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CERTAIN SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES
OF THE WEDGE OF TWO MOORE SPACES II.

MyuNG Hwa JEONG

ABSTRACT. In the previous work [5] we have determined the group £4%™"(X) for
X = M(Zq¢,n+1)V M(Zy,n) for all integers ¢ > 1. In this paper, we investigate the
group Ex4™F7(X) for X = M(Z & Zg,n+ 1)V M(Z @ Zq,n) for all odd numbers
g>1.

1. INTRODUCTION

For a based topological space X the set £(X) of homotopy classes of self-homotopy
equivalences forms a group under composition of maps

For a based, 1-connected, finite CW-complex X, let E#dim+T(X ) be the subgroup
of homotopy classes which induces the identity on the homotopy groups of X in
dimensions < dimX +r. The group £(X) and the subgroup S#dim“(X ) have been
studied extensively. For a survey of known results and applications of £(X), see[2],
and for a list of references on the subgroups mentioned above, see [3]. In particular,
Arkowitz and Maruyama examined £4%™*7(X) for Moore spaces X in [4], and we
have extended their computation to the case X = M(Zq, n+ 1)V M(Z4,n) for all
positive integers ¢ > 1 in [5].

In this paper we calculate the subgroup S#dim”(X ) for X the wedge of two
Moore spaces X = M(Z ® Zg,n+ 1)V M(Z & Z4,n) for all odd numbers ¢ > 1.

We fix some notations and conventions. We shall work in the category of spaces
with base points and maps preserving the base points. If f : X — Y is a map, then
fon t Hn(X) — Hp(Y) and fun : mp(X) — mn(Y) denote the induced homology
and homotopy homomorphism in dimension n, respectively. In this paper we do not

distinguish notationally between a map X — Y and its homotopy class in (X,Y].
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For a finitely generated abelian group G write G = F & T, to indicate that F
is a free part of G and T is the torsion subgroup of G. Consequently M(G,n) =
M(F,n)Vv M(T,n). If G is free-abelian, M (G, n) is just a wedge of n-spheres. Note
that when G is finitely-generated, M (G, n) is a finite CW-complex of dim n if G is
free-abelian and of dim n + 1 if G is not free-abelian. Since M(G,n) is a double
suspension, the set of homotopy classes [M(G,n), X] can be given abelian group
structure with binary operation '+’

Finally, if A is an abelian group, we write

@A:A@---@A (r summands).

We also use ‘@’ to denote cartesian product of sets.

2. PRELIMINARIES

We begin with some well-known results. The first is the universal coefficient

theorem for homotopy with coefficients.
Theorem 2.1 ([6, p. 30]). There is a short ezact sequence :

0 — Ext(G,mn+1(X)) — mn(G; X) = Hom(G, 7, (X)) — 0,
where A : m,(G; X) — Hom(G, mn(X) is the homomorphism defined by A(f) = fun :
G~ m(M(G,n)) — m(X).
Proposition 2.2. If X is (k — 1)-connected and Y is (I — 1)-connected, k,l > 2,
and dimP < k+1— 1, then the projections X VY — X and X VY — Y induce
a bijection

[P,XVY]— [P, X]|®[PY].

Proposition 2.2 is a consequence of |7, p. 405] since the inclusion XVY — X xY
is a (k + ! — 1)-equivalence.

We consider abelian groups G; and G2 and Moore spaces Y3 = M(Gy,n;) and
Y = M(Gz,ng) . Let X =Y1vYy = M(Gl,nl) \Y) M(Gg,’nz) and denote by
ij + ¥; — X the inclusions and by p; : X — Yj the projections, j = 1,2. If
f:X — X, then we define fj : Y, — Y} by fjx = p;fi), for j,k=1,2.
Proposition 2.3. The function 8 which assigns to each f € [X, X], the 2 x 2 matriz

=1 %)

where fji, € [Y1,Y2], is a bijection. In addition,
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(1) 6(f +9) = 0(f) +6(g), s0 6 is an isomorphism [X, X] ~— By, 2[11, Y2].

(2) 6(fg) = 6(f)0(g), where fg denotes composition in (X, X]| and 0(f)0(g)
denotes matriz multiplication.

(3) If oy s m(Y1) @7 (Y2) — 7 (Y18Y2) and B, : m(Y1) Ve (Y2) — m(Y18Y2)
are the homomorphisms induced by the inclusions and projections, respec-
tively, then

Brfprar(z,y) = (fr14r(2) + fr24-(2), f21(2) + fo2pr(x)),
for z € 7. (Y1) and y € = (Ya).

The homotopy groups 7, (M (G, n)) and the groups of homotopy classes [M (G,
n+ k), M(G, k)] have been determined by Araki and Toda [1] when G is the cyclic
group Zg, (¢ > 1) in stable homotopy category. They obtained the following results.
See [1] if you want to know that in details.

Proposition 2.4 ([1]). Let ¢ > 1 be an odd number. Then
(1) 7p(M(Zg,n)) = Z
(2) mpe1(M(Zg,n)) = 0.
(3) Taya(M(Zq,n)) = 0.
(4) Tpy3(M(Zg,n)) =~ Z(qym).

Proposition 2.5 ([1]). Let ¢ > 1 be an odd number. Then
(1) [(M(Zg,n — 1)), (M(Zg,n))] ~ Z
(2) ((M(Zg,n)), (M(Zg,n))] = Z

(3) [(M(Zg,n+ 1)), (M(Zg,n))] = 0.

(4) ((M(Zg,n+2)), (M(Zg,1))] = Zg24)-

Proposition 2.6. Let ¢ > 1 be an odd number. Then
(1) [(M(Zg,n —2)),5™)] = 0.

(2) [(M(qu n— 1)), Sn)] =0.

(3) [(M(Zq,n)),5")] = 0.

(4) (M (Zg,n+1)),5M)] =0

(5) [(M(Zg,n +2)),5™)] = Z(g24).

Proof. (1) We know that [(M(Zg,n — 2)),S™)] = mn_2(Zq, S™).
By Theorem 2.1, we obtain the short exact sequence :

0 — Ext(Zg, 7n_1(S™)) — Tn-2(Zq,S™) — Hom(Zg, mpn—-2(S™)) — 0.
And Ext(Zg, mp—1(S™)) = 0 and Hom(Zg, my—2(S™) =0
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Therefore [(M(Z4,n — 2)),S™)] = 0.
(2) We know also that
[(M(Zg,n — 1)), 8")] = Tn_1(Zg, S™), Bxt(Zg, mn(S™)) = Z4
and
Hom(Zg, mp—1(S™) = 0.
By use of the short exact sequence in Theorem 2.1, [(M(Z4,n — 1)), S™)] = 0.
(3) Since g is an odd number,
Ext(Zg, mn1(S™)) = Ext(Zq,Z2) =0
and
Hom(Zg4, m,(S™) = 0.
We obtain [(M(Z4,n)),S™)] = 0.
We can show the rest of the proof by the same manner. O

We also need the following theorem.

Theorem 2.7 ([4]). For the Moore space X = M(G,n),
(1) Eiim(X) & U+)5 7, where r is the rank of G and s is the number of 2-

torsion summands in G.
(2) EL™HX)=1ifn> 3.

3. MAIN THEOREM

In this section we determine the group £4%™+"(X) for X = M(Z ® Zg,n+ 1)V
M(Z&Zyn),n>5and g>1:odd

We let My = M(Zg,n+1) = S"t1U,e™? and My = M(Zg,n) = S"Uge™ . We
know that M(Z®&Zg,n+1) = M(Z,n+1)VM(Z,n+1) = SV (S™H1U,e"+?) and
M(Z®Zg,n) = M(Z,n)VM(Zg,n) = S™V(S"Use" ). And we set Y1 = S v M,
and Y2 = S™V Ms. Then we can denote X = Y, VY,. We now let f € [X, X] and use
the notation of Section 2 so that f;r = p; fix € [Yi, Y]] for 5,k = 1,2. By Proposition
2.2 and Proposition 2.3, we can identify f € £(X) with the 2 x 2 matrix

fui fie )
[ =
(D ( far fa2 )’
where f11 € E(Y1), fi2 € [Y2, Y1), fo1 € [Y1,Y2], f22 € E(Y2). The group structure in
€(X) is then given by matrix multiplication.

Lemma 3.1. 7,1£(Y1 VY2) = My k(Y1) @ mpyk(Y2) for k=0,1,2,3,4.
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Proof. The Moore spaces Y7 and Y; are n-connected and (n — 1)-connected, respec-
tively and n > 5.
By Proposition 2.1, [S™T*, Y] V V3] = [S™, V1] @ [S™HF, Yy, for k < n. O

From Lemma 3.1, it is clear that

Fimin(z,y) = ( Iitgnsk Fognk ) ( @ ) V2 € sn (Y1), Yy € mss(Ya),
forstnsk  forsntk Yy

k=0,1,2,3,4.

The following theorem is the main result in this paper.
Theorem 3.2. For the space X = M(Z® Zg,n+ 1)V M(Z & Z4, 1),
Ept™(X) m E4 (XY~ 2, 0 Z, (Vg > 1:0dd).

Proof. By Proposition 2.2, [X, X] = [V1,Y1] & [Y1, Y] & [Y2,Y1] & [Y2,Y2]. Now
G = Z @ Z, has no 2-torsion, dimX = dimY; = n+ 2 and dimY, = n+ 1. By
Theorem 2.7, ngmx(Yl) =1 and EiimX(Yg) = 1. Let f € Siim(X) be given a

f= ( fu e > Then f11 = 1 and fo2 = 1. So it suffices that we consider just

foir  fo2
f12 and fo1.
First f12 € [YQ,Yl] ~ [Sn, Sn+1] (o] [M2,5n+1] &) [Sn,Ml] © [MQ, Ml].
g11 912

So we can identify fi9 € [Y3,Y1] with the 2 x 2 matrix P ), where g1; €
21 922

(5™, 8™, gi1a € [Mg, S™Y], go1 € [S™, M|, gog € [Mz, M;]. Then we see that
g11 = 0 and g91 = 0 obviously.

Now for any element g1z € [Ma, S™1|, gouk(mr(M2)) = 0,Vk < dimX. Because
Te(S") = 0,Vk < nand mp (M) =0, k=n+1, n+2.

And for any element goo € [My, M1, goosi(mi(M2)) = 0,Vk < dimX. Because
(M) =0,Vk <nand mp(Ma) =0, k=n+1, n+2.

By the fact of [My, S"*!] ~ Z, =< 7 > and [My, M1] = Z, =< ir >, we obtain

0 .
f12€{< 0 Z;i ) 912 €< ™ >, g €< im >}~ Z, B Zy.

Second fo1 € [Y1,Yo] & [S™H S @ [My, S*| @ [S™HY, My] @ [My, My).
hi1  hi2
hat  hao
[8™*1,8™, hig € [My, S™, ha1 € [S™FY, My, hay € [My, My).
By Proposition 2.4, 2.5 and 2.6, [M,S"] = [S"T!, My] = [M1,M3) = 0. So hiy =
hoy = hay = 0.
Now 7gnt1 : M1 (™) — 70 (S™), Ngns1(1) =nol=n#0. So hyy =0.
Finally, fo; = 0.

So we can identify fo; € [Y1, Y2] with the 2 x 2 matrix , where hq1 €



198 MyunG HwaA JEONG

Therefore
10 (0 912)
£,9m(X) ~ { 8 é (1) gzz lg12 €< T >, 990 €< iT >} = 2y Zy.
( 00 < 01 )

By Proposition 2.3, mny3(Mz) & Z(g24) =< iV >. Tgne3(iv) = miv = 0 and
(i7) g y3(iv) = imiv = 0. So E4Y™(X) & E,4m+1(X). O

We denote by Z(X) the subset of [X, X]| consisting of all homotopy classes which
induces the trivial homomorphism on homotopy groups in dimensions less than or

equal to n.

Corollary 3.3. For the space X = Y1 VY3 and q: odd,

(0 0) 0 gm)

00 0 ,

Z(X)N{ 00 0 322 |g12€<7r>,g22€<z7r>}.
(50) (00)

Proof. Consider the bijection map T : S#dim (X) — Z(X) defined by the translation
by the identity map, that is, T'(f) = f — 1. d
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