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HYPER ORDER OF SOLUTIONS OF COMPLEX DIFFERENTIAL
EQUATIONS IN THE DISC

ZONG-XUAN CHEN® AND KwANG HO SHON?

ABSTRACT. We investigate the growth of solutions of complex linear differential
equations in the unit disc. We obtain properties of solutions of differential equations
with entire coefficients. We use the concept of the hyper order to estimate the growth
of solutions.

1. INTRODUCTION

We assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s value distribution theory of meromorphic
functions in C and in A = {z : |z| < 1}, (e.g. see [3, 7]). In addition, the order of a
meromorphic function f in A is defined by

logt™ T
o(f) = limsup 08 S\nJ) (17" 1)
r—1- 0g 15

?

where T'(r, f) is the Nevanlinna characteristic function of f(z). For an analytic
function f in A, we also define
log™ logt M(r, f)

oy (f) = limsup T ,
r—1- 08 1=

where M (r, f) is the maximum value of |f(2)| on |z| = r.
We also define the hyper-order of a meromorphic function f in A similarly to the
plane case
log" log™ T
o9(f) = limsup 08 %% : (r, f)
r—1- log =
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If f is an analytic function in A, we also define

_ logt log™ log™ M(r,
oum2(f) = limsup £ 08 gl ( f).
ro1- log 1=

Definition 1. A meromorphic function f in A is called admissible if
lim sup —T(L’p— =00
r—1- 108 7=
And f is called non-admissible if
o, f)

limsup T
r—1~ 108 77
Definition 2. Let f be analytic in A and let ¢ € [0,00). Then f is said to belong
to the weighted Hardy space H ¢ provided that

sup(L — |2|%)?| £(2)| < o0.
zeA
We say that f is an H—function when f € H° for some gq.

Theorem A ([2]). Let Ao(z),...,Ar-1(z) be the sequence of entire coefficients of
the equation ‘

(1.1) FO+ A1 @FE V4 A fD -+ Ao(2)f = 0.

Let Ag(z) be the last transcendental coefficient while Ag+1(2), . .., Ax—1(2z) are poly-
nomials. Then (1.1) possesses at most d linearly independent entire solutions of
finite order of growth.

J. Heittokangas [4] obtained the following counterpart in A to Theorem A.

Theorem B. Let Ag(z), ..., Ax—1(z) be the sequence of coefficients of (1.1) analytic
in A. Let Ag(z) be the last coefficient not being an H—function while the coefficients
Ags1(2), ..., Ak—1(2) are H—functions. Then (1.1) possesses at most d linearly
independent analytic solutions of finite order of growth in A.

By Theorems A and B, we see that the equation (1.1) in C (or in A) possesses
at least k — j linearly independent solutions of infinite order.

It is natural to ask problems : (1) How can one more precisely estimate the
growth of these k — j linearly independent solutions of infinite order?

(2) What can be said if Agyg,..., Ax—1 only satisfy o(4;) < o(4y) (j = d+
L...,k=1)?
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We use the concept of the hyper order and new methods to answer these two
problems, and obtain the following theorem 1.

Theorem 1. Let A; (j =0,...,k — 1) be analytic in A. Suppose that there exists
some d € {0,...,k — 1} such that Ay is admissible and 0(Aq) = or(Ag) = p, while
om(Aj) < p forj=d+1,...,k—1; (or p = 0, while A; are H—functions for
j=d+1,....k—=1;) and op(As) < p for s = 0,...,d — 1. Then the equation
(1.1) possesses at least k — d linearly independent analytic solutions of the hyper-
order ao(f) = pu and the order o(f) = oo (at most d linearly independent analytic
solutions of the hyper-order oo(f) < ).

2. LEMMAS

The following lemma is due to H. Wittich [6].

Lemma 1. Let f; (j =1,...,k) be analytic functions in A. Set

k
a=(fi,--s i)y llall = 1522,
j=1

Then we have
(1) 1 &)l < 192 = (25, 1£D)2,
(2) (5o 1£D)? < kS5 15512 = ko2

We use H. Wittich’s method [6] to prove the following lemma 2.

Lemma 2. Let A; (j = 1,...,k — 1) be analytic functions in A with op(4;) < 0.
Suppose that f(Z 0) is a solution of the differential equation (1.1). Then we have
o2(f) <o.

Proof. By the basic theory of differential equations, we know that f is an analytic
function in A when A; (j = 1,...,k — 1) are analytic functions. By o (4;) < o,
we know that for any given (> 0), there exists R € (0, 1), such that

o+e
(2.1) M(T,Aj)Sexp{<1ir> } (j=0,....k—1)

for |z| =r € (R,1).

We present (1.1) as a system of equations

22) f=h, fi=fnG=1..k=1), fi=—Ag(2)fi— — A(2)fk
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We set &
a=(fi,..-, fu) llall = O 11172

J=1
For any fixed ray argz = 6 € {0,2n), by (2.1) and (2.2), we get that as |z| = r €
(R, 1),

(2.3) 42 < [Ao(@) ()] + - + [ Ak-1(2) | fi(2)]

<exp { (= )+} i 5

By (2.2), (2.3) and Lemma 1(2), we know that as |z| = r € (R, 1),

(2.4) Z |£5(2)1? Z 1£5(2)12 + | fi(2)

= 2 4 2 2 2 2
= Y s P + =) < [l +kexp{m}uau

j=1

< (1 +kexp{~{~l—:—iw}) llal? < (1+K) exp{(1 2)a+€}|]a||2.
And by Lemma 1(1) and (2. 4) we have

(2.5) <) = S

7=1

1 o+e
Integrating for both sides of (2.5), we get that
1 o+€
(2.6) log|la]] < \/k-i—lexp{(m) }

By (2.6), we know that for all z satisfying |2z] <,

lefl < exp{mexp{(l—i—;)m}}.

Now we take |z| = r and |f(2)| = M(r, f). Then we have
(2.7) M(r, ) < (F @+ £ @R + -+ [f* ()23
= (AP +1LE)E+ -+ ful2))?

= lfol| < exp{\/’“_“e"p{(f—i_?")m} } |
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Since ¢ is arbitrary, by (2.7), we get o3(f) < o.

By using the similar reasoning as in the proof of [5, Lemma 7.7}, we can prove

the following lemma.

Lemma 3. Let fi,...,fr be linearly independent meromorphic solutions of the
linear differential equation

g(k) + ak—lg(k‘_l) _+_ e + aog = O

in A, with meromorphic coefficients ag,...,ax_1 m A. Then we have, for each
j=0,...,k—1,

m(r,a;) = O <10g o

where E C (0,1), [, 5dr < .

+log(max(T(r,g,),v=1,... ,k:))) v ¢ E,

Lemma 4. Let A(z) be a meromorphic function in A, with

1 A
(2.8) limsup 227 A) _
r—1- log 1—r

Suppose that a set £ C (0,1) with [, T}—T—dr < 00. Then there is a sequence {r,} C
(0,D\E, (ri <ra<---, ry = 17) satisfying

(2.9) i 08U, A)

Proof. By (2.8) we see that there exists a sequence {r,} C (0,1), (r} < 15 <
-, T — 17) satisfying

1 'A

lim 28w A) _

nooo log 1=

If we set

1
/ : dr = a < o0, [3=e'(°‘+1) <z, s(r)=1-801-r),
El—'l" 2

then, for each r}, we have

1
/ dr=a+ 1.
[, s} L= T

Thus there is a point r, € [r},, s(r})]\E. Since

logm(rn, 4) _ logm(ry, 4) _ logm(ry, 4)

log 12— log 1_—31(;5  log T—Lrgf +(a+1)

Vv
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we get that
I A / 1 7 ,A
tming BT A) o e logmOnA) g logm(nd)
N~ 00 lOg T=rs N 00 log = + (a + 1) =00 IOg =

Hence (2.9) holds.

Lemma 5 ([1]). Let g(r) and h(r) be monotone increasing and real valued functions
on [0,1) such that g(r) < h(r) possibly outside an exceptional set E C (0,1), for
which [g Ti—rdr < oo. Then there ezists a constant b € (0,1) such that if s(r) =
1—b(1 —r), then g(r) < h(s(r)) for all T € [0,1).

3. PROOF OF THEOREM 1

Proof. Assume that {fy,..., fx} is a solution base of the equation (1.1). By Lemma
2, we know that oo(f;) <p (j=1,...,k).

If f; (j =1,...,k) are all of g2(f;) < w, then there exist constants y; (< p) and
R (0 < R < 1), such that for all z satisfying R < |2|] =7 < 1,

(3.1) T ) <ew {ﬁfl?)T} .

By Lemma 3 and (3.1), we get that

(3.2) mir,Ag) < M (log ] 1 -t log {exp ﬁ}) (r¢ E)

where M (> 0) is some constant and a set E C (0,1) with [ =-dr < 00. By (3.2),
we have o(Ay) < p1 < p. This contradicts the hypothesis 0(A4) = p. Hence there
is at least one f; satisfying oa(f;) = p.

If d = k — 1, then Theorem 1 holds by above result. Now assume that 0 < d <
k-2

Suppose that fi,...,fss1 are d + 1 linearly independent analytic solutions of
(1.1), with o2(f;) < i, (j = 1,...,d+1).

We now apply the order reduction procedure. For convenience, we use the no-
tation 1y instead of f, Agg,..., and Agk—1 instead of Ap,..., Ax_1, respectively.
Set

0 (-1 _ Y

d 1
Aor =1, = —— = —
MESMTER Y TR
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(-1

Then we have (v, ))’ =W, = flVf—l), and

(3.3) FO =9 Zcmflm U=1=m) (5 =0,...,k)
m=0

where C7" is the usual notation for the binomial coefficients. Substituting (3.3) into
(1.1), we obtain that

k k—1 l
(34) Z C’I::nfl(m)yik—l—m) + ZAO,I z Cmf(’ITL) (I-1-m) + A070f1V§_1) -0
m=0 1=

Rearranging the sums of (3.4), we get that

k-3 k—j-1 )
(35 h V1k 1)+(kf1+A0k 1fi)v +Z Z +1+mA0,]+l+mf1 ) ij)

j=0 m=0

TV + Agp AV 4+ Aopfi) =0
Since f1(z 0) is a solution of (1.1), by (3.5), we obtain that

3.6) Y 4 AL @ o A (AT £ A2 =0,

where
(3.7)
k—j—1 £m)
Ay = Ao+ Z Cﬂ1+mAO,j+1+m‘;cTa (j=0,....k=2); Ajp () =1
m=1
Setting

(3.8) max{on(Ao;) j=d+1,....,k=1); o2(fm) (m=1,...,d+1)} =4,
since

om(A;) =om(Aoj) <p(f=d+1,....k=1), o2(fm) <p (m= 1,...,d+1),
we see that
(3.9) é < p.

For any given ¢ (0 < 3¢ < u — §), by (3.8) and (3.9), there exists R € (0,1), such
that as |z| =r € (R, 1),

b+
(3.10) m(r, Ao ;) = m(r, 4;) < ( > C(j=d+1,...k—1),

1—-r

545
3.11) log T(r, fm) < (1:) Cm=1,...,d+1).
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And there exists a set Ey C (0,1), such that | E lljdr < 0o and
(3.12)

f(S) 1 1 d+e
m (‘f’, }1 ) =0 (lOgT(T,fl) + log 7 ~_T) < (1 —'r) , (821, r ¢ Ey).

By (3.7) and (3.10)-(3.12), we get that for |z| =7 € (R, 1)\ Ey

b+e
m(r,Al,j)=0(<i%—;> ),'(jzd,...,k—Z).

And by (3.7), we know that

k—d-2 f(m)
(3.13) Arg1=Aoa+ Y CﬁmAO,der—lf-l—.
m==]

Since 0(Ag q) = op(Agq) = g, by (3.8)-(3.13), we deduce that

i log m(r, Al,d—-l)
im sup ; =u
r—1- log 7=

Similarly, we get that
logm(r, A1s)

lim sup

p— T S (s=0,...,d—2).
r—1 Ogi—"f‘

Now we consider meromorphic functions

_ 4 (In(2) _
nm(z) = o (m) , (m=2,...,k).

Since
oo(fi) <p(G=1,...,d+1), oa(fs) Sp (s=d+2,...,k),
we get that

(3.14) o2a(r) <p (G=2,...,d+1), o2(trs) Sp(s=d+2,...,k).
Suppose that ¢a, - -+ , ¢x are constants such that
(3.15) Cov1 g+ G = Cg(iz-)l R Ck(f-li)’ = {.
S fi
Then, by integrating both sides of (3.15), we get that
(3.16) eafet+-teafitafi =0,
where ¢ is some constant. Since fy,..., fi are linearly independent, we have ¢; =
c2 = -+ = ¢ = 0 by (3.16). Hence v1p,...,v1 are linearly independent, i.e.,

{112,...,1 1} is a solution base of the equation (3.6).
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We continuously proceed the same order reduction procedure as above. Set
(3.17)

d i 1,55 . .
vi(z) = e <L(_Q)7 vis;(2) = di (Vl—’(z)) (t=2,...,d; s =1+1,...,k),

Vi—1,i(2) z2 \ Vi-1,i(2)
I/i(k_i) + Ai,k—i—l(z)yfk_i_l) +--+ Ai,d_i(z)l/i(d_i) + -+ Ajp(z)y = 0.
After d steps, we get

(3.18) l/c(ik_d) + Adk_d_l(z)l/((ik_d_l) R Ad’o(z)l/d = 0.

Using the reasoning as above, we know that {v;;y1,..., vk} and {vads1,---, V)
are solution bases of (3.17) and (3.18) respectively. Since vg1,...,10,4+1 satisfy
oa(m,j) < p (j=1,...,d+1), by (3.14), we see that va 3, . .., V2 441 satisfy o2(v25) <
i) (_] =3,...,d+ 1); ces Vil ey Vi dtl satisfy

(3.19) oa(vij)<p(t=1,...,d=-1; j=1i+1,...,d+1);

V4 d+1 satisfies

(3.20) o2(Va,d+1) < p-
Using the similar reasoning as (3.12), by (3.19), we have

,/(8)1 1\ 0+
(3.21) m|r 2 g( ) , (1<s<k—-2,i=1,...,d=-1;r ¢ Ey).

Visit+1 1—r

Now we consider the growth order of solutions of (3.18). To work out the growth
order of solutions v, of (3.18), we need the coefficients A4, ( =0,...,k—d—1)in
more detailed form. Suppose

(s) V(s) 8)
(3.22) o= p(Aogr1- Aok, By 220 1 <5<k -2)
’ ’ fi nga Vi-1,d
denotes a linear combination of Ag gy1,. .., Agk—1, with the coefficients
s (s) (s)

il(—); fzo o ldd g cgcg o),

fi v Vi—1.d
By (3.10), (3.12), (3.21) and (3.22), we get that

1 6+e

(3.23) m(r,p) < (E) , (r e (R, 1D\Ey).

By (3.7), we can write

(3.24)
(s)

Ay j(2) = Aoj+1 +o15(Aoj+2, - Aok-1, ff1_1 (1<s<k-2))(j=0,...,k—2),
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()
where gal,j(Ao,”g,...,AO,k_l,if-}-l- (1 < s < k-2))is a linear combination of
(s)
Ao jy2, --., Aok-1, with the coefficients -J:qu— (1 < s < k — 2). Particularly, by
(3.22) and (3.24), we get that
Al,j(z) =9, (]zd’ak—'Q): )
Arg-1(2) = Aoa+vra-1(Aods1,- - Aok 1’ff1 (1<s<k-2)
= AO,d + @,
and ;
Azj(z) = ¢, (j=d~-1,....k-3)
(s)
A2a-2(2) = Ara-1+02d-2(Ara,. . Arp-n, 502 (1< s <k —2))

(s) (s)
= Aoa+@+praa(Aod,. .. Aok, Gy B2 2 (1<s<k-2))

== Ao,d + .
Similarly, we can deduce that
(3.25) Aa;(2) = ¢ (=1, k—d—1)
(3.26)
5 Vgs% ”f{s 1,4
Aao = Aoa+paoAoarss - Aok-1, Fri mraii gy 1S8<k—2)
= Apd+ e

By (3.23) and (3.25), we see that for above given e,

1 o+
(3.27) m(fr,Ad,j)zo{(l_r) },(j=1,...,k~d~1;rE(R,l)\E1).

By (3.26), (3.27) and Lemma 5, we see that
log m(r, Ad 0)

(3.28) lim sup
r—1- 08 1=¢ 1 —T

By (3.18), we have

(k—d) k=d=1)
+ Agj—g-1(2) 2

(3.29) Agp(z) = ot Ad,l(z)i—z

By (3.27) and (3.29), we get that

k~d (s) k—d-1
(3.30) m(r, Agqp) < Zm( ) 4+ Z m(r, Aq ;)

s=1 j=1

ir) +0{<1ir)5+€}, (r € (R, )\Ey).

=0 (logT('r, vg) + log I
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By (3.28) and Lemma 4, there is a point range {r,} C (R,1)\EF1),7, — 17, such
that

(3.31) m(r Adg) > ( ! )

1-7r,

Since 3e < p — 4, by (3.30) and (3.31), we deduce that

1\ 1
3.32 <M T 1
(3.32) <1—7°n> < (log (T, va) + Ogl——rn>’
where M (> 0) is some constant. Since ¢ is arbitrary, by (3.32), we get that
(3.33) oa(va) > p. -

All solutions vy of the equation (3.18) satisfy (3.33). But vgq41 is a solution of
(3.18). Thus, (3.33) contradicts (3.20). O
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