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POSITIVE SOLUTIONS OF MULTI-POINT BOUNDARY VALUE
PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL
EQUATION AT RESONANCE

AIJUN YANG ** AND WEIGAO GEP

ABSTRACT. This paper deals with the existence of positive solutions for a kind of
multi-point nonlinear fractional differential boundary value problem at resonance.
Our main approach is different from the ones existed and our main ingredient is the
Leggett-Williams norm-type theorem for coincidences due to O’Regan and Zima.
The most interesting point is the acquisition of positive solutions for fractional
differential boundary value problem at resonance. And an example is constructed
to show that our result here is valid.

1. INTRODUCTION

In this paper, we are concerned with positive solutions to the following fractional

differential equation:
(1.1) “Dgru(t) + f(t,u(t) =0, 0<t <1

with the boundary conditions

m-—2
(1.2) d(0) =u/(1), u(0) =) mu(&),
i=1

where m > 2, 0< § <& < <€no<l, pu>0,1=12,---,m—2 and
m—2

Sop =1, ¢Dyy is the Caputo’s fractional derivative of order o, 1 < o < 2 is a real
i=1

number, and f :[0,1] x R — R is a continuous function.
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Due to Z pi = 1, the fractional differential operator °Dg, is not inventible
i=1
under Caputo s derivative, boundary value problems {in short:BVPs) of this type

are referred to as problems at resonance.

Recently, fractional differential equations (in short:FDE) have been studied ex-
tensively. The motivation for those works stem from both the development of the
theory of fractional calculus itself and the applications of such constructions in vari-
ous sciences such as physics, mechanics, chemistry, engineering, etc. For an extensive
collection of such results, we refer the readers to the monographs [1-4].

Some basic theory for the initial value problems of FDE involving Riemann-
Liouville differential operator has been discussed by Lakshmikantham [5,6,7], A.
M. A. El-Sayed et al [8,9], Kai Diethelm and Neville J. Ford [10], M. Benchohra
et al [11] and C. Bai [12], etc. Also, there are some papers which deal with the
existence of positive solutions for BVPs of nonlinear FDE by using techniques of
topological degree theory [13-16,19-20]. For example, the existence and multiplicity
of positive solutions for the equation

(1.3) Dgiu(t) = f(t,u(t)), 0<t <1, I1<a<g?,
subject to the Dirichlet boundary condition
(1.4) u(0)=u(l)=0

have been studied by Bai and Li {13] by means of the well-known Krasnosel'skii
fixed point theorem and Leggett-Williams fixed point theorem. Dg, is the standard
Riemann-Liouville fractional derivative there.

In [14] and [15], Zhang also studied the existence of positive solutions of Eq.(1.3)
under the boundary conditions

(1.5) u(0) =v#0, u(l)=p#0
and
(1.6) u(0) +2'(0) =0, uw(l) +4/'(1) =0

respectively. Due to the fact that conditions (1.5) and (1.6) are not zero boundary '
value, the Riemann-Liouville fractional derivative Dg, is not suitable. Therefore, the
author investigated the BVPs (1.3)-(1.5) and (1.3)-(1.6) by involving the Caputo’s

fractional derivative.
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M. El-Shahed [16] established the existence of positive solutions to BVP

(1.7) Dgiu(t) + da(t) f(u(t)) =0, 0<t <1, 2<a <3,

(1.8) u(0) =u'(0) =4/'(1) =0

by applying Krasnosel’skii fixed point theorem.

From above works, we can see a fact, although the BVPs of nonlinear FDE have
been studied by some authors, to the best of our knowledge, all of existing works
are limited to non-resonance boundary conditions. For the resonance case, as far
as we know, no contributions exist. The aim of this paper is to fill the gap in the
relevant literature. Our main tool is the recent Leggett-Williams norm-type theorem

for coincidences due to O’Regan and Zima [17].

2. PRELIMINARIES

For the convenience of the reader, we present the definitions and some fundamen-
tal facts of Caputo’s derivatives of fractional order which can be found in the recent
literatures [1-4].

Definition 2.1. The Riemann-Liouville fractional integral of order « is defined by

(2.1) (I3 9)(t) = F(la) /Ot C j/ii)l_ads, (t>0,a>0)
where I'(a) is the Euler gamma function defined by
(2.2) L(z) = /Ooo t*~te7tdt, (2> 0)
for which, the reduction formula
(2.3) [(z+1) = 2T(2), (> 0), (1) = 1, r(%) _ Jr
and formula
1
(2.4) /0 71— t)* " ldt = % (z,w € Zg)

hold.

Definition 2.2. Caputo’s derivative of order « for a function y € AC™[0, 1] can be
represented by

t (n)
(25) (Dgiy)(t) = = (nl_ 3 /0 0 fs)ii)l_n ds =: (I7°D y)(t), (t>0,a > 0)
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n

where D™ = 42 and n = [a] + 1, [a] denotes the integer part of @, and AC™[0,1] =
{f:[0,1] = R| D" 1f € AC[0,1]}.

Remark 2.1. Under natural conditions on the function y(t), Caputo’s derivative

becomes a conventional m-th derivative of the function y(t) as a — m (see [2]).
From definitions 2.1 and 2.2, we can deduce the following statement.
Lemma 2.1. The fractional differential equation
“Dgy(t) =0

has solutions y(t) = co +cit + cot> + -+ co1t" Y, s € R, i =0,1,--- ,n— 1,
n = |a] + 1. Furthermore, for y € AC™[0,1],

ol )
(2.6) 13D =t - Y Lk
k=0 )
and
27) (CD§ ) (1) = y(t).

In the following, we review some standard facts on Fredholm operators and cones
in Banach spaces. Let X, Y be real Banach spaces. Consider a linear mapping
L:domL C X — Y and a nonlinear mapping N : X — Y. Throughout we assume

1° L is a Fredholm operator of index zero, that is, ImL is closed and dimKerL =
codimIm/L < oo.

The assumption 1° implies that there exist continuous projections P : X — X
and @ : Y — Y such that ImP = KerL and Ker} = ImL. Moreover, since
dimIm@) = codimImlL, there exists an isomorphism J : Im{) - KerL. Denote
by L, the restriction of L to KerP NdomL. Clearly, L, is an isomorphism from
KerP NdomL to ImL, we denote its inverse by K, : InL — KerP NdomL. It is
known (see [18]) that the coincidence equation Lz = Nz is equivalent to

2= (P+JQN)z + Kp(I — Q)Nz.

Let C be a cone in X such that
(i)uzxeCforallz € C and u >0,
(ii) z, —z € C implies z = 6.

It is well known that C induces a partial order in X by

z<yifandonly ify—z € C.
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We will write 2 A y for y — 2 ¢ C. Moreover, for every u € C \ {0} there exists a
positive number o(u) such that

llz + ull Z o (u)|z]]

for all z € C. It is clearly that if o(u) > 0 is such that ||z + u|| > o(u)||z|| for all
z € C, then for every A > 0,

llz + Au|| > o(u)||z|| for all z € C.

Let v : X — C be a retraction, that is, a continuous mapping such that v(z) = =
for all z € C. Set

U: =P+ JQN+ Ky(I -Q)N and ¥,:=¥onr.
We make use of the following result due to O’Regan and Zima [17].

Theorem 2.1. Let C be a cone in X and let 1, €z be open bounded subsets of X
with Q3 C Qg and C N (Q2\ Q1) # 0. Assume that the following conditions hold.

2° QN : X — Y is continuous and bounded and Kp(I — Q)N : X — X is
compact on every bounded subset of X,

3° Lz # ANz for allz € CN O NImL and X € (0,1),

4° ~ maps subsets of Qy into bounded subsets of C,

5° degg{[l — (P + JQN)Y]|kerL, KerL N Q,0} # 0, where degp stands for the
Brouwer degree,

6° there exists ugp € C \ {0} such that ||z|| < o(uo)||¥z|| for z € C(ug) N O,
where C(ug) = {x € C : pug X = for some u > 0} and o(ug) such that
1z + woll = o (uo)llzl| for every z € C,

75 (P+ JQN)Y(89%) C C,

8° U\ ) CC.

Then the equation Lz = Nz has a solution in the set C N (Qz \ ).

For simplicity of notation, we set

G(t,s)
( mz—:2 E L 1
73 _oa—
S N~ R L@ |, -g2e [ (T—8)*
1 2T () m—2m5i + ol (a) I'(2a) + (o) /s (1 _ 7.)2—a T

— =1
m=—2

(e _gya—1
ié:l wilki=s) (1-8)2~*(t—s)>"1

at-1)(1-g)?—@ .
(a-D(e)

(
+ GOt

0 < s < min{{, t},

m—2
> wib
i=1
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4 m-2
2 g _ 1 _ o-1
-1 = o I(a) , (-spp-e [ (T—35)
1- a%I‘(a) ) mE-IZM& + aIE(a) - I"(2Cc:) + I’?a) s (1 - 7.)2-a dr
i=1
m~2
_ PITHEIEE
t—1)(1— 2-e o
+ %-1)(]7((:»{1) : lmmz ) 0 <t<s< 51)
igl wids
m—2
DT 33 1 a1
-1 i1 e Ma) , (1-s?== [ (T—35)
1- agl"(a) ' mZEXZui& + al(a) I‘(;&) + F‘Ea) /; (1 _ T)Z—a dr
[E

m-2
DORNTH (IR Lt
B Sl ) e e e S LY )

e T ,
e @ D)
m—2
> mikd - N
g -1 o T [la) | (1-g)*~ (r—s)
1- a%l"(a) ) njcg—? it + al(a) I‘(2?1) + F?a) s (1 _ 7.)2—0( dr

™m—-2

e a1
+ (at=1)(1-s)?~= i:ﬂl”’(é‘ s)
(a~DI{a+1)

p— , § <s<¢§r1,821,
'21 wiks

m—2
1 - _at=1 P 4 @) , @

. _gy2-a 1 (T — 3)o:~1
a’Ta) m=2 ol'(o) ~ T(2a)

F{a) s (1 - 7-)2—(1 dr

i8e

i=

—a)2—afs_ya—1
~ 4 Sia—l)ltia'zs) ) Em—2<s<t<,

™2
1— gt=l_ . e};x i 4t @) , (-9 YT - S)a~1dT
a’T{a) m-2m£§ al(a)  T'(2a) I'(a) s (l _ 7-)2—04
i=1
\ ma‘x{gm—-Zat} <s<1,

where § =1,2,--- ,m — 3.

Note that G(t,s) > 0 for ¢,s € [0,1]. Set 0 < x < min {1, m}

t,8€[0,1]
3. MaIN REsULTS

Now we state our main result on the existence of a positive solution for BVP
(1.1)-(1.2).
Theorem 3.1. Assume that

(H1) there exist positive constants by, by, b3, ¢1, c2, B with B > %f+§£f§fa—3—f%§l such
that
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—RKZ S f(t,iL‘),
flt,z) € —c1z + e,
f(t, :17) S —bllf(t, l‘)l + bQiE + b3

fort€[0,1], z € [0, B],
(H2) there exist b € (0,B), t5 € [0,1], p € (0,1], § € (0,1) and ¢ € C[0,1],
q(t) > 0 on [0,1], h € C((0,b],R") such that f(t,z) > q(t)h(x) fort € [0,1]

and z € (0,b]. hif) is non-increasing on z € (0,b] with

) _
(3.1) h(b)/0 G(t()vs)(l :1(;))2_ads 2 (l;(l_ 1)55);2‘

Then the BVP (1.1)-(1.2) has at least one positive solution on [0, 1].

Proof. Consider the Banach spaces X = Y = C[0, 1] with the supper norm ||z|| =

m[a)lc] |z(t)|. Define L : domL — Y and N : X — Y with
tefo

domL={x€X z € AC™[0,1}, Z“l (&), = 7'(1), CD8‘+37€C[0,1]}

by Lz(t) = —°Dg, z(t) and Nxz(t) = f(t,z(t)). Then
KerL = {z € domL : z(t) = c€ Ron [0,1]}

and

(3.2) ImLz{er;/;(l—i’(s—s))-Z-_—ads:o}.

Next, define the projections P : X — X by (Pz)(t) = (a — 1) fo x()s)_ads and
Q:Y —>Y by

1
y(s)
)=(a—1) | —2L
@)t = (- [ 725
Clearly, InP = KerL and Ker@ = ImL. So dimKerL = 1 = dimIm¢ = codimImLZL.
Notice that ImL is closed, L is Fredholm operator of index zero, i.e. 1° holds.

Note that for y € ImL the inverse K, : ImL — domL N KerP of L, is given by

ds, t € [0,1].

s)

1
)0 = [ kit s
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where
(1-s)2«
k(t,s) = et
( 1 ja-1
at—1 a—-1 T—38)""
_ pilei =9 4 @m1) [T
agp,ﬁ,; o 3 (1”7‘)20E
—(t —s)*7L, 0 < s < min{é, t},
t—1 mz_: 1 ir—s)ot
oxl— o—
B il —s) "+ (@-1) | ——5—dr, 0<t<s< &,
« Z:Zuifi i=1 o s (1—7)Pe
1 "‘22 - )a !
ol — a—
ez — pi(é — ) (@—1) / ———dr
@ El #i€i =gl (1-7)
—(t—s)*, £ <s<&ps <t
m-2 a 1
"‘%ZM( —s)* 1+ 0—1)/ —T;dﬂ
a 2_::1 #iki el
§ <s<é€jr1,52 0,
1(,,*3)0(1 a1 <s<t<1
(a—1) = adT—(t—S) , fm—2<s<t<1,
1 o Y1
(a — 1)/ (T 3)2 T, max{&m—2,t} <s< 1.
-7T) a
where j = 1,2,--- ,m — 3. It is easy to see that |k(t,s)] < 3. Since f is continuous,
2° holds.

Consider the cone
C={zeX:z(t) >0on[0,1]}.
Let
Q= {z € X :§||z|] <|z(t)] < bon [0,1]}
and
Q={reX:|z|| < B}
Clearly, £2; and €y are bounded and open sets and
O ={zeX: || <lz(t) <bon[0,1]} C

(see [17]). Moreover, C N (22 \ Q1) # 0. Let J = I and (yz)(t) = |z(t)| for z € X.
Then 7 is a retraction and maps subsets of {2y into bounded subsets of C, which
means that 4° holds.

In order to prove 3°, suppose that there exist zp € 32:NCNdomL and X € (0,1)
such that Lzo = XAoNxzg. Then °Dg, zo(t) + Mof(t, o(t)) = 0 for all ¢t € [0,1]. In
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view of (H1), we have

—Ai °D&, o(t) = f(t,xo(t))g—;\%blchg;mo(tﬂ+b2:vo(t)+b3.

Hence,

_(Ia—l cDa—leO)( )

/ |°Dgs@o(s Aoba /1 zo(s)
ds
a—l 1—320‘ I‘(a—l) g (1—g)2@

Aobs /1 1
d
* Ma—-1)Jy (1—s)2@ %

which gives

| O+.’I?0 b2 1 .’1,'0(8) b3
3.3 3 < = d .
(3:3) / 1—52a bl Too -1
Similarly, from (H1), we also obtain
1
zo(s) co
34 ds < .
(3.4) _/0 (1 - s)2-« s—cl(a—l)

On the other hand,

1 zals 1 c a+
zo(t) = (oz—l)/0 (T%ds—i-/o k(t,s)(—ngs%(_Szds

! Dgixo(s)]
3.5 < & / k(t L_Ld
Co 3baca + 3bscy

c bici(a—1) °
(3.3), (3.4) and (3.5) yield

IA

B = ol < 2+ 2250
which contradicts (H1).
To prove 5°, consider z € KerL N . Then z(t) =c € R on [0,1]. Let
Vof(s, e
H(c,\) =c— A = AMa - 1)/O (1L(_—7;|571I)—_2d5
for c € [-B,B] and A € [0,1]. It is easy to show that 0 = H{c, A) implies ¢ > 0.
Suppose 0 = H(B, A) for some A € (0,1]. Then, (H1) leads to

OSB(l—/\)z)\(a—l)/Ol(l—fgss)i)—ds<)\( c1B+e¢) <0,
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which is a contradiction. In addition, if A\ = 0, then B = 0, which is impossible.
Thus, H(z, ) # 0 for z € KerLN 809, A € [0,1]. As a result,

degp{H(:,1),KerL N y,0} = degp{H(-,0), KerL N Ny, 0}.
However,
degg{H(:,0),KerL N Qy,0} = degz{I,KerL N y,0} = 1.
Then
degp{[l — (P + JQN)7)kerL, KerL N Qy,0} = degg{H (-, 1), KerL N Qy,0} # 0.

Next, we prove 8°. Let z € Q2 \ Q; and t € [0,1],

_ O] 1 (s l2(s)])
(¥y2)(t) = (@—1) A mds + (a—1) . A5 ——""ds

s _ _ 1 f(7,|z(r)]) -
. /1 NG O DR Gl fepeRdr

(1)@
1)/ lw(ss))J _ds + (o 1)/ Glt,s f(s lw(s)l)ds
>(a—1)/ G(t,s)) (1’_())1 ds > 0.

Hence, ¥, (0 \ 1) C C, i.e. 8° holds.
Since for z € 69,

(s o))

1
(P+JQN)yz = (o — )/ (i(;i)lfds'*‘(a 1) o (1—s)2@

(a — 1)/ )2|_ads > 0.

Thus, (P + JQN)yz C C for z € 88y, 7° holds.

It remains to verify 6°. Let ug(t) = 1 on [0,1]. Then ug € C \ {0}, C(ug) = {z €
C :z(t) > 0 on [0,1]} and we can take o(ug) = 1. Let € C(up) N 8Q;. Then
z(t) > 0on [0,1], 0 < [|z|| < band z(t) > d||z|| on [0, 1]. For every z € C(ug) NIy,
by (H2), we have

(¥z)(to) = (o — 1)/ T ds + (o — 1)/ G(t ﬂ)gi)z;ds



POSITIVE SOLUTIONS OF MULTI-POINT BOUNDARY VALUE PROBLEMS 223

> 0|zl + (e —1 / G(to, )Mds

' G(to,s)a(s) h(z(s)
A—s=  27(s) zP(s)ds

= dffz[| + (e = 1) ;

> dlJal] + (o = )5l 21 /0 T B
1- 1 S S
= alall+ (o= il 52 o [ Fes s

> ||zl].

Thus, ||z|} < o(ug)||¥z|| for all z € C(ug) N IN;.
By Theorem 2.1, the BVP (1.1)-(1.2) has a positive solution z* on [0,1] with
b < ||z*|] < B. This completes the proof of Theorem 3.1. U

Remark 3.1. Note that with the projection P(z) = z(0), condition 7° and 8° of
Theorem 2.1 are no longer satisfied.

To illustrate how our main result can be used in practice, we present here an
example.

Example 3.1. Consider

(3.6) { “Difw(t) + 5 (1 + - t2)2(x2 - st—i— 12)z =0, t e (0,1),
T ) = q2(3) + 72(%)-

Corresponding to the BVP (1.1)-(1.2), a = 1.5 and f(t,z) = sg5(1+1t—t2)(z?
8z + 12):2. Let k = %, B =6 and b = , we may choose by = 4, by = 55,
by = g c1 = 5—10, cy = 513 such that (H1) holds, and take p = 1, ¢y = %, 4 = 0.995,
q(t) = 1+ t(1 —t) and h(z) = gz for t € [0,1], = € (0, 5] such that (H2) holds.
Therefore, the BVP (3.6) has at least one positive solution on [0, 1] according to
Theorem 3.1.
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