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APPROXIMATELY CONVEX SCHWARTZ DISTRIBUTIONS

JAE-YOUNG CHUNG

ABSTRACT. Generalizing the approximately convex function which is introduced
by D.H. Hyers and S.M. Ulam we establish an approximately convex Schwartz dis-
tribution and prove that every approximately convex Schwartz distribution is an
approximately convex function.

1. INTRODUCTION

The main purpose of this article is to establish a concept of approxzimately con-
ver Schwartz distributions. In 1950, Laurent Schwartz introduced the theory of
distributions in his monograph Théorie des distributions. In this book Schwartz
systematizes the theory of generalized functions, basing it on the theory of linear
topological spaces, relates all the earlier approaches, and obtains many important
results. After his elegant theory appeared, many important concepts and results
on the classical spaces of functions have been generalized to the space of distri-
butions. For example, positive functions and positive-definite functions have been
generalized to positive distributions and positive-definite distributions, respectively,
and it is shown that every positive distribution is a positive measure [7, p. 38] and
every positive-definite distribution is the Fourier transform of positive measure u
such that [(1+ |z|)™Pdu < oo for some p > 0 [5, p. 157], which is called Bochner—
Schwartz theorem and is a natural generalization of the famous Bochner theorem
stating that every positive-definite function is the Fourier transform of a positive
finite measure. For other examples, the Paley-Wiener theorem has been generalized
to the Paley-Wiener—-Schwartz theorem which characterizes the distributions with
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bounded supports {7, p. 181]. Also, Lars Hormander characterized the distributions
u such that »” > 0 (it was treated for n-dimensional case) in his famous book |7,
p. 91]. On the other hand, generalizing the convex functions, D. H. Hyers and S.
M. Ulam introduced approzimately convez functions [8]. In this article, generalizing
the distributions u such that u” > 0 and the approximately convex functions, we
establish an approzimately convex distributions by means of a functional inequality
in the space of distributions and prove that every approximately convex distribution
u can be written in the form v = g + r where g is a convex function and r is a

bounded function.

2. SOME OPERATIONS ON DISTRIBUTIONS

In this section we briefly introduce the space of Schwartz distributions and some
operations on it. Here we use the notations: |a| = a1+ -+ ap, 8* = o7 - - 8%, for
T =(z1,...,2n) €ER", a = (a1,...,,) € N§, where Ny is the set of non-negative
integers and 0; = 5%.

Let Q be an open subset of R®. We denote by C°(Q) the space of all infinitely
differentiable functions on 2 with compact supports. A distribution u: C*(Q2) —» C
is a linear functional on C¢°(£2) such that for every compact set K C § there exist

constants C and k satisfying
(2.1) (o)l <C Y suplo%yl
lal<k
for all ¢ € C2°(§2) with supports contained in K. We denote by D’'(€2) the space of
Schwartz distributions on Q.
Now we briefly introduce some basic operations in D'(2). Let u € D’'(€2). Then
the k-th partial derivative dyu of u is defined by

(2.2) (Oku, ) = —(u, Okyp)

for k=1,...,n. Let f € C®°(€Q). Then the multiplication fu is defined by
(2.3) (Fu, @) = (u, fo).

Also we denote by Thu the translation of u by h € R™ which is defined by
(2.4) (Thu, ©) = (u, o(- = h)).

Let u € D'(R™) and ¢ € C°(R™). Then the convolution u * ¢ is defined by
(2.5) (ux)(z) = (u, p(z - -)).
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Finally, let f : ©; — Q2 be a smooth function such that for each z € Q; the
derivative f'(x) is surjective. Then there exists a unique continuous linear map
f*: D) — D'(f) such that f*u = uo f when u is a continuous function. We
call f*u the pullback of u by f and often denoted by u o f. For more details of
distributions we refer the reader to [7, 10].

3. APPROXIMATELY CONVEX DISTRIBUTIONS

Recall that a continuous function g : R* — R is called convez if
(3.1) 9((1 =)z + ty) < (1 - 0)g(x) + 0g(y)
for all 0 < 6 < 1, z,y € R" and midconvez if the inequality (3.1) holds for = %

Generalizing the convex functions, D.H. Hyers and S.M. Ulam introduced e-
convez functions.

Definition 3.1 ([8]). Let € > 0. Then a function f : R"® — R is called e-convex if
(3.2) fll=0)z+0y) < (1-0)f(x) +0f(y) +e
forall0< 6 <1, z,y € R™.

Also they proved the following.

Theorem 3.2 ([8]). Let f : R®™ — R be an e-convex function. Then there corre-

sponds a convez function g : R™ — R such that

°+3
(33 @) - gt < (22 ¢
for all x € R™,

Later, P.W. Cholewa {2] improved the above result and proved that the inequality
(3.3) can be replaced by the better inequalities

1
(34) 1£(@) = 9(2)| < Fane
where ¢, is given by the recursion formula
5
(3.5) n=Le=g o1=apr=1+q, k22

On the other hand, it is well known in elementary calculus that if ¢ is twice
differentiable, the inequality (3.1) is equivalent to

n n

(3.6) 33 wjak0i0kg(z) 20, = (x1,...,2,) € R,
j=1k=1
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Generalizing the inequality (3.6), L. Hormander characterized the distributions
u € D'(R") satisfying
n n
(3.7) Z ij:ckajaku >0, z= (111, e ,:En) € R™.
i=1k=1
Here a distribution « > 0 means that (u, ) > 0 for all test functions ¢ € C°(R")
with ¢ > 0.

Theorem 3.3 ([7]). Let u € D'(R") satisfy the inequality (3.7). Then there exists
a convex function g : R™ — R such that u = g(z) in the sense that
(38) (W) = [ s@p@)ds
for all p € C°(R™).

Generalizing the inequalities (3.1) and (3.2) to the space of Schwartz distribu-
tions we introduce convex distributions and e-convez distributions. For distributions

u1, ug2, 41 > uz means that uj—ug > 0, that is, (u1, ) > (usg, ) for all test functions
@ € CP(R™) with ¢ > 0.

Definition 3.4. We call u € D'(R") convez if
(3.9) Topu L (1 —0)u+60mu, 0<O<1, heR"™
and midconvez if the inequality (3.9) holds for § = % Also we call u € D'(R")
e-conveg if
(3.10) Toru < (1—Qu+bmut+e, 0<0<1, heR?
and e-midconvez if the inequality (3.10) holds for 6 = 1.
As a main result we prove the following.
Theorem 3.5. Every e-convez distribution u € D'(R™) can be written in the form
(3.11) u = g(z) + r(z)
where g(z) is a conver function and r(z) is a bounded measurable function satisfying

Irllze < %qne where gy, is given by the recursion formula (3.5).

The following elegant result of S. Banach is an essential tool in the proof of our

theorem.
Lemma 3.6 ([1]). Let fx, j = 1,2,..., be a sequence of bounded measurable func-
tions such that || fellLe < M, j=1,2,.... Then there exists a subsequence fejy 3=

1,2,..., and a bounded measurable function f with ||f||Le < M such that
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tm [ fo(@)ela)ds = [ f@)o(@)de

Jj—oo
for all o € LY(R™).

Note that C*(R™) C L}(R") and the subsequence fk; in the above lemma con-

verges to the f in the sense of distributions.
Lemma 3.7. Let u € D'(R™). Then the following conditions are equivalent.

(i) w is a convez distribution.
(1) w s @ midconver distribution.
(i) u satisfies (3.7).

(iv) w is a convex function.
Proof. The implications (i) = (ii), (iv)= (i) are obvious. The implication (iii)= (iv)
is just the Theorem 3.3. Thus it suffices to show that (ii)=- (iii). We denote by ()
the function on R™ such that

(@) = {Ae(-( =[P, el <1
o, Jzl 21,

where

-1
= xp(—(1 — |z|?) " Vdz .
A‘(/zmep( (1= o) >d)

It is easy to see that d(z) is an infinitely differentiable function with support {z :
|z] < 1}. Now we employ the function &;(z) := t~"8(z/t), t > 0. Let u € D'(R").
Then for each ¢ > 0, it is well known that (u * 8;)(z) = (uy, &:(z — y)) is a smooth
function in R™ and (u+*d;)(z) — u as t — 07 in the sense of distributions [7, Chapter
IV], that is, for every p € C°(R")

(u,) = lim [ (u*d)(z)p(z)dz.

t—0t

Convolving d;(z) in (3.9) with 8 = %, we have for each £ > 0
h
(3.12) 20, (z+§> < Ug(z) + U(z + h), =z, heR",

where Uy(x) = (u * &)(z). Thus for each t > 0, U; is midconvex function, which

implies U; is convex function since U; is a smooth function. Thus we have

n

n
Z ijzkaz].akut(x) >0, z={(z1,.-..,2,) €ER"
j=1k=1
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for each t > 0. Thus let ¢ € C(R") such that ¢ > 0. Then integration by parts

gives

(3. 13)
Z Z/ [x;210x, 0z, U (2)]p(2)dz = ZZ /Rn Ui(x)z;xk [0z, O, p(x)]dz > 0.
j=1k=1 j=1 k=1

Letting t — 0% in (3.13) we have

Z Z(“’ Tk 0g; 0z, 0) 2 0

j=1k=1
for all ¢ € C°(R™) with ¢ > 0. In view of (2.2) and (2.3) we have,
n n n
Zijxkazﬁzku ) = ZZ (U, Tj230z,; 0, p) 2 0
j=1k=1 j=1k=1

for all ¢ € C°(R™) with ¢ > 0, which gives (3.7). This completes the proof. O
Proof of Theorem 3.5. Convolving é;(z) in (3.10) we have for each t > 0,
(314) Ut(.’L' + 0h) < (1 - B)Ut(IL‘) + 9Ut(2 + h) +¢, z,heR", 0<f<]1,

where Uy(z) = (u * &;)(z). Thus for each t > 0, Uy(x) is an e-convex function of
z € R™ Thus, due to the result of Cholewa[2], for each ¢ > 0, there is a convex
function V;(z) such that

(3.15) | [Ui(z) = Vi(o)] < 5ane.

Now, let fr(x) := U% (z) — V% (z), k=1,2,3,.... Then by Lemma 3.6, there exists
a subsequence k;,j = 1,2,3,..., and a bounded measurable function r(z) such that

fr;(xz) — r(z) in D'(R™) as j — oo. Thus we have

hmV1 hm(U1—fk)—u-—7‘(x):=v

j—oo j—oo
in D'(R™).
Now we show that v = u — r(z) is a convex function. Since for each t > 0, V} is

a convex function, we have
Vilz +0h) < (1 -0V (z) +6Vi(z+h), z,heR™ 0<f<1.

Thus for all ¢ € C°(R™) such that ¢ > 0 we have
(3.16)

/ Vi(z +60h)p(z)dx < (1—0)/ Vt(:v)<p(m)dm+9/ Vi(z+h)p(z)dz, 0 <6 < 1.
R" R" R®
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Letting t = é and j — oo in (3.16), we have
(Tonv, ) < (1 — 0)(v, @) + 8(mhv, ), 0< B < 1,

for all ¢ € C(R™) with ¢ > 0. Thus v is a convex distribution. By Lemma 3.7, v
is a convex function. This completes the proof with v = g(x). O

Remark 1. Since every e-midconvex function is 2e-convex it is easy to see that

every e-midconvex distribution can be written in the form
u=g(zx)+r(z),

where g(z) is a convex function and r is a bounded measurable function satisfying

Il < gne.

Remark 2. The inequality (3.10) can be generalized to the space of distributions
in a different way as follows

(3.17) uoAg < (1-60)(uoP)+6(uoP)+e, 0<6<1,

where w o Ag, u o P, u o P denote the pullbacks of u by Ag(z,y) = (1 — )z +
8y, Pi(z,y) = z, Pa(z,y) = y, respectively. The author would like to know that
if v satisfies the inequality (3.17), then u is an e-convex distribution and can be
written in the form (3.11).
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