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A FRESNEL TYPE CLASS ON FUNCTION SPACE

SEUNG JUN CHANG?, JAE GIL CHOI™* AND SANG DEOK LEE®

ABSTRACT. In this paper we define a Banach algebra on very general function space
induced by a generalized Brownian motion process rather than on Wiener space, but
the Banach algebra can be considered as a generalization of Fresnel class defined on
Wiener space. We then show that several interesting functions in quantum mechanic
are elements of the class.

1. INTRODUCTION

Abstract Wiener spaces have been of interest since the work of Gross [6] and
are currently being used as a framework in the study of the Fresnel and Feynman
integrals. The Feynman integral arose in nonrelativistic quantum mechanics and
has been studied by mathematicians and theoretical physicists. The Fresnel integral
has been defined in Hilbert space [1], classical Wiener space [2] and abstract Wiener
space [9] settings and used as an approach to the Feynman integral.

Let (H, B,i) be an abstract Wiener space. The Fresnel class F(B) of B is the
class of all stochastic Fourier transforms of complex Borel measures on B(H), the
Borel class of H. There are several results insuring that various functions of interest
in connection with the Feynman integral and quantum mechanics are in F(B), for
example see [1, 2, 8, 9, 10]. It is well known that the Fresnel class F(B) is a Banach
algebra.

In this paper we define a Banach algebra on very general function space Cq 4[0, T
rather than on abstract Wiener space, but the Banach algebra can be considered as a
generalization of Fresnel class defined on abstract Wiener space. The function space
Ca,5[0,T] induced by a generalized Brownian motion was introduced by J. Yeh in
[12] and was used extensively by Chang, Chung and Skoug (3, 5]. We then show that
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several interesting functions in quantum mechanic are elements of the class. Recall
that the Wiener process is free of drift and is stationary in time, while the stochastic
process considered in this paper is subject to a drift a(¢) and is nonstationary in

time.

2. DEFINITIONS AND PRELIMINARIES

Let D = [0,T] and let (2, B, P) be a probability measure space. A real-valued
stochastic process Y on (Q,B,P) and D is called a generalized Brownian motion
process if Y(0,w)=0 almost everywhere and for 0 = tg < t; < --- < t, < T, the
n-dimensional random vector (Y (t,w), - ,Y (¢p,w)) is normally distributed with
the density function

—1/2
K(t,7) = ((QW)" (b(t;) — b(tj—l)))

n

=1

| —

ex = ((n; = a(ty)) = (nj—1 = a(t;j—1)))?
g p{ 2j=1 b{t5) — b(t-1) }

where 7 = (71, ,7m), Mo = 0, t = (1, -- ,tn), a(t) is an absolutely continuous
real-valued function on [0,T] with a(0) = 0, a'(t) € L?[0,T], and b(¢t) is a strictly
increasing, continuously differentiable real-valued function with 5(0) = 0 and b'(t) >
0 for each t € [0,T).

As explained in [13, p. 18-20] Y induces a probability measure p on the measurable
space (RD, BP) where RP is the space of all real-valued functions z(t), ¢t € D, and
BP is the smallest o-algebra of subsets of R with respect to which all the coordinate
evaluation maps e;(x) = z(t) defined on R? are measurable. The triple (R?, BP, 11)
is a probability measure space. This measure space is called the function space
induced by the generalized Brownian motion process Y determined by a(-) and b(-).

We note that the generalized Brownian motion process Y determined by a(-) and
b(-) is a Gaussian process with mean function a(t) and covariance function r(s,t) =
min{b(s),b(t)}. By Theorem 14.2 [13, p.187], the probability measure p induced
by Y, taking a separable version, is supported by C, 5[0, 7] (which is equivalent to
the Banach space of continuous functions z on [0, 7] with 2(0) = 0 under the sup
norm). Hence (C, [0, T], B(C, 5[0, T]), 1) is the function space induced by Y where
B(C,[0,TY)) is the Borel o-algebra of C, [0, T].
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We shall say that two functionals F and G defined on Co [0, T] are equal s-almost
everywhere(s-a.e.) if for each p > 0, F(pz) = G(pz) for almost all z € C,,;[0,T].
We denote this equivalence relation by F ~ G.

Let L?l’b[O,T] be the Hilbert space of functions on [0,7] which are Lebesgue

measurable and square integrable with respect to the Lebesgue-Stieltjes measures
on [0,77] induced by a(-) and b(-); i.e.,

12,00,T] = {v ; /OT v?(s)db(s) < oo and /0 v¥(s)dla|(s) < oo}

where |a|(t) denotes the total variation of the function a(-) on the interval [0,1].
For u,v € Lgyb[O,T], let

T

T
(1, 0)ap = /0 w(t)o(t)d(b(e) + lal(t)].

Then (-,-)qp is an inner product on Lg,b[O’T] and |lullqp = \/m is a norm
on LZ,[0,T]. In particular, note that ||ullas = 0 if and only if u(t) = 0 almost
everywhere on [0,7]. Furthermore, (Lib[O,T], Il - lla,p) s a separable Hilbert space.
Note that all functions of bounded variation on [0, T] are elements of L2 [0, T].

Let {¢; }311 be a complete orthonormal set of real-valued functions of bounded
variation on {0, 7). Then for each v € Lg’b[O,T], the Paley-Wiener-Zygmund(PWZ)
stochastic integral (v, z) is defined by the formula

n—oo 0

j=1

for all z € C,[0,T] for which the limit exists; one can show that for each v €
Lg,b[O,T], the PWZ stochastic integral (v, z) exists for p-a.e. x € C,p[0,T] and
that if v is of bounded variation on [0,T], then the PWZ stochastic integral (v, z)
equals the Riemann-Stieltjes integral fOTv(t)da:(t) for s-a.e. x € Cy [0, T]. For more
details, see [5].

Remark 2.1. For each v € L2 ,[0, T}, the PWZ stochastic integral (v, z) is a Gauss-
ian random variable on C, [0, T] with mean fOT v(s)da(s) and variance fOT v2(s)db(s).
Note that for all u,v € Lg’b[O,T],

T . .
/C‘a,b[o,T]<u’x><U’z>d“(x) :/0 “(S)U(S)db(8)+/0 u(S)da(s)/O v(s)da(s).

Hence we see that for all u,v € Lib[O,T], fOTv(s)u(s)db(s) = 0 if and only if (u,z)

and (v, x) are independent random variables.
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3. THE FRESNEL TYPE CLASS ON FUNCTION SPACE

In this section we define a Banach algebra F(C, [0, T]) of functionals defined on
function space Cq[0,T]. First, we will introduce a separable Hilbert space. Let

obl0, T) = {w € Copl0,T) : w(t) = /: z(s)db(s) for some z € Lgyb[ﬂ, T]}

For w € C74[0,T), with w(t) = i 2(s)db(s) for t € [0,T), let D¢ : CL,[0,T] —
L2 ,[0,T) be defined by the formula

w'(t)
1 = = .
Then C, , = C; ,[0,T] with inner product
T
(w1, w2)c thlthgdb(t) - / 21 (8) 22(£)db(t)
0

is a separable Hilbert space. Furthermore, (C, 10, T],Cyp[0,T], 1) is an abstract
Wiener space. For more details, see [11].

Note that the linear operator given by equation (3.1) is an isomorphism. In fact,
the inverse operator D; ! : Lg)b[O, T] — C, 4[0,T] is given by the formula

t
D'z = / z(s)db(s)
0
and D; ! is a bounded operator since

/O " 2(s)db(s) L ( /O Tz2(s)db(s))l/2

T 1/2
< ( [ et + 1a|<s>1) — Nellas-

Thus by the open mapping theorem, we see that D, is also bounded and there exist

-1
1D; 2llcr, =
ab

positive real numbers o and (3 such that al]w}](;/ < |1 Dywllep < ﬂ”w”cr for all
w € Cy [0, T]. Thus we see that the Borel a-algebra on (Cy [0, 77, |- IIC‘/M) is given
by :
B(Copl0,T)) = {D; }(E) : E € B(L;,[0,T])}.
Throughout this paper, for w € C; ,[0, T}, with w(t) = fot z(s)db(s) for t € [0, T,
we will use the notation (w,z)™ instead of (z,z) = (D;w,z). Then we have the
following assertions.
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(1) For each w € C}, [0, T, the random variable z — (w,z)~ is Gaussian with
mean (w,a)cr , and variance w2, K

(2) (w,ax)™ = (cw,z)™ = a(w,z)™ for any real number a, w € C, 50,7 and
z € C,,[0,T).

(3) If {wy,we, - ,w,} is an orthonormal set in C’(’l’b[(),T], then the random

variables (w;,z)™’s are independent.

Next, we define a class of functionals on C, 3|0, T'| like a Fresnel class of an abstract
Wiener space.

Definition 3.1. Let M(C; ,[0,T]) be the space of complex-valued, countably addi-
tive (and hence finite) Boreal measures on C; (0, T]. The Banach algebra

F(Cup[0,T1)

consists of those functionals F' on C,;[0,T] expressible in the form
F@)= [ expfilw,a)}dfw)
G, b0.7]

for s-a.e. x € C, [0, T] where the associated measure f is an element of
M(Coltsb[(): TD
We call F(C,[0,T]) the Fresnel type class of the function space C, [0, T].

Remark 3.2. (1) M(C, ,[0,T}) is a Banach algebra under the total variation norm
where convolution is taken as the multiplication.

(2) One can show that the correspondence f — F is injective, carries convolution
into pointwise multiplication and that F(C, [0, T7]) is a Banach algebra with norm
Il == [, )l

a,s[07]
(3) In [5] Chang and Skoug introduced a Banach algebra S (L?l’b[(), T}) of func-
tionals on C, {0, T'| given by

S(Lz,b[O,T]) = {F : Fz) ~ /L exp{i(v,z)}do(v), o € M(Lzyb[U,T])},

2
2,10,7)
and then showed that generalized analytic Feynman integrals and generalized ana-

lytic Fourier-Feynman transforms of functionals in S(Lg,b[O,T]) exist under appro-
priate conditions. If

F(z) = ,/Lgyb[o,T] exp{i(v, z) }do(v)
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for some o € M(Lgyb[O,T]), then we have
F(z) ~ / expli(w, £)™ }d(o o Dy)(w)
¢ ,lo.1)
where D is given by equation (3.1) above. Conversely, if
Fa)~ [ explifw, o) )df(w)
cL 0]
for some f € M(C,, ,[0,T]), then we have
Fa)~ [, exp{ilo,2)}d(f o D7)(0).
L2 ,[0.7]

Thus we have that F € S(L? 250, T1) if and only if F' € F(C, [0, T]).

4. FUNCTIONALS IN F(C,,[0,T])

In this section we will prove that several interesting functions in quantum me-
chanic are elements of the Fresnel type class. We begin by stating an unsymmetric
Fubini theorem and a lemma from [7, 8] which we use to prove our theorems. We

will denote M(X) the set of all complex finite Borel measures on B(X) for a space
X.

Theorem 4.1. Let (Y,Y,7) be a o-finite measure space and let (Z, 2) be a measur-
able space. For y-a.e. y € Y, let oy be a complez-valued, countably additive measure
on (Z,Z) of finite total variation ||oy||. Suppose that, for any B in Z, oy(B) is a
Y-measurable function of y. Then

(1) for any E in o-algebra Y x Z, ay(E(y)) is a Y-measurable function of y, and
(2) for any bounded, complez-valued, Y x Z measurable function ¢(y,z) onY x
Z, [, ¢(y,z)doy(z) is a Y-measurable function of y.

If we add assumption that ||oy|| < h(y), where h is in L1(Y,Y,7), and define v on
Y x Z by

v(E) = /Y oy (W) (y),
then

(3) v is a complex-valued, countably additive measure on Y x Z with ||v]| < ||h]l1,
and k
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(4) If ¢(y,z) is bounded and YV x Z-measurable, then [, 0y, z)doy(z) is in
LYY, Y,7), and we have

(4.1) / [ / ¢<y,z>day<z>]dv<y> — [ oty 2int,2)

Lemma 4.2 ([8, Corollary 3.1]). Let {o5:0 < s < T} be a family from M(R) such
that 05(E) is a Borel measurable function of s for every E in B(R). Then ||o| is a
Borel measurable function of s.

Next, we give a definition of potential functions which is used in this section.

Definition 4.3. Let G be the set of all complex-valued functions on [0,7] x R of
the form

(4.2) 0(s,u) =/Rexp{iuv}dos(v)

where {0, : 0 < s < T} is a family from M(R) satisfying the following two condi-
tions:

(1) For every E € B(R), 05(E) is Borel measurable in s,
T
@) Woalllon = [ llowldb(s) < 4.

Remark 4.4. In [8], § was a complex-valued function on [0,7] x R™ given by

0(s,u) = / exp{i(, ¥) }dos(7V)
R'Il
where {05 : 0 < s < T} is a family from M (R") satisfying
(1) for every E € B(R"™), o5(E) is Borel measurable in s,
T
(2) llosll € L*0,T), ie., [os]lh =/0 loslids < +oo.

In Section 2, we assumed that b(-) is a strictly increasing, continuously differentiable
real-valued function with b(0) = 0 and b/(¢t) > 0 for each t € [0,7]. From this, we
see that || - ||; and || - ||o,5 are equivalent norms on L![0, T).

We also need a lemma for our results.

Lemma 4.5 ([8, Corollary 3.2]). Let 6 : [0,T] x R — C be given by (4.2) where
{os: 0 < s <T} is a family from M(R) satisfying the condition (1) in Definition
4.3. Then 6 is Borel measurable.

Theorem 4.6. Let t € [0,T] be fired. Let 6(t,-) : R — C be given by
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f(t,u) = /}Rexp{iuv}dat(v)
where oy is in M(R). Then Gy : Ca,b{O,T] — C given by
Ge(z) = 0(t, z(t))
is in the Banach algebra F(Cy[0,T)).

Proof. Applying Lemma 4.5, we see that G is B(C, [0, T))-measurable. We seek a
measure f; in M(Cy, [0, T7) such that for s-a.e. z € Cy[0, 7]

Gi(x) =[ exp{i(w, )~ }dfe(w).
Cl0:T)
For given t € [0,T], let ©; : R — C}, [0, T] be defined by

(4.3) O4(u)(s) = /O " wxio (7)db(r).

Then ©; is a measurable function of v and D;04(u) = ux[py(s). We claim that
ft=0100; 1 is the desired measure. Let p > 0 be given. We need to show that for
prae. € Cyppl0,T)

Gi{px) = 6(t, pz(t)) = /, ]exp{é(w,px)“’}dft(w).

ab 0’

But
Gi(pz) = 0(t, pz(t))

= / exp{ipuz(t)}dos(u)
R

= /Rexp {ip/ot “dw(s)}dat(u)
= /Rexp {z’p/OT uX[O,t)(s)dx(S)}dC’t(u)
= /Rexp {ép/OT Ds@t(u)dgf(s)}dat(u)

= /R exp{ip(O:(u), z)~ }doy(u).

Now, using the change of variables theorem, this last expression equals
[, expliptw,z)"}d(or0 €7 )(w)
C! ,[0.T)

as desired. |
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Theorem 4.7. Let 6 be in G and be given by (4.2). Let G : Co [0, T} — C be given

by
T T
G(z) = f Gi(z)dt = / 6(t, x(t))dt
0 0
Then G is in F(Cqp(0,T]).
Proof. We will use Theorem 4.1 and Lemma 4.2 with
Y. ¥,7) = ([0, T}, B([0, T]), mL)

and (Z, 2) = (R, B(R)) where my, is the Lebesgue measure. By Lemma 4.2, ||o¢||
is a B(|0,T])-measurable function of ¢, and by (1) of Theorem 4.1, for each Borel

subset F of [0,T] x R, o;(E®) is a B([0, T))-measurable function of ¢. Define a set
function v by

(4.4) UW(E) = / " o (EO)t
0

for each E € B([0,T]) x B(R). Then, by (3) of Theorem 4.1, v is a complex Borel
measure on B([0,T]) x B(R) and

vl < /OT foelidt < ( sup %) /T llo¢]|db(t) < +oo.

/
te[0,7) b

By (2) of Theorem 4.1, for any bounded Borel measurable function ¢ on [0,7] x R
Jg #(t,v)do(v) is a B([0, T])-measurable function of ¢ and, by equation (4.1)

/OT [/qu(t,v)dm(v)] dtz/{O,T]x]R o(t,v)dv(t,v).

Foreach z € Cy [0, T}, ¢(t,v) = exp{ivz(t)} is a bounded Borel measurable function
in (t,v) € [0,7] x R. Hence

T
Glz) = [9 O(t, z(t))dt
(4.5) = /0 i [ fR exp{ivz(t)}dat(v)}dt

= / exp{ivz(t) }dv(t,v)
JI0,T)xR
Let @ : [0,T] x R — C7 ,[0,T] be a map defined by

(4.6) B(t,v) = O:(v)
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where ©; is given by equation (4.3). Using equations (4.5), (4.3), (4.6) and the
change of variables theorem, we have that for all p > 0

Glp) = [ expipua(®)}dv,
[0,T]xR

= / exp{ip(©:(v), )~ }dv(t,v)
[0,T]xR

= / exp{ip(®(t,v), z)™ }dv(t, v)
[0,TIxR

= / exp{ip(w, z)~}d(v 0o @) (w).
¢ ,l0.7]

Lemma 4.8. Form =1,2,---, let F, € F(C,[0,T]) and let
(4.7) > NFmll < +oo.
m=1

Then F is in F(C,p[0,T]) where F(z) =Y >_ Fp(z) for s-a.e. x € Cyp[0,T].

Proof. Let f,, be the associated measure of F,,, for each m € N. We define a measure
fon B(C, ,[0,T)) as follows: if E € B(C, 40, T))

(4.8) F(E)=) fm(B).

m=1

The series (4.8) above converges absolutely since it follows from (4.7) that

(4.9) S lfnll = 3 Il < +o0.
m=1 m=1

Clearly, f is a measure. Now by equations (4.8) and (4.9), we have that

fw=2mw=2/ exp{i(w, )™ Ydfm (w)
m=1 m=1YC, ,[0.T]
- exp{i(w, z)"™}df (w)
. o,
for s-a.e. x € Cyp[0,T), and F € F(C,p[0,T)). O

Our next theorem comes basically from the fact that F(C,[0,7]) is a Banach
algebra. This theorem is relevant to quantum mechanics where exponential functions

play a prominent role.
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Theorem 4.9. Let 6 and G be as in Theorem 4.7 above. Let F : Cop[0,T) — C be
given by

T
F(z) = exp{G(z)} = exp {/ G(t,x(t))dt}
0
Then F' is in F(Cyp[0,T)).
Proof. For each m € N, let F,(z) = (1/m!)[G(z)]™. Then F(z) = 1+Y.%_, Fp,(2).
We know from the proof of Theorem 4.7 that G is associated with the measure
g = vo®~! where v is given by (4.4) and ® is given by (4.6). Because convolution (of

measures) is taken over into pointwise multiplication by the map from M(C, ,[0,T])

onto F(Cqy[0,T}), the measure f,,, = (1/m!)g*---*g (m convolutions) is associated
with F,(z) = (1/mD)[G(z)]™. Now

1 m
1Emll = [l fmll = [i(1/mYg + - x glf < —llgll
and so, of course, > ~_; || Fn|| < +oc. Hence it follows that F is in F(C, [0, T]) by
Lemma 4.8. O

5. REMARK AND EXAMPLE

In (3], Chang and Chung showed that the function U on [0,T} x R x R defined
by

—a(t) — &)?
(5.1)  U(t:&n) = BIF|X, = n](2nb(t)) /2 eXp{ _(nza®) =67 }
satisfies the generalized Kac-Feynman integral equation

— _ )2
U(t7€>n) = (27Tb(t))_1/2 exp{ — (—n—_;t()?t)—é)}

(5.2) ¥ /0 /R 35, O)U(s:€, ¢) (2 (b(t) — b(s)))~ /2

o[ (€ als) ~ (a2,
x p{ 2(6(t) — b(3)) }‘“d'

In equation (5.1), F; and X; are BP-measurable functions on RP defined by

Fy(z) = exp { /Otﬁ(s,a:(s) + §)ds} and Xy(z) = z(t) + ¢

where 9J(:, -) is a complex-valued Borel measurable function on [0, 7] x R for which F}
is u-integrable for each (t,£) € [0, T] x R. Actually, it is hold for the case that F; and
X¢ are defined on the function space (C, [0, T, B(C,[0,T]), ). As a special case,
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by Theorem 4.9, we can see that for F; with ¥ replaced with 8 given by equation
(4.2), U(t; €,n) is a solution of the integral equation (5.2).
The integral equation (5.2) is equivalent to a partial differential equation

ou 1, . 0°U , QU ’
(53) ‘5{ - _2'6 (t)-a-ﬂ? -a (t)"é;"' + 19(t’77)U(t751 "’)a
which is the generalized form of the heat equation
oU 18°U
5t "aap TV

In other words, (5.1) is a solution of the partial differential equation (5.3). For more
details, see [3] and [4].

Example 5.1. For each t € [0, T}, let 0; be the Dirac-delta measure at t. Then for

every E € B(R)
)1, teEN[0,T]
a(B) = {o, t¢ END,T]

= Xenfo,)(t)-

Hence 0+(E) is a B([0, T])-measurable function for all E € B(R), and fg lloelidb(s) =
b(T). Let for each t € [0,T], 6(t,") : R — C be defined by

0(t,u) = /l;exp{iuv}dcrt(v) = /{t} exp{iuv}do(v) = exp{itu}.

By Theorem 4.6, the functional G; on C,[0,T] defined by Gi(z) = 8(t,z(t)) =
exp{itz(t)} is an element of F(C, [0, T)) and by Theorem 4.9, the functional F' on
Cup[0,T] defined by

F(z) = exp { /0 ) exp{ita:(t)}dt} 14 mi;l [ /0 " explitz(t) }dt]

is an element of F(C, (0, T}).

m
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