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SCREEN CONFORMAL LIGHTLIKE HYPERSURFACES
OF A SEMI-RIEMANNIAN SPACE FORM

Dar Ho JIN

ABSTRACT. We study the geometry of screen conformal lightlike hypersurfaces M
of a semi-Riemannian manifold M. The main result is a characterization theorem
for screen conformal lightlike hypersurfaces of a semi-Riemannian space form.

1. INTRODUCTION

It is well known that the normal bundle TM* of the lightlike hypersurfaces M
is a subbundle of TM, of rank 1. A complementary vector bundle S(T'M) of TM*
in TM is non-degenerate distribution on M, called a screen distribution on M, and

(1.1) TM = TM* @on S(TM),

where @45, denotes the orthogonal direct sum. Although, in general, the screen
distribution S(T'M) is not unique, but it has been proved in [2] that screen conformal
hypersurfaces (our working space in this paper) do admit canonical screens (also see
[3] on existence of canonical screens for lightlike hypersurfaces). We denote such a
lightlike hypersurface by (M, g, S(TM)). Denote by F(M) the algebra of smooth
functions on M and by ['(E) the F(M) module of smooth sections of a vector
bundle E over M. We know [4] that, for any null section ¢ of TM+* on a coordinate
neighborhood U C M, there exists a unique null section N of a unique vector bundle
tr(TM) in S(TM)* satisfying

(1.2) gE&EN) =1, g, N)=§N,X) =0, "X el (S(TM)u).
Then the tangent space TM of M is decomposed as follows:

(1.3) TM =TM & tr(TM) = {TM* & tr(TM)} @ortn S(TM).
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We call tr(T'M) and N the transversal vector bundle and the null transversal vector
field of M with respect to S(TM) respectively.

The purpose of this paper is to study the geometry of screen conformal light-
like hypersurfaces of a semi-Riemannian space form. We prove a characterization
theorem for screen conformal lightlike hypersurfaces M of a semi-Riemannian space
form (M(c), §) with a constant curvature ¢: If dim M > 3, then ¢ = 0 (Theorem
2.1). Using this theorem, we prove an annexed theorem for screen conformal lightlike
hypersurfaces M of a semi-Riemannian space form (M(c), g): If ¢ # 0, then M is
totally umbilical and locally a product manifold M = L x M*, where L is a lightlike
curve and M* is a totally umbilical semi-Riemannian 2-surface or a non-lightlike
curve (Theorem 2.3). Recall the following structure equations:

Let V be the Levi-Civita connection of M and P the projection morphism of
[(TM) on I'(S(TM)) with respect to the decomposition (1.1). Then, for any vector
fields X, Y € I'(T M), the local Gauss and Weingartan formulas are given by

(1.4) VxY =VxY + B(X,Y)N,
(1.5) VxN = -AxyX +7(X)N,

(1.6) VxPY = V%PY + C(X, PY)E,
(1.7) Vx€=-A; X — 1(X)§,

where V and V* are the linear connections on TM and S(TM) respectively, B‘ and
C are the local second fundamental forms on TM and S(TM) respectively, Ay and
Af are the shape operators on TM and S(T'M) respectively and 7 is a 1-form on
TM. Since V is torsion-free, V is also torsion-free and B is symmetric. From the
fact that B(X, Y) = g(VxY, £), we know that B is independent of the choice of a

screen distribution and satisfies

(1.8) B(X,6) =0, YXel(TM).

The induced connection V of M is not metric and satisfies

(1.9) (Vxg)(Y, 2) = B(X, Y)n(Z) + B(X, Z)n(Y),
for any X, Y, Z € I'(TM), where 7 is a 1-form such that

(1.10) n(X)=g(X, N), "X eI(TM).
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But the connection V* on S(T'M) is metric. The above two local second fundamental
forms of M and on S(T'M) are related to their shape operators by
(1.11) BX,Y)= g(4iX,Y),  §4X,N)=0,

(1.12) C(X, PY)=g(ANX, PY), gG(AnX, N)=0.

From (1.11), the operator Ag is S(T'M )-valued and self-adjoint on TM such that
(1.13) A =0,

We denote by R, R and R* the curvature tensors of the Levi-Civita connection V
of M, the induced connection V of M and the connection V* on S(T'M), respectively.
Using the Gauss-Weingarten equations for M and S(T'M), we obtain the Gauss-
Codazzi equations for M and S(T'M) such that, for any X, Y, Z, W € ['(TM),
(1.14) G(R(X,Y)Z, PW) = g(R(X,Y)Z, PW)

+ B(X, Z)C(Y, PW) - B(Y, Z)C(X, PW),
(1.15) (R(X, Y)Z, €) = g(R(X, V)2, €)

= (VxB)(Y, Z) - (VyB)(X, Z)

+ B(Y, Z)71(X) — B(X, Z)7(Y),
(1.16) §(R(X,Y)Z, N)=g(R(X,Y)Z, N),
(1.17)  g(R(X,Y)PZ, PW)=g(R*(X,Y)PZ, PW)

+C(X,PZ)B(Y,PW)—-C(Y,PZ)B(X,PW),
(1.18) 9(R(X,Y)PZ, N) = (VxC)(Y, PZ) — (VyC)(X, PZ)

+C(X, PZ)r(Y) - C(Y, PZ)r(X).

2. SCREEN CONFORMAL HYPERSURFACES

Definition. A lightlike hypersurface (M, g, S(T'M)) of a semi-Riemannian manifold
(M, §) is screen conformal [2] if there exist a non-vanishing smooth function ¢ on
a neighborhood U in M such that Ay = p A%, or equivalently,

(2.1) C(X,PY)=¢B(X,Y), VX, Y e (TM).

Note 1. For a screen conformal hypersurface M, since the second fundamental
form C is symmetric, S(T'M) is integrable distribution. Thus M is locally a product
manifold L x M* where L is a lightlike curve and M* is a leaf of S(T'M) [4].
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Let M be a screen conformal lightlike hypersurface of a semi-Riemannian space
form (M(c),§). Then, by (1.15), we have

(2.2) (VxB)(Y,Z) - (VyB)(X, Z) = B(X, Z)7(Y) — B(Y, Z)7(X),
for all X, Y, Z € I'(TM). Using this, (1.16), (1.18) and (2.1), we obtain
{X[p] = 207(X)}B(Y, Z) — {Y[g] - 2¢7(Y)}B(X, Z)

(2.3) = c{g(Y, Z)n(X) — g(X, Z)n(Y)}.
Replacing Y by £ in (2.3), we obtain
(2.4) {€l] — 207(€)}B(X, Z) = cg(X, Z).

Theorem 2.1. Let (M, g, S(TM)) be a screen conformal lightlike hypersurface of a
semi-Riemannian space form (M(c), ). If dim M > 3, then c = 0.

Proof. Assume that ¢ # 0. Then £[p] — 2p7(£) # 0 and B # 0, that is, M is not a
totally geodesic. From (2.1) and (2.4), we have

(25)  B(X,Y)=pg(X,Y), C(X,PY)=ppg(X,PY), "X, Y € (TM),

where p = c(€]p] — 207(£))™ # 0. If pp = 0, then C = 0 by (2.5). From (2.1), we
have B = 0. Therefore, we get pp # 0. Thus M and S(TM) are totally umbilical
which are not totally geodesic. Since M is screen conformal, by Note 1, M is locally
a product manifold L x M* where L is a lightlike curve and M* is a leaf of S(TM).
Since M is a space of constant curvature, from (1.14), (1.17) and (2.5), we have

(26) R*(X,Y)Z = (c+200){g(Y, 2)X — g(X,2)Y}, VX, Y, Z € I(S(TM)).
Let Ric* be the induced symmetric Ricci tensor of M*. From (2.6), we have
(2.7) Ric*(X,Y) = (¢4 20p*)(m — 1) g(X,Y), VX, Y € T(S(TM)).

Thus M* is Einstein. Since dim M* > 2, the function (c + 2¢p?) is a constant and
M* is a space of constant curvature (c + 2pp?). Differentiating the first equation of
(2.5) and using (1.9), (2.2) and the first equation of (2.5), we have

(28)  {Xlol + p7(X) = P*n(X)}g(Y, Z) = {Y[p] + p7(Y) = p*0(Y)}9(X, 2).

Replacing Y by ¢ in this equation, we have £[p] = p? — p7(£). Since pp? is a constant,
we have 0 = £[pp?] = p(c+ 2pp?). Since (c+ 2pp?) is a constant and p # 0, we have
c+2pp? = 0. Thus M* is a semi-Euclidean space and the second fundamental form

C of M* satisfies C = 0. Thus, from (2.1), we have B = 0. It is a contradiction to
B # 0. Consequently, we have ¢ = 0. » 0
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Corollary 1. There ezist no screen conformal lightlike hypersurfaces M of semi-

Riemannian space form (M(c), g) with ¢ # 0 and dimM > 3.

Corollary 2. There exist no screen conformal totally geodesic lightlike hypersurfaces

M of semi-Riemannian space form (M(c), §) with c # 0.

Theorem 2.2. Let (M,g,S(TM)) be a screen conformal lightlike hypersurface of
(M(c), ) with dim M > 3 and M* be a leaf of the screen distribution S(TM). Then

the curvature tensors R and R* of M and M* respectively, are related by
1
(2.9) R(X,Y)Z = §R*(PX, PY)PZ, YX,Y, Z€ I(TM).

Proof. From (1.16) with ¢ = 0, we have g(R(X,Y)Z, N) = 0. Thus we see that (2.9)
is equivalent to

(2.10) g(R(X,Y)Z,PW) = —;—g(R*(PX, PY)PZ,PW), VX, Y, Z, W € [(TM).

Due to (1.15) with ¢ = 0, we have g(R(X,Y)¢,Z) = 0. Thus we see that (2.10)
is true for Z = . Using (1.8), (1.14) and (1.17) with ¢ = 0 and (2.1), we derive
(2.10). O

Theorem 2.3. Let (M, g, S(TM)) be a screen conformal lightlike hypersurface of a
semi-Riemannian space form (M(c),§) with ¢ # 0. Then M is totally umbilical and
locally a product manifold L x M*, where L is a lightlike curve and M* is a totally

umbilical semi-Riemannian 2-surface or a non-lightlike curve.

Proof. Since M is a screen conformal lightlike hypersurface of a semi-Riemannian
space form (M(c), ), by Note 1 M is locally a product manifold L x M* where L
is a lightlike curve and M* is a leaf of S(T'M). Since ¢ # 0, by Theorem 2.1 we see
that dim M < 3. As c # 0, by (2.4), we see that £[p] — 2p7(€) # 0 and B # 0.
Thus, from (2.1) and (2.4), the second fundamental forms B and C of M and M*
respectively satisfy the following equations

B(X,Y)=pg(X,Y), C(X,PY)=ppg(X,PY), "X, Y € T(TM),

where p = ¢(£[p] — 2¢7(€))7! # 0. Thus M and M* are totally umbilical which are
not totally geodesic. Since dim M < 3 and the Riemannian curvature tensor R* of
M is given by R*(X,Y)Z = (c+ 2¢p®){g(Y,Z)X — g(X,2Z)Y} for all X, Y, Z €
[(S(TM)), the leaf M* of S(TM) is a proper totally umbilical semi-Riemannian

2-surface of sectional curvature (c + 2¢p?) or a non-lightlike curve. O
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