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SOME GENERALIZED HIGHER SCHWARZIAN OPERATORS

SEONG-A KiM

ABSTRACT. Tamanoi proposed higher Schwarzian operators which include the clas-
sical Schwarzian derivative as the first nontrivial operator. In view of the relations
between the classical Schwarzian derivative and the analogous differential operator
defined in terms of Peschl’s differential operators, we define the generating func-
tion of our generalized higher operators in terms of Peschl’s differential operators
and obtain recursion formulas for them. Our generalized higher operators include
the analogous differential operator to the classical Schwarzian derivative. A special

case of our generalized higher Schwarzian operators turns out to be the Tamanoi’s
operators as expected.

1. PRELIMINARIES

In this paper, we consider three Riemann surfaces, the Riemann sphere @, the
complex plane C, and the unit disk D = {z € C : |z| < 1}. We use the notation C.
for these three surfaces; Cfore= 1, C for e =0, and D for e = —1. C; is equipped
with the canonical metric A.(z)|dz| = |dz|/(1 + €|z|?).

For a holomorphic map f : Cs; — C. (6,¢ = 1,0,—1), we consider invariant
operators of f(z) associated with Cs and C., D™ f(z) due to Peschl [9], which is
defined by the power series expansion
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D2(z) = LHIPPG) | 2020 + 010 (e) _ 2204+ B FE) ()2

1+¢|f(2)]? 1+¢|f(2)? (1 +elf(2)1?)?
D3f(z) = (L+012P)°f"(2) _ 6e(1+8]2*)3f(2)f'(2)f"(2) | 662(L +6]2%)%f"(2)
1+¢|f(2)? (1 +elf(2)?)? 1+¢|f(2))
60222(1 + 6|2)) f'(2) _ 126ez(1 + 8212)2f (2) f'(2)? + 62(1 + 5|zl2)3_ﬂ52f’(z)3
1+¢|f(2)? (1 +elf(2)1*)? (1 +elf(2)P)° '

When § = ¢ = 0, D"f(z) is just n-th derivative f(®)(z) of f(z). These operators
appeared in [3] for 6 = —1,¢ = 0 and in [4], [7] for 6 = —1,¢ = 1 and in [8] for
d = —1,e = —1. These are also generalized by Minda and Schippers [10] and Kim
and Sugawa [5] for arbitrary conformal metrics. These operators are invariant in
the sense that
|ID*"(Lo foM)|=|D"floM

for L € Isom*(C;) and M € Isom*(Cs). Note that the group Isom*(C,) of sense-
preserving isometries of C. consists of the maps L(¢) = n(¢ — a)/(1 + €d() for some
a € C; and n € C with |n| = 1, where L(¢) = —n/( fore =1 and a = oco.

The classical Schwarzian derivative Sy for a non-constant meromorphic function
f:Cs = C. (0 = —1,e = 1,0,-1), is expressed in terms of Peschl’s differential
operators ([3], [4], [8])-

3 22\ 2
573 (o) = - kR,
Here, the classical Schwarzian derivative Sy is defined by

so (I (N 3 (Y
f f! 2\ f’ f! 2\ f :
It is well known that the formula

Sgor = (Sgo ) (F)* + S

holds for the composition go f of non-constant meromorphic functions f and g. S F=
0 on a domain if and only if f is (a restriction of) a Mébius transformation and hence
Suofor = (Syo L) (L')? holds for Mébius transformations M and L. The classical
Schwarzian derivative plays an important role in the theory of univalent functions.
For example, Nehari ([2], Theorem 8.12) showed that if (1 — |2|2)2|Sf(2)| < 2, then
f is univalent.

Various higher Schwarzian operators have been introduced and studied by Aharo-
nov (1], Tamanoi [12] and Schippers ([10], [11]). Recently, Kim and Sugawa [6] also
introduced the invariant Schwarzian derivatives of higher order in the polynomia
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forms. In this paper, we observe Tamanoi’s higher Schwarzian operators and show
that they can be generalized in terms of Peschl’s differential operators as in the
case of the classical Schwarzian derivative. In fact, we generalize Tamanoi’s higher
Schwarzian operators by giving a definition of the generating function of our new op-
erators in terms of Peschl’s differential operators. Our generalized higher Schwarzian

operators turn out to be the Tamanoi’s operators in the special case.

2. TAMANOI'S HIGHER SCHWARZIAN OPERATORS

Tamanoi constructs a family of Mobius invariant nonlinear differential operators
which are called higher Schwarzian operators [12]. The classical Schwarzian deriv-
ative is included as a nontrivial lowest order operator. He proves that any Mobius
invariant differential operator in one complex variable can be derived from the clas-
sical Schwarzian derivative. In this section, we give a brief account of the generating
function of Tamanoi’s higher Schwarzian operators for an analytic function defined
on plane region and the recursion formula of them. Tamanoi [12] introduces higher
Schwarzian operators S, f in the following way. For an analytic function f defined
on a domain Q in C, fix a point z € Q where f/(z) does not vanish. Take a Mobius
transformation T , satisfying that

T5,:(0) = f(2), T7.(0) = f'(2), T§.(0) = f"(2).

Then expand V(z,w) = (Tf‘z1 o f)(z + w) as a power series around w =0 :

sy — FEUE+w) - fE) g "
(2.1) V(z,w) T+ ) = 1)) + F) > Snf(2)—

Here, our notation is slightly different from that of Tamanoi; our S, f is written as
Sn-1[f] in [12]. By the above choice of T} ,,

n=0

Sof =0, S51f =1, Sof =0

and S3f is the classical Schwarzian derivative Sy.

By direct partial differentiations of V(z,w), we can show

oo )

We obtain the recursion formula for S, f by inserting the power series expansion of
V(z,w) into the equation (2.2) and comparing the coefficients of w™ as follows.
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(2.3) Snp1f = 153f2 ( )Sk fSn-if, n2=3.

More detailed proof is found in [6].

Tamanoi’s higher Schwarzian operators are Mobius invariant, that is, for any
holomorphic function f defined on  with nonvanishing first derivative, we have
SnlT o fl(z) = Snf(z) for any Mobius transformation 7.

3. GENERALIZED HIGHER SCHWARZIAN OPERATORS

Let f:Cs = C, (§,e =1,0,—1) be a holomorphic mapping. Now, we generalize
Tamanoi’s higher Schwarzian operators in terms of the Peschl’s differential operators
in the following way. We establish a generating function W (z, w) for our new higher
Schwarzian operatbrs and define our generalized higher Schwarzian operators ®” f
through expanding W (z, w) as a power series for small w:

_ DY(a)g(zw) SN
(3.1) W(z,w) %sz(z)g(z, w) + [DYf(2)]2 ,;)@ f(Z) .
Here,

9(z,w) = (My(z)c 0 f 0 M 6)(w),
and
Mos(w) = ﬁgzzw'

Explicitly,
(3.2) o) = fG45) - fe) Z Df(2)

1+ gf(z) (115—};5{-22@0 n=1 n!

Tamanoi’s generating function in (2.1) corresponds to the case where § = ¢ =0

in the above definition of the generalized higher Schwarzian operator.
The next theorem gives an analogous expression of our higher Schwarzian oper-
ator to the classical Schwarzian derivative.

Theorem 3.1. Let f : C5 — C. (4,6 = 1,0,—1) be a nonconstant holomorphic
mapping with the canonical metric As and A, respectively. Then,

% =0, @'f=1, &*f=0,

s, D3 3(D\?
vi=57 -5 (57)
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Proof. By (3.1) and (3.2), we obtain
9(2,0)=0, D"f= (Q) ,
w=0

own

dVf = W(z,0) =0, qwf:(anW) .
w==0

ow™

Now, we explicitly calculate (‘gu—v},,/)wzo and write them in terms of D" f forn =1,2,3
to obtain the above assertion in this theorem. To make calculations easier, we let
Blevw) = oD 602y + DU p(2).
2DV f(2)7
Then, B(z,0) = D! f(z) and,
oW  D'f g
ow  B(z,w)? 0w’
W D'f 9% D f  [8g)\°
) >

ow?  B(z,w)20w?® B(z,w)® \dw
#W  D'Yf &g 3D f 8g &% 3 (D)2 [8g\°
ow?  B(z,w)20uw® B(z,w) wdw? ' 2B(z,w)* DIf <5€E>
Substituting w = 0 into the above three relations, we complete the proof. O

We note that the classical Schwarzian derivative has an analogous form to that
of ®3f in terms of D™f for n = 1,2, 3. Using the next lemma, we establish the

recursion formula for the generalized higher Schwarzian operators ®" f.

Lemma 3.2. Let f : C; — C. (6,6 = 1,0,—1) be a nonconstant holomorphic
mapping with the canonical metric \s and A\, respectively. Then,

oW 2 W 143 2 _ 55
(3.3) (1—6zw) 5 (1+0|z] )E =1+ 59 °f(2)W* - 6ZW.
Proof. For the proof of (3.3), the following property of g(z,w) is crucial.
8 .
G4 -sw)gl (1401 = (1 - oz w) D (o).

This follows from the direct calculatlons of next derivatives,

99 _ (1+4]2))(1 +elf(2)%) f'(u)

ow (1-0zw)? (1+ef(2) f(u)?’
nd
’ o0 _ -G . (4efERSw
0z 1+ef(2)f(u)  [L+ef(2)f(w)]2(1 - 0zw)
Here,

w+z

= 1—-46zw
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Since
ow D'f dg
dw ~ B(z,w)? dw
and ow 1 7] oDYf) L0 D%f
- 199
9z B(z,w) {D T8 "% (2le)}
we have

(1- 62w)%—?ﬂi -1+ 5[2]2)%21
- g(;fw—)m — F@g) (D)2

+m(1+5izl2)[ (31f)+9a (2g?§)]

by using (3.4). To get the partial derivatives of D'f and D?f, we now use the

following recursion relations for D™ f(z)([5], Corollary 7.3): For n > 1,

G(D £)

(14 0]2[*) === = D"V f(2) — 6nzZD" f(z) + ef(2) D' f(2) D" { (2).

Therefore, we have

1 —
1+ 81 250 = g — 6201 (2) + F(DA
and
D*f\ D (D*f D*f
2 — - — pres
(+ 00, (le) - Df (le> Zpif
Now, it only takes simple rearrangements of terms to prove the lemma. O

Next, we obtain the recursion formula for ®” f from Lemma 3.2.

Theorem 3.3. Let f : C5 — C. (6, = 1,0,—1) be a nonconstant holomorphic
mapping with the canonical metric Ay and A, respectively. Then
(3.5)

o f = [(1 n 5,z|z)§; —(n- 1)52} " f + %@3 f?:_; (Z)@’“fé""‘f, n>3.

Proof. Since
w
W (z,w) = qu f@)—,

n=0

o0 n-1 o w™
ErRd ML Gl i S W AT O

we have




and
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n=0 Lk=0

S [Z (Z) ékf(Z)Q”‘kf(Z)} =,

By inserting these three relations into the equation (3.3) of Lemma 3.2, we have

n—l et w™

(1—6zw) Z@" ) 1+(5|z| Z ( "f(z

=1+325(2) ) |3 () 2Hi () @) —"—6z2@"f<z>£~
k n! n!

n=0 Lk=0 n=0

Comparing the coefficients of w™ on both sides of the above relation, we obtain the

recursion formula for the generalized higher Schwarzian operators. O

The recursion formula (3.5) is similar to the recursion formula (2.3) for Tamanoi’s
higher Schwarzian operators. They look slightly different because of the first term
of the right-hand side of (3.5).
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