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GLOBALIZATION OF A LOCAL MARKET DYNAMICS
ONTO AN INFINITE CHAIN OF LOCAL MARKETS

YonGg-IN KiMm

ABSTRACT. The purpose of this paper is to extend and globalize the Walrasian
evolutionary cobweb model in an independent single local market of Brock and
Hommes ([3]), to the case of the global market evolution over an infinite chain of
many local markets interacting each other through a diffusion of prices between
them. In the case of decreasing demands and increasing supplies with a weighted
average of rational and naive predictors, we investigate, via the methods of Lattice
Dynamical System, the spatial-temporal behaviors of global market dynamics and
show that some kind of bounded dynamics of global market do exist and can be
controlled by using the parameters in the model.

1. INTRODUCTION-THE COBWEB MODEL

The Cobweb model for the local market dynamics has been well introduced and
studied by many researchers (e.g., [3],[4],[5],[8]). The Cobweb model describes
the dynamics of equilibrium prices in a single independent local market for a non—
storable good, that takes one time period to produce, so that producers must form
price expectations one period ahead using the past history of prices.

Let pf = H(P,-1), where p¢ is the expected price by the producers at time n
and P,_1 = (Pp—1,Pn-2," - ,Pn—L) is a vector of past prices of lag-length L and
H()): Rl = R is a real-valued function, so called predictor. Let p, be the actual
market price at time n by the consumers, and let D(p,) be the consumer demand
and S(pg) be the producer supply for the goods. The supply S(p%) is derived from
producer’s maximizing expected profit with a cost function ¢(g), i.e.,

(1.1) S(p;,) = arg H;gx{piqn —c(gn)}-

The demand function D(-) depends on the current market price p, and is assumed

to be strictly decreasing in the price p, to ensure that its inverse D! is well-defined.
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The supply function S(-) depends on the expected price pf, and will be assumed to be
strictly increasing. Let p* be the unique steady state equilibrium price corresponding
to the intersection point of the demand and supply curve, i.e., D(p*) = S(p*).

If the beliefs of producers are homogeneous, i.e., all producers use the same
predictor H, then the market equilibrium price dynamics in the cobweb model is
described by

(1.2) D(p,) = S(H(P,_1)), or, pp=D"YS(H(Pn-1))).

Note that the Equation (1.2) is well defined due to the above assumption that the
demand D is decreasing and the supply S is increasing in such a way that its curve
intersects the demand curve at a unique point in the relevant interval. Thus, the
actual equilibrium price dynamics depends on the demand D, the supply S, and the
predictor H used by the producers.

Now, as a model for the global market dynamics, we take the Lattice Dynamical
System(LDS) of the following form (c.f., [1],]2],16],[7],[9], [10]):

(1.3)  pi(n+1) = (1 - )pj(n) + af(pi(n)) + e{pj-1(n) — 2p;(n) + pj11(n)},

where a solution p;(n), j € Z, n € Z* represents the price of a good at the site
(or local market)j at the time n, and f : R — R is a Walrasian local market price
dynamics at each site 7, and « € [0,1] is a parameter denoting the weighted average
between p;(n) and f(p;(n)), and the parameter ¢ is a diffusion coefficient measuring
the intensity of interaction between the neighboring local markets. Thus, in this
global market model, the price p;(n + 1) at site j and at time n + 1 is determined
by several factors, i.e., the previous price p;(n), the local market dynamics f, the
weight a € [0,1] of the average between them, and the diffusion coefficient € > 0
denoting the intensity of the interaction between neighboring local markets. Notice
that if & = 1, then the next price at the site j is determined only by the local
market dynamics f and the diffusion between neighboring sites. On the other hand,
if & = 0, then the local market dynamics is completely suppressed and the next
price at the site j is determined only by the present price and the diffusion between
neighboring sites. Hence, the parameter @ = 1 may be called the market control
parameter.

Remark. For a solution p;(n) of our model (1.3) to have a meaning in economic
sense, we impose a boundary condition at infinity that p;(n) must be bounded, i.e.,
lpi(n)| < CVj € ZneZt for some C > 0. Also, we require that a solution p;(n)
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must have nonnegative value for all j € Z,n € Z*. If a solution of (1.3} does not
satisfy these conditions, then it would not be an admissible solution for our model.

Now, it is clear that in order to apply the model (1.3), we first need to determine
the local market dynamics f. In this paper, for simplicity and applicability, we will
restrict our attention to the case where D is decreasing, S is increasing, and H is
a weighted average between rational and naive predictors. And then for such case
of local markets, we will investigate the resulting global market dynamics of price
distributions, say, spatially homogeneous solutions, static solutions, and traveling
wave solutions along an infinite chain of local markets.

2. LocAaL MARKET DYNAMICS

We assume that H is a predictor which is a weighted average between rational
and naive predictors, that is, given by

(2.1) P, =HP,_1)=7p,+ (1 —7)pn1, 0<7<1,

where the parameter 7 will be called a "rationality”, since it represents the amount
of rationality in the expectation H in such a way that if 7 = 1, then H is perfectly
rational, and if 7 = 0, then H is naive. Hence, we assume that 0 < 7 < 1 from now
on.

For the demand and supply, we again assume that D is linear decreasing, and S

is linear increasing, i.e., we suppose that
D(p.) = A- Bp,, S(»;) ="bp;, (A, B,b>0)

as in Brock and Hommes (1997). Then, the local market equilibrium price dynamics,
D(pn) = S(p7.), is given by

(2~2) A— Bp, = b{Tpn + (1 - T)pn—l}; or
Alb T—1

where v = b/B and will be regarded as a fixed parameter hereafter. Hence, the local

market dynamics f is given by
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A/b + T—1 -
T+1/y T4+1/7

Here, f is an affine map and has a fixed point p* = Bi-pb' Let us first examine the

(2.3) fz) =

dynamics of f. Letting p,, = p, — p*, (2.2) becomes
T-1
T4+ 1/y
where Cy(7) = 77 /,y is a function of 7 for each fixed 7. Note that —y < C,(7) <
0V0 <7< 1,7>0,ie., for each fixed v > 0, C,(7) is increasing from ~v to 0 in

(2‘4) Pn = ———Pp-1 = C’y (T)ﬁn—-la

the interval 0 < 7 < 1. Now, according to the values of the parameters -y and 7, the
local market dynamics f shows the following behaviors. The proof is trivial and so
will be omitted. ‘

Lemma 2.1. (i) f 0 <y <1 and0< 7 <1, then -1 < Cy(7) <0, and so p, — 0
(pn — p*)(oscl) as n — +oo.

(i) if v > 1 and ”’271 < 1 < 1, then =1 < Cy(r) < 0, and so p, — 0O(oscl) as
n — +00.

(i) if vy >1land 0 < 7 < %}«, then C,(1) < -1, and so p, — =oco(oscl) as
n — +4+00.

(iv)ify>1andr = 3’@?7—1, then C,(7) = —1, and so the orbit of any initial condition

Po # 0 under f is a 2-cycle {po, —Po}.

=21 2- cyae)
2y

U.S.losch)

Figure 1. The stability regions of the fized point p* of f in the (v, 7)-
parameter space.

Hence, the steady state equilibrium price p* = 'B{-%—_b is asymptotically stable in
the case (i) and (ii), and is neutrally stable in the case (iv), and is unstable in the
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case (iii). In the Figure 1, we show the motions of the local market dynamics f for
the values of parameters in the (v, 7)-space.

From Figure 1, we can make a following observation about the local market dy-
namics f in the cobweb model with linear supply and demand, and the expectations
of the form given in (2.1).

1. fo<y= % <1, i.e., the supply rate b is less than or equal to the demand rate
B, then for any rationality 7 € (0, 1), the price fluctuations always converge to the
steady state equilibrium price p* = B+

2. If v > 1, i.e., the supply rate b is greater than the demand rate B, then for
each 7o > 1, there exists some critical value of the rationality o € (0, %) given

by 75 = 73,;)1 such that for 7 > 79, the prices converge to p* and for 7 < 79, the
prices diverge from p*. Such critical values 7q are increasing to % as -yp increases,
but always 79 < % In other words, the curve 7 = 72—_71 in the (v, 7)-parameter space
can be regarded as a curve of bifurcation values for the local market dynamics f to
make a change of stability.

3. If % < 7 < 1, ie., the rationality 7 is greater than or equal to %, then for any

v > 0, the prices always converge to the steady state equilibrium price p*.

3. GLOBAL MARKET DYNAMICS

Now, let us return to considering the global market dynamics given by (1.3),
where the local market dynamics f is defined by (2.3), i.e.,

BN pn )= +of 2+ T

+ &{pj—1(n) — 2p;(n) + pj+1(n)},

where0<T<1,'y=%>0.

Before starting this section, let us first consider several kinds of basic motions (or
solutions) in the LDS (1.3) or (3.1).

Definition 3.1. (i) A state (or solution) p(n) = {p;(n)} for the LDS (1.3) is spatially
homogeneous if p;j(n) = ¥ (n)Vj € Z, i.e., a spatially homogeneous solution {¢(n)}
does not depend on the space coordinates j and so has the same value at each site
]

(ii)A solution p(n) = {p;(n)} is static (or stationary, steady state,standing wave) if
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pj(n) = ¢;V¥n € Z7, ie., a static solution {¢;} does not depend on time n, and is
standing there along the space coordinates j at all times n, so they are sometimes
called "standing Waves” in contrast to the traveling waves defined below.

(iii) A solution p(n) = {p;(n)} is a traveling wave with wave velocity m/l if p;(n) =
E(lj+mn), wherei >0, m € Z and (I,m) = 1 (i.e., relatively prime). Here, the ratio
m/l is called the wave velocity of the traveling wave. At time n = 0, the value of
p;(0) at site j is given by the value of some function £ at the site 3, i.e., §(1j), where
! is a positive integer representing the unit of distance, and then at time n = 1, the
value of p;(1) at site j is given by shifting the value of £(lj) to the left by m, i.e.,
E(lj+m) if m > 0. In this way, a traveling wave of the form p;(n) = £(lj + mn)
is moving to the left by the distance m over the [ unit of distance, i.e., with the
velocity m/l at every increment of time by one.

Remark 3.1. Besides the solutions given in Definition 3.1, of course, there can
be many other solutions, e.g., spatially and/or temporally periodic solutions, spa-
tially and/or temporally chaotic bounded solutions, and so on. In this paper, we
restrict our attention only to those periodic solutions or bounded chaotic solutions
which are the basic solutions mentioned in Definition 3.1, e.g., spatially periodic
static solutions, temporally periodic spatially homogeneous solutions, spatially and

temporally periodic traveling wave solutions, etc.

3.1. SPATIALLY HOMOGENEOUS SOLUTIONS
Setting p;(n) = ¥(n)Vj € Z in (3.1), then we have

A/b
(32) Ynt 1) = 0T+ L+ a{Gy(r) ~ D)9,
where Cy(7) = 3 / as before Note that for any 7 € (0,1), Equation (3.2) has a

fixed point given by ¢* = B—+-5 if o € (0,1] and ¥* = ¥(0) if & = 0, which is the
static spatially homogeneous solution. Now the solutions of (3.2) and their dynamics
are given in the following theorem. The proof will be given in the Appendix.
Theorem 3.1. The spatially homogeneous solutions p;j(n) = ¥(n) are given by

(3.3) b(n) = [1+o{Cy(r) = 1}]" (¥(0) — ¢7) + 47,
where 1(0) > 0 is an arbitrary initial condition. The dynamics of ¥(n) depend on
the values of the parameter v, a and T as follows:

(i) If a(y+1) =0 (i.e., a = 0), then P(n) = ¥(0)Vn.

(ii) If 0 < a(y+1) <1, then for any T € (0,1), ¥(n) — ¢ (mono) asn — +oo.
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(i) If 1 < a(y+1) < 2, then for 0 < r < 2L w(n) — ¢* (oscl) a
n — 400 and fort = 7“ , w( ) = o* for all timen, andfor% <
T <1, ¥(n) — * (mono) as n — +0o0.

(iv) If a(y+1) > 2, then for0 < 7 < & 7“ 2 w(n ) — fo0 (oscl) as n — 400

and for T = (7;—71)2—, every orbit of w( ) is a 2-cycle {¥(0), —¥(0) + 2¢*},
and for aﬁ—?—_—z <7< a(%L_l, ¥(n) — ¢*(oscl) as n — +oo0, and

forT—o’(%Ll L y(n) = ¥* for all n > 0, andfora(%l—)_—l<7'<1,

P(n) — p* (mono) as n — +0o.

Thus, when 0 < a(1+7) <2 for0 <7 <1 or when a(1+7) > 2 for %)2 <
T < 1, we do have a bounded spatially homogeneous global market dynamics.

AS(mono) /| =Y Fived Point)
L y

= M(Z- Cycle)
2y
T
1
Figure 2. Stability regions of the fixed point ¥* = B—+b in the (o, T)-

parameter space for the spatially homogeneous solutions ¥(n).

In the (o, 7)-parameter space, we can show the various stability regions as in the
Figure 2. The curve 7 = "(%71)_2 can be regarded as a curve of bifurcation values

of parameters at which change of stability occurs.
From the Figure 2, we can observe the following facts:

1. If 0 < a(y + 1) < 2, then for any 7 € (0, 1), the spatially homogeneous solutions
always converge to the unique static spatially homogeneous solution 3* = 'B%'
Hence, even if the local market equilibrium price p* is unstable when v > 1,7 < %
(cf. Lemma 2.1), by taking the global market control parameter « sufficiently small
so that 0 < a(y+1) < 2, we can make global market spatially homogeneous solutions
to converge to ¥*.

.2. Even in the case a(y+1) > 2, if we take 7 sufficiently large so that 7 > ————ah;l)_2,
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then we can make the spatially homogeneous solutions to converge to *. This is
the key role of the parameter 7.

3. If % < 7 < 1, then for any a € (0,1),7y > 0, the spatially homogeneous solutions
always converge to 9¥*.

Hence, Theorem 2.1 tells us about the roles of the parameters o,y and 7 in the
dynamics of the spatially homogeneous solutions. That is, bigger values of v make
the spatially homogeneous solutions to be unstable, while smaller values of o or
bigger values of 7 stabilize them.

3.2. STATIC SOLUTIONS
Setting p;(n) = ¢; in (3.1), then we have

AJb
T+1/y

(3.4) djv1=—0 +[2 = B{Cy(7) — 1}]¢; — &j-1,

where § = a/e and C,(7) = }%}1} For any 7 € (0,1),v > 0, Equation (3.4) has a
fixed point given by ¢* = Bier if0 < a<1and¢* = ¢y Voo > 0 if @ = 0, which
is identical with the static spatially homogeneous solution %* given in (3.2) as we
expected. Now we give the results about the static solutions of (3.4) in the following
theorem. The proof is given in the Appendix.

Theorem 3.2. The static solutions p;j(n) = ¢; of (3.1) are given by
(3.5) ;= Cl)\{ + Cz)\‘% + ¢*,

where ¢1 and ¢y are arbitrary constants that can be determined by initial conditions
¢g and ¢1, and Ay and Ay are characteristic roots given by

1
M = 52— B{C(r) = 1} £ VA
with 8 = a/e and A = [2— B{C,(1) — 1}]2 — 4. Among the formal solutions of (3.5),
there are only two kinds of bounded static solutions for all € (0,1),e > 0,7 > 0:

(i) the static spatially homogeneous solution ¢; = E%b’ for o € (0,1]
(ii) the static spatially homogeneous solution ¢; = ¢o for a = 0.

All other static solutions are unbounded as the space coordinates j — +oo.

Note that the conclusion of Theorem 3.2 says that the only bounded static so-
lutions are the static spatially homogeneous solutions which are derived from the
steady state equilibrium solutions of the local market dynamics. This is due to the .
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effect of diffusion between neighboring sites and the linearity of the supply func-

tion that cause the resulting local market dynamics (and hence the global market
dynamics) to be linear.

3.3. TRAVELING WAVES WITH WAVE VELOCITY 1

Setting p;(n) = £(j + n) in (3.1), and then letting k = j + n, we have
A/b T—1
3.6 k+1)=(1- k
(36 €k 1) = (- a)e(h) + o { 20—+ T}
+e{§(k —1) — 2¢(k) +&(k+ 1)},

Equation (3.6) has a fixed point £* = B—‘i—b =¢* =¢Y*if 0 <a<1and & =¢(0)if
a=0,forall £, >0 and 0 < 7 < 1. The existence and behavior of the solutions
of (3.6) are given in the following theorem: The proof is given in the Appendix.

Theorem 3.3. The traveling waves with wave velocity 1, p;(n) = £(j + n) = £(k),
are given by

(3.7) Ek) = a ¥ +axX + & (whene #1),

k
€<k>={1_a{01(7)_1}} (€0 =€) +& (whene=1),

where ay,az and £(0) are arbitrary constants and initial condition respectively and

1 '
)\1,2 == 5 (C] + C% + 402)

withc1=1+w and ¢co = 7=
Among those formal solutions in (3.7), there are only three kinds of bounded traveling
wave solutions for all 7 € (0,1),7 > 0:
(1) the static spatially homogeneous solution £(k) = € = Bi-}-b for 0 < a <
1,e>0.
(i1) the static spatially homogeneous solution (k) = £(0) fora =0, € > 0.

(iii) the spatially and temporally 2-periodic solution of the form
(3.8) £2K) = £(0), €@k +1)=£(1) fora=0,c=1,
where £(0) # £(1) are arbitrary initial conditions.
Note that the conclusion of Theorem 3.3 implies that the only bounded traveling
wave solutions are the static spatially homogeneous solutions which are obtained

from the steady state equilibrium solutions of the local market dynamics. This is
also due to the effect of diffusion between neighboring sites and the linearity of the
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supply function that cause the resulting local market dynamics (and hence the global
market dynamics) to be linear. Recall that in the case of spatially homogeneous
solutions, the bigger values of v made them be unstable, while smaller values of o
or bigger values of 7 stabilized them (Theorem 3.1). But, note that such roles of the
parameters do not hold any longer in the case of static or traveling wave solutions
since Theorem 3.2 and 3.3 hold for any 7 € (0,1), v > 0. In fact, as we can see in
Theorem 3.2 and 3.3, in the case of static or traveling wave solutions, the presence
of the diffusion parameter € > 0 seems to make them be unstable.

4. CoNCLUDING REMARKS

In Section 3, we have studied various global dynamics and have noticed that
bounded spatially homogeneous solutions do exist and are directly affected by the
local market dynamics because of the non-presence of the diffusion. Furthermore,
even if the local market dynamics is unstable, the spatially homogeneous solutions
of the global market can be controlled via market parameter, so that it can converge
to the static spatiaﬂy homogeneous solutions corresponding to the fixed points of
the local market dynamics. However, the bounded static solutions and the bounded
traveling wave solutions with wave velocity 1 do not exist except the trivial static
spatially homogeneous solutions and the trivial 2-periodic solutions. This is mainly
due to the monotonicity of the supply function which results in the linearity of the
local market dynamics and hence of the global market dynamics.

APPENDIX

Proof of Theorem 3.1. If a = 0, then (3.2) reduces to ¥(n + 1) = ¢(n) which gives
the trivial solution ¥(n) = ¥(0) Vn € Z. If o = 1, then (3.2) reduces to the same
equation as (2.2) with p, replaced by ¥(n). That is, when o = 1, the dynamics of
1¥(n) can be obtained from the local market dynamics of p, given in the Lemma
2.1 by replacing p, by ¥(n). Hence, we assume that 0 < o < 1 hereafter. Letting
¥(n) = ¢(n) —¢*, then Equation (3.2) is reduced to a homogeneous linear equation

for 9(n):
(A1) Y(n+1) = [1+a{Cy(r) - 1} (n),
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The solution of (A.1) is given by
(A4.2) Y(n) = [L+ a{Cy(r) = 1}]"4(0).

Since C,(7) is monotone increasing from —y to 0 in the interval 0 < 7 < 1, the
coefficient 1 + a{C,(r) — 1} is also monotone increasing from 1 —a(y+1) to 1 — «
in the interval 0 < 7 < 1. Also, for a(y +1) > 1, 1 + o{C,(7) — 1} = 0 when
&%1)_—1 and for oy +1) > 2, 1 + a{C,(r) =1} = —1 when 7 = LV;—)"—Q
Hence, for fixed v > 0, by examining the conditions for o and 7 under which the
values of 1 + a{C,(7) — 1} lies in the interval (0,1) or {(—1,0) or (—oc, —1), we can
determine the dynamics of the solutions of (A.1). O

T =

Proof of Theorem 3.2. Letting ¢; = ¢; — ¢*, Equation (3.4) is reduced to the

homogeneous linear difference equation in ¢;:

(A.3) bip1 = [2 - B{Cy(7) = 1} — 1.

The characteristic equation of (A.3) is A% — [2 — B{C,(r) — 1}]A + 1 = 0, which has
the roots A\jp = 3[2 — B{C,(7) — 1} £ VA], A = 2 = 3{C,(r) — 1}]* — 4. Since
—y < Cy(r) < 0for 0 < 7 <1, we have A > 0V3 > 0,v > 0, 7 € (0,1). Also,
AMA2 = 1 and Ay + Ao = 2 — B{C,(7) — 1} > O implies that Ay > 1 > A2 > 0.
Therefore, the general solution of (A.3), which is given by

(A.49) Gg =0 X+ C;g)\j c1 and co are arbitrary constants
J 1 2

is bounded as j — oo if and only if ¢; = ¢ = 0. Hence, the only bounded
static solution is qgj = 01ie,9; = ¢*. If a =0, ie, § = 0, then the characteristic
roots of (A.3) becomes A\12 = 1,1 and so the general solution (A.4) takes the form
q;j = ¢1 + ¢3j. Clearly, ggj is bounded as j — +oo if and only if c3 = 0, ie,
J)j = constant = gg, or ¢; = ¢o Vj € Z for any initial value ¢g > 0. Clearly, this is
the fixed point of (3.4) when o = 0. O

Proof of Theorem 3.3. When ¢ # 1, solving (3.6) for £(k + 1), we have
(A.5)
a A/b a{Cy (1) — 1}
kE+ 1= —_—
&k +1) 1—ET+1/’7+ ! 1-¢

g

" e (k) + ——E(k — 1),

1—¢
where Cy(7) = ;-%}»;, 0<7<1,v=>b/B>0. Letting £(k) = £(k) — ¢*, Equation

(A.5) is reduced to a homogeneous linear equation for E(k):

(A.6) E(k+1) — (k) — crb(k - 1) =0,
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where
cl =1+a{C’Y(T)_1}_6 and c¢p = £ .
l1-¢ l1-¢
The general solution of (A.6) is given by
(A.7) £(k) = aa ¥ + ag)k, Vk € Z,

where a; and a9 are arbitrary constants, and A\; and A9 are roots of the characteristic
equation A — ¢y A — c3 = 0 of (A.6) and are given by A\ o = ICES V3 + 4cy). We
claim that for e > 0,6 #1, A = ¢? +4¢c; > 0Va € [0,1], 7 > 0, T € (0,1). For if
0 <e<1,thency =¢/(1 —¢) >0 and so clearly A > 0, and if € > 1, then recall
that —y < C,(7) < 0Vr € (0,1), and so

2
A= ide=144GO -1l , €
1—-¢ l1-—¢

2 2
13 3 £
>1{1- = .
_< 1_6) ra (1+1_€) >0

Hence, by the claim, A\; and A\; are real distinct and A\; > Ao.

Now, considering the cases 0 < ¢ < 1 and € > 1, and using the similar argument
in the proof of Theorem 3.2, we can easily show that when € > 0, € # 1, except the
trivial case £(k) = £* and the spatially 2-periodic and temporally 2-periodic solution
£(2k) = £(0), £(2k + 1) = £(1), all other solutions £(k) — Fo0 as k — £o0o. When
€ = 1, Equation (3.6) is reduced to a 1st order linear difference equation:

A/b
A8 1- -1 = k—-1).
(A48) (1= a{Cy(r) = 1}k = 24 + etk 1)
Now using the similar arguments as above, we can get the remaining results. O
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