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ON THE DEBREU INTEGRAL OF FUZZY MAPPINGS
IN BANACH SPACES

CHUN-KEE PARK

ABSTRACT. In this paper, we introduce Debreu integral of fuzzy mappings in Ba-
nach spaces in terms of the Debreu integral of set-valued mappings, investigate
properties of Debreu integral of fuzzy mappings in Banach spaces and obtain the
convergence theorem for Debreu integral of fuzzy mappings in Banach spaces.

1. INTRODUCTION

The notion of integral of set-valued mappings is very useful in many branches of
mathematics like mathematical economics, control theory, convex analysis, etc. It
has been introduced by several mathematicians and in different ways. In particular,
the Debreu integral of set-valued mappings was studied by Byme [1], Cascales and
Rodriguez [2], Debreu [4], Hiai and Umegaki [6], Klein and Thompson [7] and others.
Another mathematicians also introduced the integrals of fuzzy mappings in Banach
spaces in terms of the integrals of set-valued mappings. In particular, Kaleva [9]
introduced the integral of fuzzy mappings in R” in terms of the integral of set-valued
mappings in R™. Xue, Ha and Ma [10] and Xue, Wang and Wu [11] also introduced
the integrals of fuzzy mappings in Banach spaces in terms of Aumann-Pettis and
Aumann-Bochner integrals of set-valued mappings.

In this paper, we introduce Debreu integral of fuzzy mappings in Banach spaces
in terms of the Debreu integral of set-valued mappings, investigate properties of
Debreu integral of fuzzy mappings in Banach spaces and obtain the convergence

theorem for Debreu integral of fuzzy mappings in Banach spaces.
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2. PRELIMINARIES

Throughout this paper, (2, Z, 1) denotes a complete finite measure space and X
a Banach space with dual X*. The closed unit ball of X* is denoted by Bx~. CL(X)
denotes the family of all nonempty closed subsets of X and CW K (X)) the family of
all nonempty convex weakly compact subsets of X. For A C X and z* € X*, let
s(z*, A) = sup{z*(z) : z € A}, the support function of A. For A,B € CL(X), let
H(A, B) denote the Hausdorff metric of A and B defined by

H(A, B) = max (sup d(a, B), supd(b, A)) ,
a€A beB

where d(a, B) =
fact that

i - = i — bl|. Especially, it is well-k
gglf:? lla — b}l and d(b, A) (}Qf; lla — b|]. Especially, it is well-known

H(A> B) = Ssup ]S((L'*, A) - S(IL'*, B)l
fle*ll<1
whenever A, B are convex sets. Note that (CW K (X), H) is a complete metric space.
The number || A is defined by

lAll = H(A, {0}) = sup ||z}
€A

Let u: X — [0,1]. We denote [u|” = {z € X : u(z) > r} for r € (0,1] and
[u]° = cl{z € X : u(z) > 0}. The function u is called a generalized fuzzy number
if for each r € (0,1], [u]" € CWK(X). Let F(X) denote the set of all generalized
fuzzy numbers on X. For u,v € F(X) and A € R, we define u +v and Au as follows:

(u+v)(z) = sup min(u(y),v(z)),
T=y+-2

1
ul{~z), A#0
(Mu)(z) = (/\ ) 4
0, A=0, where 0 = X{0}-

For u,v € F(X) and A € R, [u+v]" = [u]"+[v]" and [Mu]" = A[u]” for each r € (0, 1],
so u+v,Au € F(X). For u,v € F(X), we define u < v as follows:

u<v if u(z) <v(z) forallz e X.
Clearly, we have the following fact: for u,v € F(X), v < v if and only if [u]" C [v]
for each r € (0,1]. Define D : F(X) x F(X) — [0, +0c0] by the equation

D(u,v) = sup H([u]",[v]").
re(0,1]
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Then D is a metric on F(X). The norm |ju| of u € F(X) is defined by

lull = D(u,0) = sup H([u)",{0}) = sup ||[u]"]l.
re(0,1] r€(0,1}

The mapping F : Q@ — CL(X) is called a set-valued mapping. F is said to
be scalarly measurable if for every z* € X*, the real-valued function s(z*, F) is
measurable. F is said to be measurable if F71(A) = {w € Q: F(w)NA # ¢} € X for
every A € CL(X). Note that measurability is stronger than scalar measurability.

Let F':  — CL(X) be a set-valued mapping. Then the following statements are
equivalent:

(1) F: Q — CL(X) is measurable;

(2) FlU)={weN: Fw)NU # ¢} € T for every open subset U of X;

(3) (Castaing representation) there exists a sequence { f, } of measurable functions
fn 1 = X such that F(w) = cl{fn(w)} for all w € Q.

A set-valued mapping F : Q@ — CL(X) is said to be weakly integrably bounded
if the real-valued function |z*F| : @ — R,|z*F|(w) = sup{|z*(z)| : = € F(w)} is
integrable for every 2* € X*. A set-valued mapping F :  — CL(X) is said to be
integrably bounded if there exists an integrable real-valued function h such that for
each w € Q, ||z|| < h(w) for all z € F(w). A set-valued mapping F : Q@ — CL(X)
is said to be scalarly integrable if for every z* € X*, s(z*, F) is integrable. A set-
valued mapping F : @ — CL(X) is said to be scalarly uniformly integrable if the
set {s(z*, F) : * € Bx~} is uniformly integrable. A function f:Q — X is called a
measurable selector of F' : Q — CL(X) if f is measurable and f(w) € F(w) for all
w € . A measurable selector f of F' is called a Bochner integrable selector of F if f

is Bochner integrable. We denote by Sp the set of all Bochner integrable selectors
of F.

Definition 2.1 ([8]). A set-valued mapping F : @ — CL(X) is said to be Aumann-
Bochner integrable if Sp # ¢. In this case, the Aumann-Bochner integral of F on

A € ¥ is defined by
/qu:{/fd,u:fESF}.
A A

Theorem 2.2 ([3]). Let {(Bx~+) be the Banach space of bounded real-valued func-
tions defined on Bx~« endowed with the supremum norm || - |- Then the map
J: CWK(X) — {s(Bx~) given by j(A) := s(-, A) satisfies the following proper-
ties:



318 CHUN-KEE PARK

(1) j(A+ B) = j(A) + j(B) for every A,B € CWK(X);
(2) J(AA) = Xj(A) for every A >0 and A € CWK(X);
(3) H(A,B) = [j(A) — j(B)llco for every A,B € CWK(X);
(4) J(CWK(X)) is closed in oo (Bx~).

Definition 2.3 ([1,7]). A set-valued mapping F : @ — CWK(X) is said to be
Debreu integrable if the composition jo F : @ — £, (Bx~) is Bochner integrable.

In this case, the Debreu integral of F on ) is the unique element (D) / Fdu €
Q

CWK(X) such that ]((D)/ Fdy) = /jo Fdy, where [ denotes the Bochner
Q Q

integral.
If F:Q — CWK(X) is Debreu integrable, then for each A € ¥ there exists a

unique element (D)/ Fdu € CWK(X), that is called the Debreu integral of F on
A

A, such that ]((D)/ Fdyu) = / jo Fdu.
A A

In fact, Debreu integrability does not depend on the particular embedding j
considered and in order to define the Debreu integral we can use any map i :
CWK(X) — Y, in a Banach space Y, as long as properties (1) — (4) in Theo-
rem 2.2 are fulfilled [7]. In particular, if X is separable and F : Q@ — CWK(X)
is Debreu integrable, then F' : @ — CWK(X) is Aumann-Bochner integrable and

D)/ Fdu = / Fdp for each A € ¥ [1,7].
A

3. REsuLTS

A mapping F : Q — F(X) is called a fuzzy mapping in a Banach space X. In
this case, F™ : @ — CWK(X) defined by FT(w) = [F(w)]" is a set-valued mapping
for each r € (0,1]. A fuzzy mapping F : @ — F(X) is said to be measurable
(resp., scalarly measurable) if F™ : Q@ — CWK(X) is measurable (resp., scalarly
measurable) for each r € (0, 1].

Definition 3.1 ([10]). A fuzzy mapping F : Q — F(X) is said to be integrable if for
each A € ¥ there exists ug € F(X) such that [us]” = / F"dy for each r € (0, 1].
A

In this case, uy = / Fdy is called the integral of F on A.
A

Definition 3.2. A fuzzy mapping F : Q — F(X) is said to be Debreu integrable
if for each A € ¥ there exists uy € F(X) such that [uas]” = (D)/ FTdy for each
A
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€ (0,1]. In this case, ug = (D)/ Fdy is called the Debreu integral of F on A.
A

Theorem 3.3. Let F : Q — F(X) and G : Q — F(X) be Debreu integrable and
A>0. Then

(1) F + G is Debreu integrable and for each A € ©
() [ (F+Gau= (D) [ Fau=+ (D) [ Gan,
A A A
(2) AF is Debreu integrable and for each A € £
(D) / AFdp = \(D) / Fdyu.
A A
Proof. The proof is straightforward. O

Lemma 3.4. Let F : @ — CWK(X) and G : Q@ - CWK(X) be Debreu inte-
grable set-valued mappings. Then F(w) = G(w) p-a.e. if and only if (D)/ Fdy =
A

D)/ Gdu for each A € X.
A

Proof. Since F: @ - CWK(X) and G : @ — CWK(X) are Debreu integrable,
joF and j o G are Bochner integrable and there exist D)/ Fdu, (D )/ Gdu €
A

CWK(X) such that ]((D)/ Fdu) = / jo Fdu, j / Gdu) = /jo Gdy for
A
each A € X. A A
If F(w) = G(w) p-a.e., then (j o F)(w) = (j o G)(w) p-a.e. Hence

i) [ Fdw = [ jorau= [ jocau=3(D) [ caw
A A A A
for each A € ¥. Thus

s(z", (D) /A Fdw) =<",5(D) | Fau) >

for each z* € Bx~ and A € X. Since (D)/ Fdu, (D)/ Gdp € CWK(X) for each
A A
A € %, by the separation theorem (D)/ Fdy = (D)/ Gdyp for each A € ¥.
A A

Conversely, if (D)/ Fdy = (D)/ Gdy for each A € ¥, then
A A
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/A jo Fdu=3(D) [ Fau) = (D) /A Gau) = [ 3o Gau

for each A € X. By [5, Corollary IL5], (j o F){w) = (j o G)(w) p-a.e. and so
H(F(),Gw)) = (i o F)) - (j o G))lloo = 0 p-aue. Hence F(w) = Gw)
[-a.e. O

Lemma 3.5. Let X be a separable Banach space and let F : Q@ — CWK(X) and
G : Q — CWK(X) be Debreu integrable set-valued mappings. If F(w) C G(w) on

2, then (D)/ Fdu C (D)/ Gdu for each A € 3.
A A
Proof. Since F : @ — CWK(X) and G : @ - CWK(X) are Debreu integrable,
F:0—- CWK(X)and G: Q — CWK(X) are Aumann-Bochner integrable and
(D)/ Fdu = / Fdy, (D)/ Gdu = / Gdpu for each A € X. If F(w) € G(w) on
A A A A
Q, then SFp C Si. Hence / Fdu C / Gdu and so (D)/ Fdu C (D)/ Gdyu for
A A A A

each A € X.

Theorem 3.6. Let F: Q@ — F(X) and G : Q — F(X) be Debreu integrable fuzzy
mappings. If F(w) = G(w) p-a.e., then (D)/ Fdu = (D)/ Gdy for each A € T.
A A
Proof. Since F : Q — F(X) and G : Q — F(X) are Debreu integrable, for each A €
¥ there exist ug,v4 € F(X) such that [ua]” = (D)/ Frdu, [va]” = (D)/ GTdy for
_ - - A A
each r € (0,1]. If F(w) = G(w) p-a.e., then F"(w) = G"(w) p-a.e. for each r € (0,1].
By Lemma 3.4, [ug]” = (D)/ Frdy = (D)/ G"dp = [va]" for each r € (0,1] and
A A
AEEandso(D)/ﬁ'dp=uA=vA=(D)/édpforeachAGE. O
A A
Theorem 3.7. Let X be a separable Banach space and let F : Q0 — F(X) and
G : Q — F(X) be Debreu integrable fuzzy mappings. If F(w) C G(w) on Q, then
(D)/ Fdu C (D)/ Gdy for each A€ X,
A A
Proof. The proof is similar to Theorem 3.6. 4
Theorem 3.8. Let X be a separable Banach space. If a fuzzy mapping F:Q-
F(X) is Debreu integrable, then F : Q0 — F(X) is integrable and (D) / Fdp =
A

/ Fdyu for each A € .
A
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Proof. If F : Q — F(X) is Debreu integrable, then for each A € ¥ there exists
ug € F(X) such that uy = (D)/ Fdy. Thus [ua]” = (D)/ F"dy for each
) A A
r € (0,1]. Since F™ :  — CWK(X) is Debreu integrable for each r € (0,1],
F":Q — CWK(X) is Aumann-Bochner integrable for each r € (0,1] and [uy]" =
(D)/ Frdu = / F"dy for each r € (0,1)]. Thus ug = / Fdu. Therefore F : Q —
A A A
F(X) is integrable and (D)/ Fdy = / Fdy for each A € £. O
A A
Lemma 3.9. If F: Q - CWK(X) and G : Q@ - CWK(X) are measurable, inte-

grably bounded and Debreu integrable set-valued mappings, then H(F,G) is integrable

and
H ((D)/Qqu, (D)/QGdu> < /QH(F,G)du.

Proof. Since F': Q@ — CWK(X) and G : @ - CWK(X) are measurable, there
exist Castaing representations {f,} and {g,} for F and G. Since f, and g, are
measurable for all n € N,

H(F (), G()) = max (supmf 152(6) = 91()l 530 i lgn(w) = ()]

n>1k

is measurable. Since F: @ - CWK(X) and G : @ — CWK(X) are integrably
bounded, there exist integrable real-valued functions h; and hy such that for each
weQ, |z|| < hi(w) for all z € F(w) and ||z|| < ha(w) for all z € G(w). Hence

H(F(w),G(w)) < H(F(w),{0}) + H(G(w), {0}) < h(w) + ho(w)

for each w € §). Therefore H(F,G) is integrable. Since F and G are Debreu inte-
grable, there exist (D)/ Fdu, (D)/ Gdu € CWK(X) such that j((D)/ Fdu) =
Q Q Q

/jo Fdu and _]((D)/ Gdp) = / j o Gdu. Hence
Q Q Q

H((D)/Qqu, (D)/ de) “ de - (( /Gdu H

H/]oFd,u joGdu

o0

s/njoF—joGnoodu
0
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= [ swp [<a" (o)) - ((oG)w) > | du
Q |jz=}j<1

=j;2 sup |s(z*, F(w)) — s(z*, G(w))| du

l==li<1

= / H(F,G)du
Q
a
A fuzzy mapping F : Q@ — F(X) is said to be integrably bounded if there exists
an integrable real-valued function h such that for each w € Q, |jz|| < h{w) for all
z € FOw), where FO(w) = ¢l <U0<r51ﬁ‘r(w)).

Theorem 3.10. If F : Q — F(X) and G : Q@ — F(X) are measurable, integrably
bounded and Debreu integrable fuzzy mappings, then D(F,G) is integrable and

(D)/qu,(D)/de) /Dﬁéd

Proof. Since F : Q@ — F(X) and G : Q — F(X) are measurable, there exist Castaing
representations {f7} and {g},} for F” and G for each r € (0,1]. Since f7 and g7,
are measurable for all n € N,

O (), G(w) = s (sup j 1£(0) - g5 ) sup ik k) = F7 )
is measurable for each r € (0,1]. Hence D(F(w),G(w)) = sup H(F™(w),G™ (w))

is measurable, where {r; : k£ € N} is dense in (0, 1]. Since F and G are integrably
bounded, there exist integrable real-valued functions hy and hg such that for each
weQ, ||z < hy(w) for all 2 € FO(w) and ||z|| < ho(w) for all z € GO(w). Hence we
have

D(F(w),G(w)) < D(F(w),0) + D(G(w),0) < h1(w) + ha(w)
for each w € Q. Therefore D(F,G) is integrable and by Lemma 3.9

H ((D) /Q Frdu, (D) /Q (;w) < /Q H(EF™, G")du

for each r € (0, 1]. Hence we have

o1 pncm [ 60) - g ([ o] 0]
=721(1£1]H ((D) /Q Frdp, (D) /Q G”"du)
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< sup /H(F’,G’)du
re(0,1] /Q

< / sup H(E",G")dy
Qre(0,1]

= /QD(F, G)dp.

O

The following lemma is the Convergence Theorem for the set-valued Debreu in-

tegral.

Lemma 3.11. Let F, : @ —» CWK(X) be a Debreu integrable set-valued mapping
for each n € N and let F : Q@ - CWK(X) be a set-valued mapping such that
lim H(Fp(w), F(w)) = 0 on Q. If there exists an integrable real-valued function h
n—oc

such that ||Fp(w)|| € h(w) on Q for eachn € N, then F: Q@ - CWK(X) is Debreu
integrable and

lim H ((D)/ﬂFndu,(D)/Qqu> =0.

Proof. Since F,, : @ — CWK(X) is Debreu integrable for each n € N, jo
F, is Bochner integrable and there exists (D)/ F.dy € CWK(X) such that
Q

)((D)/ Fndu) =/jandu for each n € N. Since lim |[(jo Fp)(w)— (jo F)(w)|leo
n—00

Q Q
= nlim H(Fh(w),F(w)) = 0on Q, lim (jo F,){(w) = (j o F)(w) on . For each
neN

(G 0 Fn){w)lleo = “S}T&I <z, (jo Fn)(w) > |

= sup |s(z”, Fu(w))]
lerli<1

= sup |s(a", Faw)) — s(a", {0})]
flz=||<1

= H(Fp(w),{0})
= || Fp(w)l
< h(w)

on . By the Dominated Convergence Theorem for the Bochner integral, j o F' is

Bochner integrable and lim jo Fpdu = / jo Fdu. Hence F : @ > CWK(X)
Q Q

n—o0
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is Debreu integrable and
sy #(0) [ Fudie (0) [ Pa) =t i) [ Fod) = 540) [ Fa)]

= lim H/jandu—/joquH = (.
00 [e) 0 00
d0
The following theorem is the Convergence Theorem for the Debreu integral of
fuzzy mappings.

Theorem 3.12. Let X be a separable Banach space and let F,: Q- F(X) be a
measurable and Debreu integrable fuzzy mapping for each n € N and let F - Q —
F(X) be a measurable fuzzy mapping such that nlingo D{ﬁ’n(w),ﬁ‘(w)) =0onf If
there exists an integrable real-valued function h such that | E(w)|| < h(w) on Q for
eachn €N, then F : Q — F(X) is Debreu integrable and

lim D <(D) L Fdu, (D) /Q de,) =0.

Proof. Since lim D(Fy(w), F(w)) = 0 on Q, for each € > 0 and w € € there exists
n—o00
N € N such that n > N = D(F,(w), F(w)) < €. For some n € N withn > N,

IFW)ll = D(F(w),0) < D(F(w), Fn(w)) + D(Fa(w),0)
<IE @)l +€ < hlw) + ¢
for each w € Q. Since € > 0 is arbitrary, | F(w)|| < h(w) on Q. Thus F : Q — F(X)
is integrably bounded. Since F,, : @ — F(X) is Debreu integrable for each n € N,
there exists u, € F(X) such that [u,]” = (D) / E,"du for each r € (0,1] and
n € N. Since nlgr;o D(Fp(w), F(w)) = 0 on Q, nlirx(;:H(I:”,’;(w),Fr(w)) =0 on Q for
each r € (0,1]. Since ||E, (w)]| < h(w) on Q for each n € N, [|E, (w)]| < h(w) on

) for each r € (0,1] and n € N. By Lemma 3.11, F" : Q —» CWK(X) is Debreu
integrable for each r € (0,1]. Let A € £. Then there exists M, € CWK(X) such

that M, = (D)/ E"dy for each r € (0,1]. For 11,73 € (0,1] with r; < g, F™(w) 2
A

F2(w) for each w € Q. By Lemma 3.5 M,, = {D)/ Fridu 2 (D)/ Fr2dy = M,,.
A A

Let r € (0,1] and {rn} be a sequence in (0,1] such that r; < r < r3 < --- and

lim r, = r. Then F"(w) = N%;F™(w) for each w € Q. By [10, Lemma 4.2},

n—0o0
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lim s(z*, F™(w)) = s(z*, F"(w)) for each w € Q and z* € X*. For each z* € Bx»
n—oo
and w € Q,
lim < z*, (jo F™)(w) > = lim s(z*, F™(w))
n—od n—oo
= s(z", F"(w))
—< ot (o F)(w) > .
Thus lim (50 F™)(w) = (j o F")(w) on Q. For each n € N and w € €,
n—00

G o F™)w)lloo = sup |s(a*, F™ (w))]
fle*ll<1

= sup Ioa", () = a”, {0))

= H(F™(w),{0})
= [|F™ (W)

< |FOw)l

< h(w).

By the Dominated Convergence Theorem for the Bochner integral,

lim joﬁr"du:/joﬁ’rdu.
A A

n—0

For each z* € Bx-,

Is(a*, My,)) — s(a, My)| = |s(a*, (D) /A Fedu) - o(a", (D) | F’du)‘
~ <&@ [ Fran) > - <o) /A Frdu)>|

= <x*,/jol:“r"du>—<m*,/jOﬁ’Tdu>l
A A

IA

/jOFT"d[,L—/jOF'Td/LH — 0 as n — oo.

A A 00

Thus for each z* € Bx«, lim s(z*,M,,) = s(z*, M,;). And so for each z* € X*,
n—00

lim s(z*, M,,) = s(z*, M,). By [10, Lemma 4.2], M, = N, M,,. Let My = X.

n—0oo

By (10, Lemma 4.1], there exists uq € F(X) such that [ua]” = M, = (D) /Frdu

for each 7 € (0,1]. Hence F : Q — F(X) is Debreu integrable. By Theorem 3.10

and the Dominated Convergence Theorem for the Bochner integral,

D((D)/Qﬁ’nd,u, (D)/{)F‘du) S/QD(I?’H,IE‘)dMHO as m — 00.
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Thus lim D ((D) / F.du, (D) / qu) = 0. O
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