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VARIATIONAL APPROACH AND THE NUMBER OF THE
NONTRIVIAL PERIODIC SOLUTIONS FOR A CLASS OF THE
SYSTEM OF THE NONTRIVIAL SUSPENSION BRIDGE
EQUATIONS

TACKSUN JUNG? AND Q-HEUNG CHOIP

ABSTRACT. We investigate the multiplicity of the nontrivial periodic solutions for
a class of the system of the nonlinear suspension bridge equations with Dirichlet
boundary condition and periodic condition. We show that the system has at least
two nontrivial periodic solutions by the abstract version of the critical point theory
on the manifold with boundary. We investigate the geometry of the sublevel sets
of the corresponding functional of the system and the topology of the sublevel sets.
Since the functional is strongly indefinite, we use the notion of the suitable version
of the Palais-Smale condition.

1. INTRODUCTION

In this paper we investigate the multiplicity of the nontrivial periodic solutions
for a class of the system of the nonlinear suspension bridge equations with Dirichlet

boundary condition and periodic condition

. T
(1.1) (u)e + (U1)gzze — Fr(z,t,u1, ... up) =0 in (—=, =) xR,

2’2
. m™

(u2)tt + (U2)zzxw - FTz(mataula e )un) =0 mn (-57 5) X Ru
s T T

(un)tt + (un)zxzx - F’rn(mata Uly .- >un) = 0 m (_—2_’ _2—) X R7

ui(ig:t) = (Ui)m(ig,t)zO, 1=1,...,n,

ui(z,t) = ui(—z,t) = ui(x, —t) = wi(z,t + m), i=1,...,n,
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where F': (=3, 7)xRxR"™ — Ris a differentiable function with F(z,¢,0,...,0) =0,
Fy(z,t,0,...,0) =0 and Fi(z,t,0,...,0) =0, and

oF
FTi(x’t’Tla“-y"'n) = —(fE,t,’f'l,...,T‘n).

(97",'
Let u = (u1,...,un). We assume that F satisfies the following conditions:
F..(x,t
(F1) im @by
(W1yeenstin)—(0,..,0) Ju1| + - .. + |un]
F. (x,t
(F2) n@mbY) i

im PRLAR il Rt A
fut] 4 H|un|—oo |u1| + . .. + |ug|
(F3) u- Fy(z,t,u) > pF(z,t,u) Vz, t, p > 2;

(F4) |Fr(z,t,r1, .. ro)|+ oo+ Fr (b rn, )] S (Y + - oo+ ra]?) Ve,
t, T,y y>0v>1,1=1,...,n.
As the physical model for these systems we can find crossing n beams with travelling
waves supported by cables with a load f as follows:

Utt + Ugzzs = bu? + f(x,t) in (—"72[1 g) X R,

u(:l:g, t) = uu(:tg, t) = 0.
Choi and Jung ([3],[4],[5]) investigate the existence and multiplicity of solutions for
the single nonlinear suspension bridge equation with Dirichlet boundary condition.
Let u = (u1,...,u,) and
Fy(z,t,u) = (Fu (@, t,u1, .. un)y oy Fu (ot 01, .00, U )
and | - | denote the Euclidean norm in R". System (1.1) can be rewritten by

Utt + Ugzzz = Fu(x,t,u),
(1.2) u(£3,1) Ugz(£7,t) = (0,...,0),
u(z,t+7) = u(z,t) = u(~=z,t) = u(z, —t),

where uy + Ugzer = ((ul)tt + (ul)zzmx» ) (un)tt + (un)zxxa:)
The main result of this paper is the following:

Theorem 1.1. Assume that the nonlinear term F satisfies the conditions (F1) —

(F4). Then system (1.1) has at least two nontrivial periodic solutions.

As well known the solutions of system (1.1) coincide with the critical points of
the functional I : H — R € C1! defined by

1
(1.3) I(u) = 3 / [—|ut|? + |ugs|}]dzdt — / F(z,t,u)dzdt,
Q Q

where u = (u1,...,un), —|ue® + Jugz|? = 0 (=(ua)e)? + |(4i)2z)?). m > 1, and
the space H is introduced in section 2. For the proof of Theorem 1.1 we use a
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variational method and an abstract version of critical point theory on the manifold
with boundary. In the proof we study the geometry and topology of the sub-level
sets of 1. Since the functional is strongly indefinite, we use the notion of the suitable
version of the Palais-Smale condition.

The proof of Theorem 1.1 is organized as follows: In section 2, we approach the
variational method for strongly indefinite functional, obtain some results on F and
recall the abstract version of the critical point theory on the manifold. In section 3,

we prove Theorem 1.1.

2. VARIATIONAL APPROACH FOR THE STRONGLY INDEFINITE

FUNCTIONAL
The eigenvalue problem
(2.1) Vit + Vgggzr = AV in (-—725’ %) x R.
i T
T—,t) =v(E£—=,t) =
w(E,8) = v, 1) =0,

v(z,t) =v(-z,t) = v(r,—t) = v(z,t +7)
has infinitely many eigenvalues
Amn = (2n + 1)* — 4m? (m,n=0,1,2,...)

and corresponding normalized eigenfunctions ¢, m, n > 0, given by
2
$on = —\/—— cos(2n + 1)z for n >0,
T
2
Pmn = — cos 2mt cos(2n + 1)z for m > 0,n > 0.
T
Let 2 be the square [—7, 7] x [=F, 2] and E’ the Hilbert space defined by
E' ={ve L*Q)| visevenin z and t, / v=20}.
Q
The set of functions {¢mn} is an orthonormal basis in E’. Let us denote an element

v, in E’, as
v = § honn®mn

and we define a subspace E of E' as
E={veE] > |[Amnlh, < oo}.

1
This is a complete normed space with a norm ||v|| = [ Y [Amn|hZ,] 2.
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Let H be the n cartesian product space of E, i.e.,
H=FExEx...xE.
The norm in H is given by
lulf? = | Pl + 1P7ul?, w=(ug,.. . un)
where [|[Ptul? = 30, |1PTw?, |P~ul? = X%, I|P wl®. Let H* and H™ be the
subspaces of H on which the functional
ur Qu) = /Q[—lutlz + |ugz || dzdt, u=(U1,...,Un)
is positive definite and negative definite, respectively. Then
H=H"®H".

Let P* be the projection from H onto H* and P~ the projection from H onto H™.
The functional I{u) can be rewritten by

(2.2) I{u) = %||P+u(§2;%]lp_u“2—/nF(m,t,u)do:dt = %Q(u)—/ﬂF(m,t,u)dmdt.

Let (Hp)n be a sequence of closed finite dimensional subspace of H with the following
assumptions: H, = H; & H;} where H} ¢ H*, H; C H™ for all n (H; and H,
are subspaces of H), dim H,, < +o0o0, H, C Hpt1, UpenHp is dense in H.

Since each eigenvalue has a finite multiplicity and [Amn| > 1 for all m, n, we have
some properties for a single equation:

Lemma 2.1. (i) [lull > l|ullz2(q), where ||u|l 2y denotes the L? norm of u.
(ii) Jlull = O if and only if |lull2(q) = 0.
(1i1) ust + Uzpze € E implies u € E.

Lemma 2.2. Suppose that ¢ is not an eigenvalue of L, Lu = uy + Ugzzs, and let
f € E'. Then we have (L —c)"1f € E.

Proof. When n is fixed, we define
AP = inf{Amn © Amn > 0} = 8n? +8n+1,
A7 = sup{Amn : Amn < 0} = —8n% — 8n — 3.
m

We see that A\ — +o0o and A\, — —o0 as n — oo. Hence the number of elements
in the set {Amn : |Amn] < |c|} is finite, where Ay, is an eigenvalue of L. Let

f= Z hmn®mn.
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Then
_ 1
L— C) lf - Z A_—hmn¢mn
mn — C

Hence we have the inequality

IE =) = D Pnd 553 n < O3 B

for some C, which means that
(L=l < Cillfll,  Ci=VC.

O

Now we return to the case of the system. By the following Proposition 2.1, the

weak solutions of system (1.1) coincide with the critical points of the associated

functional 1.
Proposition 2.1. Assume that F satisfies nthe conditions (F1)-(F4). Then the
functional I(u) is continuous, Frechet differentiable in H with Fréchet derivative

(2.3) VI(u)v = /J(utt + Ugger) - v — Fy(u) - v]dxdt.

Moreover VI € C. That is I € Ct.
Proof. For u,v e H,

[I(w + v) — I(u) — VI(u)v|

1
= 5 / (utt + Ugzzz + Vit + Umzwz) : (U + U)divdt - / F(U + v)dmdt
Q Q

1
~3 / (utt + Uggzz) - udzdt + / F(u)dzdt — /(utt + Uy — Fy(u)) - vd:rdt‘
0 Q Q

1
= 5 / [(Utt + U'zzzm) U+ ('Utt + vmmmx) U+ (vtt + vzzzx) : ’U]d.’Edt
Q

- / [F(u+ v) — F(u)]|dzdt — / [(u + Uggze — Fulu)) - v]da:dt'.
Q Q
We have

(2.4)

/ [F(u+v) — F(u)]dzdt]| <
Q

‘/ v+o |v|)]dwdth o([v)).

Thus we have

(2.5) [I(u+v) — I{u) — VI(u)v| = O(|v]?).
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Next we prove that I(u) is continuous. For u,v € H,

1
{{(u+v) = I(u)] = 3 / (utt + Ugzzz + Vet + Vzzgz) - (U + v)dzdt —/ F(u + v)dzdt
0 0

- }—/(utt + Ugzzy) - udzdt +/ F{u)dzdt
Q Q

2
1
= 5 / [(utt + Uxx:zx) v+ (Utt + 'U:wa:x) cu+ ('Utt + 'U:c:wx) . v]dxdt
Q
- / (F(u+v) — F(u))dzdt| = O([v]).
Q
Similarly, it is easily checked that I is C*. O

Proposition 2.2. Assume that F satisfies the conditions (F1)-(F4). Then there
exist ap > 0, by € R and p > 2 such that

(2.6) F(z,t,u) > ap|ul” — by, Vz,t,u.
Proof. Let uw € H be such that |u|? > R%. Let us set ¢(¢) = F(z,t,£u) for € > 1.
Then
Pl&) = u- Fulz,t,€u) 2 Gol©)
Multiplying by {‘”, we get
(E7p(8)) 2 0,
hence @(€) 2 p(1)é# for £ > 1. Thus we have

F(z,t,u) > F(a:,t, 5%)( gp)p > Co(—};—lz)u > aglul* — bo,

for some ag, by, where ¢y = inf { F(z,t,u)| (z,t) € Q, |u|* = R?}. O

Proposition 2.3. Assume that F satisfies the conditions (F1)-(F4). Then if
llun|| — +oo and

/ Un - Fy(z, t, up)dzdt — 2/ F(z,t,up)dzdt
Q Q

— 0,
then there exist (up, )n and w € H such that
gmd(/ F(z,t, uhn)d:cdt> u
& —+wand--}3"——>(0,...,0).

[z, || llun,, |
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Proof. By (F3) and Proposition 2.2, for u € H,
/ [u- Fy(z,t,u)|dedt — 2/ F(x,t,u)dzdt
Q Q

> (u—2) /Q F(z,t,u)dzdt > (u— 2)(aoljullf. — b1)-

grad < / F(x,t, u)d:cdt)
0

for r > 1 and suitable constants C’. To get the conclusion it suffices to estimate

By (F4),

< Cllul”ller

v n
||]||%!W” L+ in terms of l%’n—“ If 4 > rv, then this is an consequence of Hélder inequal-
ity. If 4 < rv, by the standard interpolation arguments, it follows that

|ul”

lullge
Tl USC< Tl ) el

where [ is such that | = —1 + ﬁ Thus we prove the proposition. U

We need the following multiplicity result in [12], which will be used in the proof
of our main theorem.

Theorem 2.1. Let H be a Hilbert space and let H = X1 & X9 ® X3, where X1, X3,
X3 are three closed subspaces of H with Xo of finite dimension. Moreover let (Hy)n
be a sequence of closed subspaces of H with finite dimension and such that for all n,

X2 C Hn, PXi o PHn = PH" o} PXi(: PXian), ] = 1,2,3,

where, for a given subspace X of H, Px is the orthogonal projection from H onto
X. Set

C ={z € H| | Px,z| > 1}
and let f : W — R be a CL! function defined on a neighborhood W of C. Let
1< p< R, Ry >0, we define
Ajg = {z1+ 22| 21 € X1,22 € X9, [|z1]| € R1,1 < |jz2ll < R},
Y12 ={z1+ 22| #1 € X1,23 € Xg,||z1|| < Ry, ||z2]| = 1}
U{z1 + 22| 71 € X1,22 € X3, ||lz1] < Ry, ||z2]| = R}
U{z1 + 22| 21 € X1,22 € Xy, ||z1l] = R1,1 < ||z2|| < R},
Sa3 = {z € X2 @ X3| ||zl| = p}.
Let
o = inf f(Ss3), B = sup f(A12).
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(i) Assume that
sup f(Z12) < inf f(S23).
(i) Assume that the (P.S.): condition holds for f on C, with respect to the
sequence (Cp)n, Ve € [a, 8]
(i) Assume that f|x,@x, has no critical points with a < f(u) < B.
(iv) Assume 8 < +oo.

Then there exist two lower critical points uy, ug for f onint (C) such that

inf f(S23) < f(u;) <sup f(Ay2), i=1,2

3. Proor oF THEOREM 1.1

Let us set
B, ={ue HY| |lu|| <r} c H,
S, ={ue H'| |ull =r} c H,
S(py={ue H*| |ul| =p} c HT,
Ar(S(p),H™) = {wa +uz| w1 € H ,ug € §(p) C H*, 5 > 0, |lus + ug| < R},
Sr(S(p), H™) = {w1 +us|l s € H™,ug € S(p) C H*,p > 0, lur + ua| = R}
U{us] flual] < R, up € S(5}-
We have the following variation linking inequality:
Lemma 3.1. Assume that F satisfies the conditions (F1) — (F4) and let Y = H
be any closed subspace of H*. Then there exist p, R > 0 and r with R > r such that

sup Iu)y <0< inf+ I(u) and

wER(S(7),H-) s,
inf I(u)> —o0, sup I(w) < oo,
uweH+ WGAR(S(ﬁ)vH—.)

uE By

where S(p) = {u| |lul =p} CY and S, = {u| ul|=r} Cc HT.

Proof. First we will prove that there exists B, with radius r > 0 and B, N S(p) # 0
such that inf ,cq+ I(u) > 0. Let u € HY. Then we have that |P~ul| = 0 and

u€ESr=0Br
1
I(w) = -2»1|P+u||2 - / F(z,t,u)dzdt.
0

By (F1) and (F4), F{z,t,u,.. .,un)'g alul?, a > 0 and 8 > 2. So we have
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I{u) 2 IIPWII2 — allul75q)-

Since 8 > 2, there exists a small sphere S, = 0B, with radius r contained in Ht such

that for v € Sy, inf ,cy+ I(u) > 0 and 1nfueH+ I(u) > aHu]ng(Q) > —oo. Next, we
u€Sy E€By

will prove that there exist 5, R > 0 and r > 0, R > r such that B, N S(p) # @ and
SUPyexp(s(),H-){(u) < 0. Letue H- @ HY, Ptue S(p) CY C Ht and pis a
small number. Then we have

1

1
I(u) = 2p" — Z|P7u|? - / F(z,t,u)dzdt.
2" 73 0

By Proposition 2.2, there exist ag > 0, by € R and u > 2 such that F(z,t,u) >
aglu|* — by, Vz, t, u. Thus we have

1

o 1.
I(u) < 57" = SIP7ul* = agllulf q) + bom

Since p > 2, there exist R > 5 such that if u € ¥g(S(p), H™), I(u) < 0. Thus we
have supyex,(s(5),5-) [ (v) < 0. Moreover if u € Ag, then I'(u) < +bom? < 0.
Thus sup,ea, I(u) < co. 0O

)
<17
2

Let Y = H,' for some n, and denote by Py the orthogonal projection from H
onto Y. Let

C = {we H| |Pyuw| = 1}.

Then C is the smooth manifold with boundary. Let C,, = C N H,. Let us define a
functional ¥ : Y — H by

wa < 1 >
3.1 V(w)=w— —— = Py w4 {1~
We have
1 Pyw Pyw )
3.2 V¥ (w)(z) =2z— —— | Pyz — , Z .
42 @) =2~ (P~ (Gt T

Let us define the functional I : C — W by
I=TIoW.

Then I € Cllo .- We note that if % is the critical point of I and lies in the interior of

C, then u = ¥(4)is the critical point of I. We also note that

(3.3) lgradgI(@)|] > || Py-gun\y)VI(Z(@)|  Va e ac.
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Lemma 3.2. Assume that F satisfies the condition (F1) — (F4). Then I satisfies
the (P.S.)% condition with respect to (Cp)n for every real number ¢ such that

inf  [(@)<c< sup I(w).
ace sy ) S0 S o)

Proof. Let (kn)n be a sequence such that k, — 400, (W,)n be a sequence in C such
that W, € Cy,, Vn, I(w,) — ¢ and gradaﬂHkn (Wp) — 0. Set w, = ¥(w,), then
wn € Hy, and I(wy,) — c. We first consider the case in which w, ¢ H- & (H*\Y),
Vn. Since for n large Py, o Py = Py o Py, = Py, we have

P, VI(un) = P, W' () (VI(wn)) = ¥ (w,)(Pa, VI(wn)) — 0.

By (3.2),

Pchn wy, — 0 or

Py-gu+\y)Pu,, VI(wy) —» 0 and Pyw, — 0.

In the first case the claim follows from the limit Palais-Smale condition for I. In the
second case Py-gqp+\y)PH,, VI(w,) — 0. We claim that (wp), is bounded. By
contradiction, we suppose that |w,|| — +oco0 and set z, = "—%ﬁ Up to a subsequence
zn — zo weakly for some zp € H~ & (H*\Y). By the asymptotically linearity of
VI(wy) we have

W, Wy, VI(wy)
ViI(wg), ——) = (Py- Py, VI(wy), + , Pywy,) — 0.
We have
Wn
VI , T
W) )
_ 21 (wy) +/ [ZF(x,t,wn) _ (Fri(=mtywn), .- Fro (o0t w"))'w"]da:dt
lwall ~ Ja L llwnll flwn]| ’
where wy, = ((wn)1,. .., (Wn)n), Fr, = g—i Passing to the limit we get
im [2F(x,t,wn) _ (Fri(ztywn), -, Fro (2,8, wn)) 'wanxdt _0
n—oJo | [lwnll llwn|

By Proposition 2.3,
grad/ F(z,t,w,)dzdt
Q
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converges and z, — 0. Moreover we have

VI{w
(Pr-oa+\v)PH;, —”Z()-f), Zn)

[— Wn )t (Zn)t + (Wn)zz - (Zn)zx
 Pu-sturon P, [ [P () (o)
al [[wal

_/ (Fri(z, tywn), ..., Fr (2,8, wy))
Q

lJwn|l

n | drdt

(Fr,(z,t,wn), ..., Fr (2,8, wy)) -

0 | dadt.
[lwn ||

= Py-airp) P, /Q el 4 [zl -

Moreover we have

VI(w, _
(Pr-ga+\v)PHi, _WU(—T)’ P*z, — P 2,)

Fr(z,t,wp),..., Fr (z,t,wy)) - 2n
[|wn ]

= [|Pg+\y znll* + || Pe- 2] ® +/ ( dzdt.
Q

Since z, converges to 0 weakly and

A(Frl(xatawn)>'",F"‘n(xat7wn)) * Zn

=0, |[Pa+\yznll? + [Py-2a® — 0.

Since || Pyz,||> — 0, we get z, — 0, which yields a contradiction. Hence (wp)n, is
bounded. Up to a subsequence, we can suppose that w, converges to w weakly for
some w € H~ @ (H*\Y). We claim that w, converges to w strongly. We have

(Pr-g+\v) P, VI(Wn), ws)

= PH"GB(H"’\Y)PHkn A[((wn)tt + (wn)mxzz) T Wn
—(Fr (@, tywn), ..., Fr (2, t,wy)) - wp)dzdt — 0.

Since wy, converges to w weakly,
/Q(Frl(m, twn), ..., By (z,t,wy,)) wedzdt —»/Q(FT1 (z,t,w),...,F (z,t,w)) wdzdt
and

Pir-or1) Pt | [((n)e-+ (n)azas) - waldoc

= | Par+\y Pr, wal® = || Py~ Pr,,, wal®

— Py-gH+\Y) /Q(wtt + Wggrr) - wdzdt = ||PH+\yw|l2 — HPH‘wHQ.
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Thus we have || Pg+\y Py, wal® — HPH+\yw§{2 and || Py-wn |2 — | Py-wl|?, so we
have || Pyr+\y Pr,, wn 24| Py-wnll? = | Py+\yw|?+| Pg-wl/®. Thus || Py, wal? —
llw||?. Thus we have that w, converges to w strongly. Thus we have

gradzI(@) = gradzI(w) = nILIIc}o Py, gradzl(wn) = nlgr;o Py, gradzI(w,) = 0.
So we prove the first case. We consider the case Pyw, = 0, ie., w, € H™ &
(H*\Y). Then w, € 8C, Vn. In this case w, = ¥(w,) € H- & (H*\Y) and
Pr-gu+\y)VI(wn) — 0. Thus by the same argument as the first case we obtain

the conclusion. So we prove the lemma. O

Lemma 3.3. Assume that the F satisfies conditions (F1)-(F4). Then I has no
critical point % such that I(G) = € > 0 and @ € 8C.

Proof. 1t suffices to prove that I has no critical point « = ¥(@) such that I(u) =
€ > 0 and u € X; & X3. We notice that from Lemma 3.1, for fixed v; € H™, the
functional ug +— I(u1 + u3) is weakly convex in H +, while, for fixed us € HY, the
functional uy — I(u; +ug) is strictly concave in H~. Moreover (0,...,0) is a critical
point in H~ & H* with 1(0,...,0) = 0. So if u = uj + ug is another critical point
for I|g-gg+, then we have
0=1I(0,...,0) < I(us) < I(uy +us) < I(u1) < I(0,...,0) = 0.
So I(uy +ug) = I(0,...,0) =0. O
Proof of Theorem 1.1. First we will find the critical points for the functional I. We
set:
S(p) = {w e H*| |wl| = p},
5(p) = ¥ (S(p)),
Sy ={we H| lw| =1},
~'r = \IJ-I(ST),
Yr =V (ZR(S(p), H")),
Ap =97 AR(S(p), H™)).
Let Y = H; be any closed space of H* of finite dimension. By Lemma 3.1, I

satisfies the variation linking inequality, i. e., there exist p, R > O and r with R > r
such that B, N S(p) # 0 and

(3.4) sup [(w) = sup - I(w) < inf I(w)= inf I(w)
WELR weTR(S(p),H™) s weS,
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and
(3.5) sup I(@0) = sup I(w) < oo.
TWEAR wEAR

We note that (Ag, ZfR) has the same topological structure as the pair (Ag,Xg) in
Theorem 2.1 Moreover by Lemma 3.2, I satisfies the (P.S.)% condition with respect
to (Cp)n, Cr = C N Hy, for any c such that

inf [() <c< sup I(w)

’U.IEST 'lI)EA~R
Let usset X1 = H™, Xy =Y and X3 = H*\Y. Then H = X; & X7 & X3. By
Proposition 2.1, I is C1(H, R!), so I is C'(H,R'). By (3.4), the condition (i) of
Theorem 2.1 is satisfied. By lemma 3.2, I satisfies the (P.S.)* condition with respect

to (Cp)n for every real number c such that

inf I(w)<c< sup I(w),
wew—1(Sy) weW~1(AR(S(p)),H™)
so the condition (ii) of Theorem 2.1 is satisfied. By Lemma 3.3, the condition (iii)
of Theorem 2.1 is satisfied. By (3.5), the condition (iv) of Theorem 2.1 is satisfied.
Thus by Theorem 2.1, there exist at least two lower critical points of 11, Wy for
I such that infgce I(w) < I(w;) < SUP e A I(@), i = 1,2. Setting w; = ¥(w;),
1= 1,2, we have
0 < inf I(w) < I(w;) < sup I{w).
weSr weAR(S(p),H")

Thus we prove the theorem. O
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