SCREEN CONFORMAL LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN SPACE FORM

DAE HO JIN

ABSTRACT. We study the geometry of screen conformal lightlike hypersurfaces M of a semi-Riemannian manifold \bar{M} . The main result is a characterization theorem for screen conformal lightlike hypersurfaces of a semi-Riemannian space form.

1. Introduction

It is well known that the normal bundle TM^{\perp} of the lightlike hypersurfaces M is a subbundle of TM, of rank 1. A complementary vector bundle S(TM) of TM^{\perp} in TM is non-degenerate distribution on M, called a *screen distribution* on M, and

$$(1.1) TM = TM^{\perp} \oplus_{orth} S(TM),$$

where \oplus_{orth} denotes the orthogonal direct sum. Although, in general, the screen distribution S(TM) is not unique, but it has been proved in [2] that screen conformal hypersurfaces (our working space in this paper) do admit canonical screens (also see [3] on existence of canonical screens for lightlike hypersurfaces). We denote such a lightlike hypersurface by (M, g, S(TM)). Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E over M. We know [4] that, for any null section ξ of TM^{\perp} on a coordinate neighborhood $U \subset M$, there exists a unique null section N of a unique vector bundle tr(TM) in $S(TM)^{\perp}$ satisfying

(1.2)
$$\bar{g}(\xi, N) = 1, \quad \bar{g}(N, N) = \bar{g}(N, X) = 0, \, \forall X \in \Gamma(S(TM)|_{\mathcal{U}}).$$

Then the tangent space $T\bar{M}$ of \bar{M} is decomposed as follows:

$$(1.3) T\bar{M} = TM \oplus tr(TM) = \{TM^{\perp} \oplus tr(TM)\} \oplus_{orth} S(TM).$$

Received by the editors September 5, 2008. Revised April 9, 2009. Accepted July 9, 2009.

2000 Mathematics Subject Classification. 53B25, 53C40, 53C50. Key words and phrases. screen conformal, semi-Riemannian space forms.

272 Dae Ho Jin

We call tr(TM) and N the transversal vector bundle and the null transversal vector field of M with respect to S(TM) respectively.

The purpose of this paper is to study the geometry of screen conformal light-like hypersurfaces of a semi-Riemannian space form. We prove a characterization theorem for screen conformal lightlike hypersurfaces M of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$ with a constant curvature c: If dim M > 3, then c = 0 (Theorem 2.1). Using this theorem, we prove an annexed theorem for screen conformal lightlike hypersurfaces M of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$: If $c \neq 0$, then M is totally umbilical and locally a product manifold $M = L \times M^*$, where L is a lightlike curve and M^* is a totally umbilical semi-Riemannian 2-surface or a non-lightlike curve (Theorem 2.3). Recall the following structure equations:

Let ∇ be the Levi-Civita connection of \overline{M} and P the projection morphism of $\Gamma(TM)$ on $\Gamma(S(TM))$ with respect to the decomposition (1.1). Then, for any vector fields $X, Y \in \Gamma(TM)$, the local Gauss and Weingartan formulas are given by

$$\bar{\nabla}_X Y = \nabla_X Y + B(X, Y) N,$$

$$\bar{\nabla}_X N = -A_N X + \tau(X) N,$$

(1.6)
$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$$

(1.7)
$$\nabla_X \xi = -A_{\xi}^* X - \tau(X) \xi,$$

where ∇ and ∇^* are the linear connections on TM and S(TM) respectively, B and C are the local second fundamental forms on TM and S(TM) respectively, A_N and A_{ξ}^* are the shape operators on TM and S(TM) respectively and τ is a 1-form on TM. Since $\bar{\nabla}$ is torsion-free, ∇ is also torsion-free and B is symmetric. From the fact that $B(X,Y)=\bar{g}(\bar{\nabla}_XY,\xi)$, we know that B is independent of the choice of a screen distribution and satisfies

(1.8)
$$B(X, \xi) = 0, \quad \forall X \in \Gamma(TM).$$

The induced connection ∇ of M is not metric and satisfies

(1.9)
$$(\nabla_X g)(Y, Z) = B(X, Y) \eta(Z) + B(X, Z) \eta(Y),$$

for any $X, Y, Z \in \Gamma(TM)$, where η is a 1-form such that

(1.10)
$$\eta(X) = \bar{g}(X, N), \quad \forall X \in \Gamma(TM).$$

But the connection ∇^* on S(TM) is metric. The above two local second fundamental forms of M and on S(TM) are related to their shape operators by

(1.11)
$$B(X, Y) = g(A_{\xi}^* X, Y), \qquad \bar{g}(A_{\xi}^* X, N) = 0,$$

(1.12)
$$C(X, PY) = g(A_N X, PY), \quad \bar{g}(A_N X, N) = 0.$$

From (1.11), the operator A_{ξ}^* is S(TM)-valued and self-adjoint on TM such that

$$A_{\xi}^* \xi = 0.$$

We denote by \bar{R} , R and R^* the curvature tensors of the Levi-Civita connection $\bar{\nabla}$ of \bar{M} , the induced connection ∇ of M and the connection ∇^* on S(TM), respectively. Using the Gauss-Weingarten equations for M and S(TM), we obtain the Gauss-Codazzi equations for M and S(TM) such that, for any X, Y, Z, $W \in \Gamma(TM)$,

(1.14)
$$\bar{g}(\bar{R}(X, Y)Z, PW) = g(R(X, Y)Z, PW)$$

$$+ B(X, Z)C(Y, PW) - B(Y, Z)C(X, PW),$$
(1.15)
$$\bar{g}(\bar{R}(X, Y)Z, \xi) = g(R(X, Y)Z, \xi)$$

$$= (\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z)$$

$$+ B(Y, Z)\tau(X) - B(X, Z)\tau(Y),$$
(1.16)
$$\bar{g}(\bar{R}(X, Y)Z, N) = g(R(X, Y)Z, N),$$
(1.17)
$$g(R(X, Y)PZ, PW) = g(R^*(X, Y)PZ, PW)$$

$$+ C(X, PZ)B(Y, PW) - C(Y, PZ)B(X, PW),$$
(1.18)
$$g(R(X, Y)PZ, N) = (\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ)$$

$$+ C(X, PZ)\tau(Y) - C(Y, PZ)\tau(X).$$

2. Screen Conformal Hypersurfaces

Definition. A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian manifold (\bar{M}, \bar{g}) is screen conformal [2] if there exist a non-vanishing smooth function φ on a neighborhood \mathcal{U} in M such that $A_N = \varphi A_{\xi}^*$, or equivalently,

(2.1)
$$C(X, PY) = \varphi B(X, Y), \ \forall X, Y \in \Gamma(TM).$$

Note 1. For a screen conformal hypersurface M, since the second fundamental form C is symmetric, S(TM) is integrable distribution. Thus M is locally a product manifold $L \times M^*$ where L is a lightlike curve and M^* is a leaf of S(TM) [4].

274 Dae Ho Jin

Let M be a screen conformal lightlike hypersurface of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$. Then, by (1.15), we have

$$(2.2) \qquad (\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) = B(X, Z)\tau(Y) - B(Y, Z)\tau(X),$$

for all $X, Y, Z \in \Gamma(TM)$. Using this, (1.16), (1.18) and (2.1), we obtain

$$\{X[\varphi]-2\varphi\tau(X)\}B(Y,Z)-\{Y[\varphi]-2\varphi\tau(Y)\}B(X,Z)$$

$$(2.3) = c\{g(Y,Z)\eta(X) - g(X,Z)\eta(Y)\}.$$

Replacing Y by ξ in (2.3), we obtain

$$\{\xi[\varphi] - 2\varphi\tau(\xi)\}B(X,Z) = cg(X,Z).$$

Theorem 2.1. Let (M, g, S(TM)) be a screen conformal lightlike hypersurface of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$. If dim M > 3, then c = 0.

Proof. Assume that $c \neq 0$. Then $\xi[\varphi] - 2\varphi\tau(\xi) \neq 0$ and $B \neq 0$, that is, M is not a totally geodesic. From (2.1) and (2.4), we have

$$(2.5) B(X,Y) = \rho g(X,Y), C(X,PY) = \varphi \rho g(X,PY), \forall X, Y \in \Gamma(TM),$$

where $\rho = c(\xi[\varphi] - 2\varphi\tau(\xi))^{-1} \neq 0$. If $\varphi\rho = 0$, then C = 0 by (2.5). From (2.1), we have B = 0. Therefore, we get $\varphi\rho \neq 0$. Thus M and S(TM) are totally umbilical which are not totally geodesic. Since M is screen conformal, by Note 1, M is locally a product manifold $L \times M^*$ where L is a lightlike curve and M^* is a leaf of S(TM). Since \bar{M} is a space of constant curvature, from (1.14), (1.17) and (2.5), we have

(2.6)
$$R^*(X,Y)Z = (c + 2\varphi \rho^2)\{g(Y,Z)X - g(X,Z)Y\}, \ \forall X, Y, Z \in \Gamma(S(TM)).$$

Let Ric^* be the induced symmetric Ricci tensor of M^* . From (2.6), we have

(2.7)
$$Ric^*(X,Y) = (c + 2\varphi \rho^2)(m-1) g(X,Y), \ \forall X, Y \in \Gamma(S(TM)).$$

Thus M^* is Einstein. Since dim $M^* > 2$, the function $(c + 2\varphi \rho^2)$ is a constant and M^* is a space of constant curvature $(c + 2\varphi \rho^2)$. Differentiating the first equation of (2.5) and using (1.9), (2.2) and the first equation of (2.5), we have

(2.8)
$$\{X[\rho] + \rho \tau(X) - \rho^2 \eta(X)\} g(Y, Z) = \{Y[\rho] + \rho \tau(Y) - \rho^2 \eta(Y)\} g(X, Z).$$

Replacing Y by ξ in this equation, we have $\xi[\rho]=\rho^2-\rho\tau(\xi)$. Since $\varphi\rho^2$ is a constant, we have $0=\xi[\varphi\rho^2]=\rho(c+2\varphi\rho^2)$. Since $(c+2\varphi\rho^2)$ is a constant and $\rho\neq 0$, we have $c+2\varphi\rho^2=0$. Thus M^* is a semi-Euclidean space and the second fundamental form C of M^* satisfies C=0. Thus, from (2.1), we have B=0. It is a contradiction to $B\neq 0$. Consequently, we have c=0.

Corollary 1. There exist no screen conformal lightlike hypersurfaces M of semi-Riemannian space form $(\bar{M}(c), \bar{g})$ with $c \neq 0$ and $\dim M > 3$.

Corollary 2. There exist no screen conformal totally geodesic lightlike hypersurfaces M of semi-Riemannian space form $(\bar{M}(c), \bar{g})$ with $c \neq 0$.

Theorem 2.2. Let (M, g, S(TM)) be a screen conformal lightlike hypersurface of $(\bar{M}(c), \bar{g})$ with dim M > 3 and M^* be a leaf of the screen distribution S(TM). Then the curvature tensors R and R^* of M and M^* respectively, are related by

(2.9)
$$R(X,Y)Z = \frac{1}{2}R^*(PX,PY)PZ, \quad \forall X, Y, Z \in \Gamma(TM).$$

Proof. From (1.16) with c = 0, we have $\bar{g}(R(X, Y)Z, N) = 0$. Thus we see that (2.9) is equivalent to

$$(2.10) \quad g(R(X,Y)Z,PW) = \frac{1}{2} g(R^*(PX,PY)PZ,PW), \ \ ^\forall X, Y, Z, W \in \Gamma(TM).$$

Due to (1.15) with c=0, we have $g(R(X,Y)\xi,Z)=0$. Thus we see that (2.10) is true for $Z=\xi$. Using (1.8), (1.14) and (1.17) with c=0 and (2.1), we derive (2.10).

Theorem 2.3. Let (M, g, S(TM)) be a screen conformal lightlike hypersurface of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$ with $c \neq 0$. Then M is totally umbilical and locally a product manifold $L \times M^*$, where L is a lightlike curve and M^* is a totally umbilical semi-Riemannian 2-surface or a non-lightlike curve.

Proof. Since M is a screen conformal lightlike hypersurface of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$, by Note 1 M is locally a product manifold $L \times M^*$ where L is a lightlike curve and M^* is a leaf of S(TM). Since $c \neq 0$, by Theorem 2.1 we see that dim $M \leq 3$. As $c \neq 0$, by (2.4), we see that $\xi[\varphi] - 2\varphi\tau(\xi) \neq 0$ and $B \neq 0$. Thus, from (2.1) and (2.4), the second fundamental forms B and C of M and M^* respectively satisfy the following equations

$$B(X,Y) = \rho g(X,Y), \ C(X,PY) = \varphi \rho g(X,PY), \ \forall X, Y \in \Gamma(TM),$$

where $\rho = c(\xi[\varphi] - 2\varphi\tau(\xi))^{-1} \neq 0$. Thus M and M^* are totally umbilical which are not totally geodesic. Since dim $M \leq 3$ and the Riemannian curvature tensor R^* of M^* is given by $R^*(X,Y)Z = (c+2\varphi\rho^2)\{g(Y,Z)X - g(X,Z)Y\}$ for all $X,Y,Z \in \Gamma(S(TM))$, the leaf M^* of S(TM) is a proper totally umbilical semi-Riemannian 2-surface of sectional curvature $(c+2\varphi\rho^2)$ or a non-lightlike curve.

REFERENCES

- 1. Akivis, M. A. & Goldberg, V. V.: Lightlike hypersurfaces on manifolds endowed with a conformal structure of Lorentzian signature. *Acta Appli. Math.* **57** (1999), 255-285.
- 2. Atindogbe, C. & Duggal, K. L.: Conformal screen on lightlike hypersurfaces. *International J. of Pure and Applied Math.* 11 (2004), no. 4, 421-442.
- 3. Duggal, K. L.: A report on canonical null curves and screen distributions for lightlike geometry. *Acta Appl Math.* **95** (2007), 135-149.
- 4. Duggal, K. L. & Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Acad. Publishers, Dordrecht, 1996.
- 5. Duggal, K. L. & Jin, D. H.: Null curves and Hypersurfaces of Semi-Riemannian Manifolds. World Scientific, 2007.
- 6. Duggal, K. L. & Jin, D. H.: A classification of Einstein lightlike hypersurfaces of a Lorentzian space form. to appear in J. Geom. Phys.
- 7. Jin, D. H.: Totally umbilical hypersurfaces of Lorentz manifolds. *Korean J. Math. Sciences* 8 (2001), no. 1, 41-55.
- 8. O'Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, 1983.

DEPARTMENT OF MATHEMATICS, DONGGUK UNIVERSITY, GYEONGJU, GYEONGBUK 780-714, KOREA

Email address: jindh@dongguk.ac.kr