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A NOTE ON GT-ALGEBRAS

JAEDOEK KiM?, YounceMmi KiMP? aND EuNn HWAN ROH®*

ABSTRACT. We introduce the notion of GT-algebras as a generalization of the con-
cept of Tarski algebras. We introduce the notion of GT-filters in GT-algebras, and
we prove some properties of GT-filters.

1. INTRODUCTION

The notion of Tarski algebras was introduced by J. C. Abbott in [2]. These
algebras are an algebraic counterpart of the {V, —}-fragment of the propositional
classical calculus. S. A. Celani ([5]) introduced Tarski algebras equipped with a
modal operator as a generalization of the concept of Boolean algebra with a modal
operator which he researched into these fragments of the algebraic viewpoint. Prop-
erties of filters in Tarski algebras were treated by S. A. Celani ([5]) and the authors
([6]). Recently, the present authors ([6]) considered decompositions and expansions
of filters in Tarski algebras, and also they have shown that there is no non-trivial qua-
dratic Tarski algebras on a field X with |X| > 3. However, we feel that the concept
of Tarski algebra is relatively too strong for filters. To deal with those, the algebraic
structure should be treated in a more general setting, so-called a GT-algebra. In
this paper, we shall introduce the notion of GT-algebras as a generalization of the
concept of Tarski algebras. We introduce the notion of GT-filters in GT-algebras,
and we shall prove some properties of GT-filters. Although the results of this paper
are written in algebraic form, their own significance in theory of logics.

Let us review some definitions and results. By a Tarski algebra we mean an
algebra (X;—, 1) of type (2,0) satisfying the following conditions:

(T1) (MVa e X)(1 — a=a).
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(T2) (Vae X)(a—a=1).

(T3) (Ya,b,c€ X)(a— (b—c¢)=(a—b)— (a—c)).

(T4) (Va,b € X){(a—b) — b= (b— a) — a).

In a Tarski algebra X we can define an order relation < by setting a < b if and
onlyifa—b=1 for any a,b € X. It is well known that (X; <) is an ordered set
and that X is a join-semilattice where the supremum of two elements a,b € X is
defined by a Vb= (a — b) — b ([3]).

A non-empty subset F of a Tarski algebra X is said to be a filter if 1 € F, and
a€ Fanda—be Fimply be F (]5)).

2. GENERALIZED TARSKI ALGEBRAS

Definition 2.1. By a generalized Tarski algebra (GT-algebra, for short) we mean
an algebra (X;—,1) of type (2,0) satisfying the following conditions: (T1), (T2),
and (T3).

Example 2.2. (1) Every Tarski algebra is a GT-algebra.
(2) Let X := {a,b,c,1} be a set with the following Cayley table:

—>fa b ¢ 1
ail 1 ¢ 1
bil1 1 ¢ 1
cil 1 11
lja b ¢ 1

It is routine to check that (X;—,1) is a GT-algebra, which is not a Tarski algebra
since (@ > b) - b=b#a=(b—a)— a.
Proposition 2.3. Let X be a GT-algebra. Then

(p1) (Vae X)(a—1=1).

(p2) (Va,be X)}a— (b—a)=1).

(p3) (Va,be X)(a— (a > b)=a—b).

(p4) (Va,be X)(a— ((a—b) —b) =1).

(p5) (Va,byece X)(a—=b=1=(c—a)— (c—b)=1).

Proof. (p1) Using (T2) and (T3), we have

a—l=a—(a—a)=(@—a)—(a—a)=1
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(p2) Using (T2), (T3) and (pl), we get
a—(b—oa)=(a—b)—>(a—>a)=(a—b)—1=1
(p3) By (T1), (T2) and (T3), we have
a—(a—-b=(@—oa)—(a—b=1-(a—>b=a—b

(p4) Using (T2), (T3) and (p3), we get a — ((a — b) = b) = (a = (a = b)) —
(a—b=(a—b)—(a—b=1

(p5) Let a,b € X be such that @ — b = 1. Then we have

(c—a)—m(a—=b=c—(a—b=c—1=1

for all ¢ € X. This completes the proof. U

A reflexive and transitive relation R on a set X is called a quasi-ordering of X,
and the couple (X, fR) is called a quasi-ordered set.

We provide a method to make a GT-algebra from a quasi-ordered set.

Theorem 2.4. Let (X,R) be a quasi-ordered set. Suppose that 1 ¢ X and let
X1 = X U{1}. Define a binary operation — on X1 as follows: Ya,b € X1,

|1 if(ab)eR,
a—b:= { b otherwise.

Then (X1;—,1) is a GT-algebra.

Proof. Since (1,a) ¢ R for every a € X1, we have 1 — a = a for all a € X1. Thus
(X1;—,1) satisfies (T1). Since R is reflexive, a — a = 1 for all a € X. This proves
the condition (T2) holds. To verify the condition (T3), we consider the following
four cases:

Case (1): (a,b) € R and (b,c) € R imply that (a,c) € R, and so
a—(boc)=a—-1=1=1—-1=(a—b)— (a—c).

Case (2): (a,b) ¢ R and (b,c) € R imply that a > (b - ¢) =a —-1=1 If
(a,c) € R, then (a = b) > (a—c)=b—o>1=1=a— (b—c);if (a,c) € R, then
(a—b)—(a—c)=b—oc=1=a—(b—c).

Case (3): (a,b) € R and (b,c) ¢ R imply that

a—(b—-c)=a—c=1—-(a—c)=(a—b) — (a—c).

Case (4): Let (a,b) ¢ R and (b,c) € R. If (a,c) € R, then

a—(b—oc)=a—c=1=b—-1=(a,b) — (a,c);
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if (a,c) € R, then
a—(b—=c=a—c=c=b—c=(a,b) - (a,c).
Hence the condition (T3) is true. This completes the proof. O

Employing the idea of Theorem 2.4, we construct a GT-algebra which is not a
Tarski algebra.

Example 2.5. Let X := {a, b, ¢, d} be a quasi-ordered set with the following relation
R = {(a,a) (a,b),(a,c) (a,d), (b)), (b,¢) (b:d),
(¢, ), (¢, d),(c,b),(d,d),(d,b),(d,c)}.
Then (X1 := X U{1};—,1) is a GT-algebra with the following Cayley table:

—la b ¢ d 1
all 1 1 1 1
blea 1 1 1 1
cla 1 1 1 1
dle 1 1 1 1
1{a b ¢ d 1

Note that X1 is not a Tarski algebra since (a = b) »b=0b#1=(b—a)—a.
Proposition 2.6. Let RX be a relation on a GT-algebra X defined by
(z,y) eRX ifz - y=1

Then RX is a quasi-ordering of X. Moreover,

(i) (Va € X)((a,1) € RX).
(ii) If a € X such that (1,a) € RX, thena = 1.

We call RX the induced quasi-ordering of X.

Proof. Since a — a = 1 for all z € X, we get (a,a) € RX, i.e., RX is reflexive.
Let a,b,¢c € RX such that (a,b) € RX and (b,c) € RX. Then a — b =1 and
b— c=1. It follows from (pl1), (T1) and (T3) that

a—c=1—-(a—c)=(a—-b—o(aoc)=a—(b—c)=a—-1=1
so that (a,c) € RX, i.e., RX is transitive.
(i) It is obvious by (pl).

(ii) Let a € X such that (1,a) € RX. Then a = 1 — a = 1. This completes the
proof. O
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In a GT-algebra X, we consider the following condition:

(P) (Va,b,ce XY a—b=1=(b—c)— (a—c)=1).

In Example 2.2 (2), (X; —, 1) satisfies the condition (P).
Proposition 2.7. Let X be a GT-algebra with the condition (P) and RX be the
induced quasi-ordering of X. If a,b € X such that (a,b) € RX, then (c — a,c —
b) € RX and (b — c,a — ¢) € RX forallce X.
Proof. Straightforward. ]

For every quasi-ordering R of a GT-algebra X, denote by €R the relation on X
given by
(a,b) € ERiff (a,b) € R and (b,a) € R.
Obviously, €fR is an equivalence relation on X, which is called an equivalence relation
induced by R. Denote by [a]€R the equivalence class containing a and by X/€R

the collections of [a]€R, i.e.,
[a]eR := {z € X|(a,z) € R}
and
X/ER = {[a]€R]a € X}.
Define a relation < R on X/€R by
[a]€R < R[b|ER iff (a,d) € R.

Then < R is a partial order on X/€R, and so (X/€R, < R) is a poset, which is
called a poset assigned to the quasi-ordered set (X, R).

Let R be a relation on a GT-algebra X. Then R is said to be compatible if
(a — e,b = f) € R whenever (a,b) € R and (e, f) € R for all a,bye, f € X. A
compatible equivalence relation on X is said to be a congruence on X. The set

1R = {z € X]|(1,z) € R}
1s called the kernel of fR.

Theorem 2.8. Let X be a GT-algebra with the condition (P), RX be the induced

quasi-ordering of X, and let © = CRX be the equivalence relation induced by RX.
Then

(i) © is a congruence relation on X with kernel [1]© = {1}.
(ii) the quotient algebra (X/©;=,(1]0) is a GT-algebra, where the operation =
on X/0© is defined by
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[a]©® = [b]© :=[a — b]©.

Proof. (i) Note that © is an equivalence relation on X. Let a,b,e, f € X such
that (a,b) € © and (e,f) € ©. Then (a,b) € RX,(b,a) € RX, (e, f) € RX
and (f,e) € RX. So by Proposition 2.7, we get (¢ — a,f — a) € RX and
(f = a,f — b) € RX. By the transitivity of RX, we have (e — a, f — b) € RX.
Similarly, we have (f — b,e — a) € RX. Hence

(a—eb— f)eO.

i.e., © is a congruence relation on X. Now if a € [1]©, then (1,a) € ©. It follows
from Proposition 2.6 (ii) that a = 1. Therefore [1]© = {1}.
(ii) Straightforward. O

Let X be a GT-algebra and K(3 @) C X. Denote by ©K the relation on X given
by
(a,b) e OK iff a > be K and b — a € K.

Lemma 2.9. Let K be a nonempty subset K of a GT-algebra X. If OK is a reflexive
relation on X, then (10K = K.

Proof. Let ©OK be a reflexive relation for a nonempty subset K of a GT-algebra X.
Thenl=a—va€ K. Ifa€ K,thenl wa=a€ Kanda—1=1¢ K. Thus
(1,a) € OK, i.e., a € [1]0K. Conversely, if a € [1]OK then (1,a) € ©K and so
a=1- a€ K. Therefore [1|0K = K. O

3. GENERALIZED TARSKI-FILTERS

Definition 3.1. Let X be a GT-algebra. A nonempty subset F' of X is called a
generalized Tarski-filter (GT-filter, for short) of X if it satisfies the following condi-
tions:

(F1) (Va,be X)(be F=>a—beF).

(F2) (Va,be XY (a—be Fac F=>be F).

Obviously, X and {1} are GT-filters of X. Note that every GT-filter contains
the element 1 by (T2) and (F1).

In Example 2.2 (2), the subset {a,b,1} is a GT-filter of X, but {a,1} is not a
GT-filter of X.

Theorem 3.2. Let K be a GT-filter of a GT-algebra X. Then the relation OK

(23



A NOTE ON GT-ALGEBRAS 65

an equivalence relation on X with the kernel [1}O0K = K.

Proof. Since ¢ — z =1 € K for all z € X, we have (z,z) € ©K. Obviously,
OK is symmetric. Let a,b,c € X such that (a,b) € OK and (b,c) € ©K. Then
a—-beKb—-acKb—ceKandc—be K. Since b — ¢ € K, it follows from
(T2) and (F1) that

(a—b)—s(a>c)=a—(b—c) €K

Using @ — b € K and (F2), we have a — ¢ € K. Similarly, we have ¢ — a € K.
Therefore we obtain (a,c) € OK, i.e.,,©K is an equivalence relation on X. By
Lemma 2.9, we have [1|0K = K. U

In Theorem 3.2, ©K may not be compatible in general, as following example.

Example 3.3. Let X := {a,b,¢,d, 1} be a set with the following Cayley table:
b

!
]

OO OO0 O =IO
QU wQ Q. HwQ ~|a,
I T T S e

—@Q S0 a0 oR
L Q8 O 8 OO =
S D S D S
ey Sy Sy e Sy
@ =9 W = ~=O =
[ e e e ] R

o
s}

Then (X;—,1) is a GT-algebra, and the subset K := {e,1} is a GT-filter of X.
Moreover, we can find

OK = {(a,a),(b,b), (c,¢),(d,d), (e, ), (e, 1), (f, f), (9,9),(L,€), (1, D}.
It is routine to check that ©K is an equivalence relation on X, which is not com-
patible since (e,1) € OK and (b,b) € OK, but (e —» b,1 — b) = (f,b) € OK.
Theorem 3.4. Let R be a congruence relation on a GT-algebra X. Then the kernel
1R is a GT-filter of X.

Proof. Let a € X and b € [1]R. Then (1,b) € R. Since R is reflexive and compatible,
it follows from (pl) that

(l,a—b)=(a—1l,a—b) R
so that ¢ — b € [1]R.

Let a,b,c € X such that a — b € {1]% and a € [1]R. Then (1,a — b) € R and
(1,a) € R. Since R is reflexive and compatible, we have
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(b,a = b) = (1 - b,a—b) € R.
Since R is symmetric and transitive, we have (1,b) € R, and so b € [1]R. O

The following example shows that the condition ‘compatible’ is necessary in the
Theorem 3.4.

Example 3.5. Let X := {a,b,c,d,1} be a set with the following Cayley table:

—la b ¢ d 1
all 1 ¢ 11
bla 1 ¢ 11
cljle 1 1 1 1
dle 1 ¢ 1 1
lla b6 ¢ d 1

Then (X;—,1) is a GT-algebra. Let

R := {(a,a), (a,1), (b ), (b,d), (¢, ), (d, ), (d,d), (1,a), (1, 1)}.

It can be readily check that R is an equivalence relation on X, which is not com-
patible since (a,1) € R and (d,d) € R but (¢ — d,1 — d) = (1,d) € R. Moreover,
[1]R = {a, 1} is not a GT-filter of X since a — d € [1]R,d & [1]R.

For any GT-algebra X and z,y € X, we denote
Alz,y) ={2€ X[z — (y — z) = 1}.
Theorem 3.6. Let X be a GT-algebra and x,y € X. Then A(z,y) is a GT-filter
of X.
Proof. Straightforward. a
Now, we give some characterization of GT-filters.

Theorem 3.7. Let F be a nonempty subset of a GT-algebra X. Then F is a GT-
filter of X if and only if for any a,b € F, either A(a,b) C F or A(b,a) C F.

Proof. The necessity is straightforward. Suppose that for any a,b € F, either
A(a,b) C F or A(ba) C F. Let c € X and d € F. Then it follows from (T3),
(T2) and (pl) that d = (d = (c = d)) =d—- ((d —¢) = (d—d)=d— ((d —
¢) > 1)=d-— 1=1, and so ¢ — d € F by assumption, which proves (F1). Let
¢,d € X such that ¢ — d € F and ¢ € F. Then we have d € A(c — d,c). By
assumption, we get d € F, which proves (F2). Therefore, F is a GT-filter of X. O
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Corollary 3.8. Let F' be a nonempty subset of a GT-algebra X. Then F is a
GT-filter of X if and only if F = Jz,y € FA(z,y).

Theorem 3.9. Let F be a nonempty subset of a GT-algebra X. Then F is a GT-
filter of X if and only if it satisfies 1 € F and (F2).

Proof. The necessity is straightforward. Suppose that F satisfies 1 € F and (F2).
Let € X anda € F. Thena — (x — a) =1 € F by (p2). It follows from the
assumption and a € F that z — a € F. Therefore I is a GT-filter of X. O

Finally, we provide a method to make a GT-algebra from GT-filters.

Theorem 3.10. Let F(X) be the set of all GT-filters of a GT-algebra (X;—,1).
For any F1,F2 € F(X), we define

F1= F2:={z € X|[z)NF1C F2}.
Then (F(X);=,X) is a GT-algebra, where [z) := {z € X|z — z = 1}.
Proof. Let F € F(X). fz € X = Fthenz € Fandso X = FCF. lfz € F
and y € [x) N X then we have y € F, i.e.,[x)N X C F. Thus z € X = F. Hence
F C X = F. Therefore, (F(X);=, X) satisfies (T1).
For any F € F(X), obviously we get F = F C X. If z € X, then we have

[)NF C F,andsoz € F = F. Hence X C F = F. Therefore, (F(X);=,X)
satisfies (T2).

To verify the condition (T3), we consider the following cases: Note that
F1= (F22 F3) C (F1= F2) = (F1= F3)

SzeFl= (F223 F3) = 1e (F1 F2) = (F1 F3)

&[E)NFICF22 F3= [2)n(F1= F2) C F1= F3

& [T)NFICF23 F3&yeg)n(F1= F2) = yc F1= F3

SEZ)NFICF2=2F3&yen)N(F1=2 F2)&zelyyNFl=z¢€ F3.
Let z)NF1C F2= F3,y€[z)N(F1= F2)and z € [y)NF1forall F1,F2,F3 ¢
F(X). Then we have y € F1 = F2 implies that z € F2. Since z € [z) N F1,
we have z € F2 = F3. Hence we get z € F3. From the note above, we have

F1=2 (F2= F3)C(F1= F2)= (F1= F3).
On the other hand, we can observe that

(F1= F2) = (F1= F3) C F1= (F2= F3)
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& E)N(F1= F2) CF1= F3= [g)NF1C F2= F3
)N (F1=2 F2)CF1=2 F3&yez)NFl&zely)yNF2=z€ F3.

Let 2)N(F1= F2)CF1= F3,ye[z)NFland z € [y)NnF2forall F'1,F2,F3 €
F(X). Since y € F1 and z € [y) and F1 € F(X), we get z € F1. Thus we have
z € F1= F2. Since z € [z) N (F1 = F2), we get z € F1 = F3. Hence we obtain
z € F3 by z € [z2)NF1. Therefore the reverse inclusion (F'1 = F2) = (F1= F3) C
F1 = (F2 = F3) holds. Hence (T3) follows for (F(X);=, X). : (
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