shall extend Theorem R to the setting of G—inner product
spaces.

Let by,-- ,bym,a € X and py,- - ,p;,m be nonnegative numbers. A simple conse-
quence of (2N3) and (2Ny) is

(23)

m m
> “pibiyall < pillbiall.
i=1 i=1

Set P, = 5 7, pi. Then, by Jensen’s inequality for nondecreasing convex function
f:R" — RT we have

(24) f(PL sz’bz’,a > < —Pl—ZPif(Hbi»a”)
™l i=1 ™ =1

Moreover, if f is a nondecreasing concave function such that f(0) = 0 and p; >

1(i=1,---,m), then (24) and Petrovié¢’s inequality give

(25) f( Zpibi,a > < Zpif(l!bi,all).

Note that the last two inequalities are generalizations of the results from [13] and
[14].

For p; =1 and f(z) = z", where r > 0, we can get a generalization of Delbosco’s
inequality [12] as follows:

(26) 161+ -+ + b, afl” < Crm(llbs, all” + - - + [[bm, all"),

where Cry =m™ 1 (r > 1) and Cy,, = 1(0 < 7 < 1). If we put

_rb_xi _1—17?
flx) =1", i—;,pi—qi
(2
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for any r > 1, it follows from (24) that
r—1 m

m [ d m 1
Y sia s(Zq;“’") " gilles alf
=1 =1 =1

and, for 0 <r <1withg; > 1, (i =1,---,m), from (25) that

(28) ! > ainall <Y allzial”
i=1 i=1

In a special case, (27) gives Bohr’s inequality for norms, i.e., if ¢ is a positive

(27)

number and z1,Z2,a € X, then
1
(29) for + 2,0l < (1 fas,all + (14w, al

By the substitutions ¢; — % (t=1,---,m), since we have, for 1 <r <2,

mo g r~1 m
(Zp{ - ) <>
i=1 i=1
it follows from (27) that the inequality holds:

m .
” Ei_—_l Zi,a < E:il Hxi,aHT

( 1 pi) - pi ,
where p; >0(t=1,---,m).
Moreover, if py > 0,p; < 0(¢t = 2,---,m), P, >0and f: Rt — Ris a
nondecreasing convex function, then we have, as in [14],

(31) f("l_:,l" Y pizia ) 2 %Zpif(“xi,alf),
™ m 3

i=1
which is a simple consequence of (24) if we use the substitutions:

(30)

pl—’Pms Di = —Di, (Z=23 ,m),

1 m
- e (s 5 4=2, m).
| x1—+Pm ;pzx, (i = x4, ¢ m)
In (31), if we put
z; —
f(@)=2"(1<r<2), :viw»p—f,pz-lpil - g,
k)

then we get

(3) ”ém

r m R I-r
> > alal™ > allzi,all,
i=1

1=2
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where

m 1-r
_1
0<q< (zlqm-r)
=2

and ¢; < 0(i = 2,---,m). If we now set ¢ — p;' (4 = 1,---,m) and use the
following inequality (see [4]):

1 m r—1 m m
(pf'_l —leilr_il> >pi— Y Il =Y mi
2 2 1
then we have, for 1 <r < 2,
DT I > e
(27;1 pi) - pi ’

where p; > 0, p; <0(i =1,--- ,m) and P, > 0. From (30) and (33), for m = 2, it
follows that

T

(33)

lz1 + z2,a|” < l|z1, al” + |22, all”
u-+v u v

if wv(u+v) > 0.
The reverse inequality holds if uv(u + v) < 0, where 1,22, € X and 1 <r < 2.

Remark 2. The last result for 7 = 2 in the case of complex number was proved by
Bergstrom [15] (see also [4]).

For example, the following result can be proved (see Theorem 4 from [4]):

Let f be a strictly concave function on I (= [0,+00)), f(uv) < f(u)f(v) for any
u,v € I and

t 4
lim L(—)— =0, lim & = 400
t—0+ t t—+oo t
If z; € X (X is a linear 2-normed space), i = 1,--- ,m, a € X and p; are positive

numbers for i = 1,--- ,m, then

m m 1 m
d ( 2 w00 ) Sg(Z m) > pif(las.al)

i=1
where ¢(t) = @

Further, some generalizations of Bohr’s type inequalities can be obtained anal-
ogously to the results given in [13]. Finally, we shall prove the following result
which is in connection to inequalities of Hlawka’s and Bohr’s type, which is in fact

a generalization of the Rassias’s inequality [10]:
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Theorem 4. Let X be G-inner product space with the norm defined by (2), a,z; €

X(@E=1,---,m) and a;; (1 < i < j < m) is positive numbers. Then
™m 2 m m k—1 1

(34) Sz < ZHmk,au“‘(H > akj+2;)-
=1 k=1 ekt 1 i1 ik

Proof. Tt is clear that the identity (21) is equivalent to

m
S ea
k=1

Applying (29) to ||z; + x;, al?, then we obtain

m 2 m

Zxk:a - Z ”xkaauz

k=1 k=1

< Z ((1 + a’i.’i)”xivanz + (1 + %) ”(I)j, anz - H"Ei’anz - ijs a]}?),

2 m .
=D lanal®= Y (llzi + 50l llzi,all® - llzj,all?).
k=1

1<i<j<m

1<i<ji<m i
ie.,
Dzl =D fakalt< > (%‘Hmz‘,aiﬁ + ;‘jﬂ%,alﬁ),
k=1 k=1 1<i<i<m Y
which is equivalent to (34). This completes the proof. a
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