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ON RELATION AMONG COHERENT, DISTORTION AND
SPECTRAL RISK MEASURES

Ju Hong Kim

ABSTRACT. In this paper we examine the relation among law-invariant coherent
risk measures with the Fatou property, distortion risk measures and spectral risk
measures, and give a new proof of the relation among them. It is also shown that the
spectral risk measure satisfies the monotonicity with respect to stochastic dominance
and the comonotonic additivity.

1. INTRODUCTION

The measurement or quantification of the market risk has been introduced and
discussed from theoretical and practical perspectives. Markowitz [9] used the stan-
dard deviation to measure the market risk in his portfolio theory but his method
doesn’t tell the difference between the positive and the negative deviation.

The value at risk (VaR) is widely used by corporate treasurers and fund managers
as well as by financial institutions as a quantitative measurement of market risk.
VaR is a quantity which is the maximum loss not exceeded with a given confidence
level A% over a given period of time. VaR provides the threshold of the potential
loss of the financial position within a given confidence level, but doesn’t give any
information about the size of a loss when the loss exceeds the VaR. VaR doesn’t
satisfy the subadditivity property and so is not a convex risk measure. So VaR
discourages the diversification.

Artzner et al. (3, 4] proposed a coherent risk measure in an axiomatic approach,
and formulated the representation theorems. Rockafella and Uryasev [10, 11], and
Acerbi and Tasche [2] studied the coherent risk measure, the average value at risk
(AVaR), which is also called conditional value at risk (CVaR) or expected shortfall
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(E'S). AVaR is the most popular alternative to the VaR. AVaR is defined in terms
of VaR and is a coherent risk measure which can be viewed as the building blocks
for law-invariant convex risk measures on L*°.

Acerbi [1] proposed the spectral risk measure p, generated by the risk aversion
function ¢. Spectral risk measure is a subset of coherent risk measures satisfying
both law-invariance and comonotone additivity properties. Spectral risk measure is
reduced to AVaR when the weighting function is taken as ¢(t) = %IOStS A

Wang [12] introduced a family of risk measure, i.e., distortion risk measures, in
terms of distortion function (also see [5]). A coherent risk measure with the Fatou
property which is law-invariant can be shown to be identified with the distortion
risk measures of the loss with respect to a concave distortion function (refer to {7]).

The contribution of this paper is devoted to giving a new proof on the relation
among distortion risk measures, spectral risk measures and law-invariant coherent
risk measures with the Fatou property.

This paper is consisted of as follows. In Section 2, the basic properties of coherent
risk measure and other risk measures are discussed. In Section 3, the definitions and
basic properties of spectral and distortion risk measures are given. In Section 4,
- the relation on coherent, distortion and spectral risk measure are characterized. It
is proven that the spectral risk measure is a coherent risk measure with both the
monotonicity with respect to stochastic dominance and the comonotonic additivity.

2. COHERENT RISK MEASURE AND OTHER RISK MEASURES

The definitions of coherent risk measure and other risk measures such as VaR,
AVaR, WCE and TCE are given, and the relation of those risk measures are
provided.

Definition 2.1. The probability space (€2, F,P) is called atomless if there is no set
A € F such that P[A] > 0 and P[B]| = 0 or P[A] = P[B] whenever B € F is a subset
of A.

Notice that probability space (2, F,P) is atomless if and only if (Q2, F,P) supports
a random variable with a continuous distribution. Assume that the given probability
space (2, F,P) is atomless.

Definition 2.2. A coherent risk measure p: L*(Q, F,P) —» RU {0} is a inapping
satisfying for X, Y € L*®(Q, F,P)
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(1) (X +Y) <p(X)+ p(Y) (subadditivity),

(2) p(AX) = Xp(X) for A > 0 (positive homogeneity),
(3) p(X) 2 p(Y)if X <Y (monotonicity),

(4) p(X +m)=p(X)—m formeR (cash invariance).

The subadditivity and the positive homogeneity can be relaxed to a weaker quan-
tity, i.e., convexity

POMX + (1= NY) € Mo(X) + (1= Np(Y) YA€ [0,1]
which means diversification should not increase the risk.

For t € (0,1), a t-quantile of a random variable X on (Q,F,P) is a qx(t) € R
such that

PIX < gx(t)] <t <PIX < gx(t)]-

Notice that the quantile function ¢x : (0,1) — R is an inverse function of a distri-
bution function F of a random variable X such that

Flax(t)=) St < Flgx(t)) forall te (0,1).
The upper and the lower quantile functions of X are defined as
gx(t)=inf{z e R| P[X < 2] >t} =sup{z € R | P[X < z] < t},
gx(t) =sup{z e R | P[X <z] <t} =inf{z € R | P[X < z] > t},
respectively.
Definition 2.3. Let A € (0,1). The value at risk at level A (VaR) is defined as
VaRy(X) = ~g§ ().

VaR systematically underestimates the risks of the potential loss by taking out
the least dangerous scenario. Notice that

_x(1=XA)=sup{z e R|PX < —z] >} =—inf{zr e R | P[X < z] > A}
= —ax(V),
-5\ =—sup{z €R | P[X <z| <A} =inf{z e R | P[X < —z] < A}
=inf{z e R | Plz+ X < 0] <A}
Example 2.4. Consider a portfolio X with two situations, where the loss of X is

~$200 with 5% probability and the profit of X is $20 with 95% probability. Then
VaRsy(X) = —sup{z | P[X < z] <0.05} = $200.
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On the other hand, consider a portfolio Y with three situations, where the loss of
X is —$300 with 4% probability, —~$200 with 1% probability, and the profit of X is
$20 with 95% probability. Then

VaRs5(Y) = —sup{z | P[X < z] < 0.05} = $200.

Easily we can see that the portfolio Y is riskier than the portfolio X, but X and Y
have the same VaR.

Average value at risk (AVaR) is introduced to remedy underestimation of the
risks of the left tail of the distribution.

Definition 2.5. The average value at risk of a position X at level A € (0,1] is
defined as

A
AVaR,(X) = % / VaR,(X)dt.
0

When A =0, it is defined as
AVaRy(X) := —essinf X,
which is the same as the worst-case risk measure,
Pmax(X) :=inf{z€R | X +z>0 P-a.s.}

defined on L°°.
In the case of Example 2.4,

1
AVaRsg(X) = 55=(0.05 x 200) = 200,
AVaRsq(Y) = 6%(0'04 x 300 + 0.01 x 200) = 280.

So the AVaR shows that the portfolio Y is riskier than X.
Definition 2.6. The worst conditional ezpectation at level A (WCE,)) is defined as
WCE\NX) =sup{E[-X|A] | A€ F, P(A) > A}
The WCE)(X) is a coherent risk measure induced by Q, where Q is defined as
Q={P[|A] | Ae F, P(A) > ) for some fixed A € (0,1)}.

Definition 2.7. Let A € (0,1] be a given confidence level. The tail conditional
expectation (T'CE)) is defined as ‘

TCE\(X) = E[-X | - X < VaRx(X)).
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In general, VaR and TCE doesn’t satisfy the subadditivity axiom (see [1, 6]).
WCE is a coherent risk measure but not law-invariant (see Definition 3.1).

Proposition 2.8 ([6]). For all X € L™ and X € (0, 1]
AVaRy(X) > WCEN(X) > TCEA(X) > VaRy(X).

If X has a continuous distribution, then the first two inequalities become equal.

3. SPECTRAL AND DISTORTION RISK MEASURES

In this section, it is shown that the spectral risk measure is a coherent risk
measure and AVaR is a special case of the spectral risk measure. It is also shown
that the coherent risk measure which is law-invariant and has the Fatou property
is represented in terms of AVaR) and quantiles qx. The distortion risk measure is
defined in terms of distortion function.

Definition 3.1. A risk measure p on L™ is called law-invariant if
p(X) = p(Y)
whenever Fx(-) = Fy(-). Here Fx(x) is a distribution function of X.

The law-invariance of the risk measure is an important property from a practical
perspective, which means that it can be estimable from the empirical data.

It is said that p has the Fatou property if for the bounded sequences (X,,) which
converges P-a.s. to some X,

p(X) <lim inf p(X,).

n—oo

Definition 3.2. An element ¢ € L'[0,1] is called an admissible risk spectrum or

risk aversion function if it satisfies

(1) ¢20

(2) ¢ is non-increasing

1
3) 16l = /0 () dt = 1.

Definition 3.3. For an admissible risk spectrum ¢ € L![0,1], the spectral risk
measure My generated by ¢ is defined as

1
My(X) = — /O g (D)(t) d.
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The function ¢ : [0,1] — R can be thought as assigning different weights ¢(t)dt
to each g% (t). Notice that g} (t) = gx(¢) for a.e. t € (0,1).

Example 3.4. The examples of an admissible risk spectrum ¢ € L'[0, 1] are ¢(t) =
+Ip<i<» in which we have My(X) = AVaR,(X), and
e—t/T

¢r(t) = m, € (0,00).

Lemma 3.5. Let py(X) be a coherent risk measure. Let ju be a measure defined on
[0,1] satisfying fo (d\) = 1. Then

1

o) = [ pal) (@)
is also a coherent risk measure. In general, the conver combination of coherent risk
measures is a coherent risk measure.

Proof. 1t is straightforward. a

Theorem 3.6 ([6]). For XA € (0,1], AVaR)y is a coherent risk measure with the
Fatou property and is represented as

AVaRy\(X) = Jnax Egl-X], XelL®

J95%

where Q) is defined as
or={o<er| @l poos)

Theorem 3.7. The spectral risk measure My(X) is a coherent risk measure.

Proof. This is a modification of the proof in [1]. Define a locally finite positive

measure v on [0, 1] as

U((,1]) = / SdN) =), 0<t<1l and

i1

v({0}) =0.

So by the Fubini’s theorem the spectral risk measure My, is expressed as

v =~ [ gt [ van)ar=- ([ sk a)uan
= ~/: AVaRy\(X) Av(d)).

Moreover, we have
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/01 Av(d) = /01 (/0)\ dt)v(dk) = /01 (/tl u(dA))dt
01 o(t)dt = 1.

Clearly, Av(d)) is positive measure on [0, 1]. Since AVaR is a coherent risk measure
by Theorem 3.6, it is done by Lemma 3.5. O

Let M (P) := M;(Q, F,P) be the set of all probability measures on (£2, F) which
are absolutely continuous with respect to P.

The law-invariant coherent risk measures p : L>°(P) — R with the Fatou property

is represented in terms of AVaR, and quantile functions gx.

Theorem 3.8 ([6]). The law-invariant coherent risk measures p : L®(P) — R with

the Fatou property is represented as

pX) = sup. ( /m AVaR,(X)m(dN)

= sup ( /0 1tz—;c(lf)cfzw(t)dt)

QeM, (P}
for some set M C M1([0,1]) where ¢ := %.

Definition 3.9. Let ¢ : [0,1] — [0, 1] be increasing function with (0) = 0 and
(1) = 1, which is called a distortion function. The set function

colA) = V(P(A)), A€ F
is called distortion of P with respect to the distortion function .
Definition 3.10. A set function ¢: F — [0, 1] is called monotone if
c(A)Ccce(B) for ACB
and normalized if ¢(0) = 0 and ¢(2) =1.

Definition 3.11. Let ¢: F — [0, 1] be monotone and normalized set function. The

Choquet integral or concave distortion risk measure of X with respect to c is defined
as
G o0
/Xdc ::/ (c(X>:c)—1)d:r:+] (X >z)dr, X eL®(Q,F).
-00 0

Define the right-hand derivative gb; of the concave function ¢ as

(3.1) bl (t) = / }u(ds), 0<t<l
(tvl]

$
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Then it can be shown that there exists one-to-one correspondence between proba-
bility measures p on [0,1] and increasing concave functions ¥ : [0,1] — [0,1] with
¥(0) = 0 and (1) = 1 [6]. Here u({0}) = (0+).

4. CHARACTERIZATION OF COHERENT, DISTORTION AND
SPECTRAL RISK MEASURE

The relation of coherent, distortion and spectral risk measure is given in this
section. Moreover, the spectral risk measure also characterized in terms of the
monotonicity with respect to stochastic dominance and comonotonic additivity.

Definition 4.1. Two measurable functions X and Y on (2, F) are called comono-
tone if there exists a measurable function Z on (Q,F) and increasing functions f
and g on R such that

X =f(Z)and Y = g(2).
A risk measure p on L™ is called comonotonic if
p(X +Y) = p(X)+p(Y)
whenever X and Y are comonotonic.

Consider the risk measure p,, expressed in terms of AVaR) and a probability
measure m on [0, 1], i.e.,

(4.2) pr(X) = / AVaR,(X) m(d)).
The following theorems 4.2, 4.3 and 4.4 are quoted from [6]( also refer to (8]).

Theorem 4.2. On an atomless probability space, the class of risk measures
Pm(X) = / AVaRy(X)m(dr), m e My([0,1)),

is precisely the class of all law-invariant convex risk measures on L°° that are
comonotonic. In particular, any convexr risk measures that is law-invariant and
comonotonic is also coherent risk measure with the Fatou property.

Theorem 4.3. Let m be a probability measure on [0,1] and ¢ be the concave dis-
~ tortion function defined in (3.1). For X € L,

(43) p(X) = [ () dey = Sup Bol-X]

o
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where cy, is the distortion of P with respect to v and Q,, is defined as

1
Qm:{QEMl(P)I /t go(s)ds < Y(1 —1) forte(O,l),tpzz%%}.

For A > 0, if the probability measure m and the concave distortion function
are respectively taken as

Lot <
m(ds) = d0x(ds) and Y(t) = { ’1\, £
then the equation (4.3) becomes
AVaRy(~X) = %/ PX > 2] A \dz
0
= /Xdcw.

Some distortion risk functions used for insurance risk pricing are

(1) ¥(t)=1-(1—t)*, v >1: Dual power function,
(2) ¥(t) = t1/7,4 > 1: Proportional hazard transform,

(3) ¥a(t) = ®[@71(t) + a],t € (0,1) where ® is standard normal distribution:
Wang’s distribution function.

Theorem 4.4. Let m be a probability measure on [0,1] and let i be the concave

distortion function defined in (3.1), and ¢y, be the distortion of P with respect to 1.
Then, for X € L*>°,

1
pm(=X) = $(0+)AVaRo(~X) + /0 ax () (1 — 1) dt

Z/Xd0¢.

Theorem 4.5. Let m be a probability measure on [0,1] satisfying m({0}) = 0 and

Y be the concave distortion function as in the equation (3.1), then
1
(4.4) () == [ ax(ow' @ at.
0
Moreover, if we take the spectrum ¢(t) as $(t) = ' (t), then we have

1
/ (=X)dey = — /0 ax (£)6(t) dt == My(X).

That is, the Choquet integral of —X 1is equal to the spectral risk measure M.
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Proof. Since 0 = m({0}) = ¥(0+), Theorem 4.4 implies that

1
pn(=X) = [ ax(O¥' (10t = [ Xaey,
By changing variable by 1 — ¢t = s, and the relation gx(t) = —¢_x(1 — 1)
a.s. t€(0,1),
l ' l i
[ axtwa-oda=-[axa-nva-ya
0

1
— [ ax(¥ ) ds
0

So we have the equation (4.4). Let us take ¢(t) = ' (t). Then, by the definition of
Y (t), clearly ¢ are nonnegative and nonincreasing and also satisfies

1
1Wm=/¢@ﬁ:1

since

/ o(t)dt = / ¥ (t)dt = / / Itics<ay dtm(ds) = m((0,1]) = 1, and
(1 S
m({0}) =
So ¢ is the risk aversion function. Thus we have
f (=X) dey = My(X).
|

From Theorem 4.5, we see that spectral risk measures are expressed in the class
of coherent risk measures p,,(X) defined as in (4.2).

Definition 4.6. Let X and Y be random variables. It is said that Y dominates X
in stochastic dominance sense, denoted X < Y if the distribution functions Fx(z)
of X and Fy(z) of Y satisfy

Fx(z) > Fy(z), z€R.

Definition 4.7. The risk measure p : L — R is said to be monotonic with respect
to stochastic dominance if

p(X) > p(Y) whenever X <5 Y.

The spectral risk measure also characterized as in the following theorem. Refer
to [1, 6] for the details.



ON RELATION AMONG COHERENT, DISTORTION AND SPECTRAL RISK MEASURES 131

Theorem 4.8. The spectral risk measures My with ¢(t) = +'(t) are all the co-

herent risk measures which satisfy both the monotonicity with respect to stochastic

dominance and comonotonic additivity.

Proof. Theorem 4.5 implies that a spectral risk measure is a coherent risk measure.
X =x4Y = VaR)\(X) > VaR,(Y)
= AVaR)\(X) > AVaR\(Y) = pm(X) > pm(Y).

So by theorem (4.5) we have

M) = [(¥)dey < [(-X)dey = Mu(X),

Therefore, the spectral risk measure satisfies the monotonicity with respect to sto-
chastic dominance. The comonotonic additivity holds by Theorem 4.2. O
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