J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 16, Number 3 (August 2009), Pages 283-296

ON THE GALOIS GROUP OF ITERATE POLYNOMIALS

Eunmi CHoOr

ABSTRACT. Let f(z) = 2" + a be a binomial polynomial in Z{z] and fm(z) be the
m-th iterate of f(z). In this work we study a necessary condition to be the Galois
group of fr,(x) is isomorphic to a wreath product group [Cn]™ where C, is a cyclic
group of order n.

1. INTRODUCTION

Let f(z) be a polynomial and f,,(z) be the m-th iterate of f(z), such that

filz) = f(z) and fm(z) = fo- o f(z) = f(fm-1(z))-

A study of Galois theory has a long history that usually concerns about the problem
of determining Galois group with single polynomial. During last 2 decades the theory
has been extended investigating the Galois group with composition and iteration of
polynomials (see [1], [2], [4], [6], [7] and [9]). While the Galois group of iterate
polynomial is generally embedded into a wreath product of groups, some research
papers were devoted to investigating necessary conditions to be the Galois group
itself is isomorphic to wreath product. Odoni [7] studied a binomial polynomial
f(z) = 2% +1 to find a standard that the Galois group Gal(f/Q) is isomorphic to
the m-fold wreath product [C2]™ of the cyclic group Cy of order 2. Stoll [9] dealt
with a more general polynomial f(z) = 22 — a € Z[z] where a € Z2, and proved that
Gal(fm/Q) = [Co]™ if a satisfies either (a > 0 and a = 1 (mod 4)), or (a > 0 and
a=2 (mod 4)), or (a <0 and a =0 (mod 4)).

The purpose of this work is to study the Galois group of iterate of fourth degree
binomial polynomial f(z) = z* + a over Q. We will investigate situations to be
Gal(fm/Q(eq)) = [C4]™, and provide criterions for the integer a.
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In this paper, ¢, denotes a primitive k-th root of unity, and Cy the cyclic group
of order k. For any domain D, let D* = D — {0} and D? = {d? | d € D} (p > 0).
When p¢|m and p**! fm, we write p°||m and e = v,(m).

2. INDEPENDENCY IN A FIELD K

Let G and H be permutation groups on nonempty disjoint finite sets A and B
respectively. Let H# be the group of all functions {6 : A — H} with the canonical
multiplication rule. For any g € G and § € HA, define a map on A X B by

[9,6]: AxB— Ax B, (a,b)— (g(a),0(a)(b)) forac A, be B.

Then [g,0] € Sym(A x B), and [g,6]’s form a subgroup G[H]| of Sym(A x B) under
the operation ([g,6](g1,61])(a,b) = (g(g1(a)), 8(g1(a))(¥1(a)(b))). This group is
called the wreath of G by H of order |G| |H|d&!C!,

Proposition 1. Let [C,|™ = [Cp[Cph] --[Cy]---]]] be the m-fold wreath product
of Cp. Then |[Co]™ = a4 244741 4nd the mazimal abelian subgroup
([Cn]m)ab of [Cp)™ is equal to CT.

Proof. When m = 2, |[Ca]?| = |Cp[Cy]| = |Cp] |Cn|™® = n-n™ = n"*1. Suppose that
|[CaJm™!] = nn" 7 #n" T h4n4l Then

lCaI™] = |CalCal™ | = 1Cal [ICaI™ "

m—1 m—24 2 m—1 m=-24 ., 2
=n.p% T +otntin o on +n +onftntl

And ([C]2)2P = (Cu[Ca)2P = 3P x €8P = ¢, x C,. Hence ([Ca™)2P =
Cp x -+ x Cp, follow immediately. d
A relation between the Galois and the wreath product groups is as follows.

Proposition 2. Let K be a field of characteristic 0 and n = p* (p pm’mé). If
f(z) =2™ —a € K(ep)[z] and all fm(z) are irreducible in K(e,) then
(1) Gal (fim+1/K(en)) = [Cn]m+1 if and only if Gal(fim/K(en)) & [Cn]™ and
(Eme1 : Em] =n™" where En, is the splitting field of fum.
(2) If Gal (fm/K(en)) = [Cr]™ then the mazimal Kummer extension of K(e,)
in Ey, is of degree n™.

Proof. (1) is mostly due to (3], [7] and [9]. If Gal(fm/K(en)) = [Cn]™ then
(Gal(fim/K (€0)))2P = ([Co)™)2P = C™ is of order n™. So (2) is obvious.
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In case (1), the order of Galois group can be calculated explicitly that
|Ga1(fm+1/K(6n))| — nnm+nm—1+-.-+n+1 — [Em_+1 . Em] |Gal(fm/K(En))|.

Let di,--- ,d, be elements in K* of characteristic 0, and p be a prime. When
H:zl d;-“ € KP* with a; > 0, if p¥ divides every a; (1 <1 < r) then dy,---,d, are

said to be p“-independent in K (see [5, 4.2.2]).
Proposition 3. Let di, - ,d, € K*. The following are equivalent:

(1) dy,--- ,d, are p“-independent in K.

(2) TIiZ1 df* =0 in K*/(K*)P" implies di* = 0 in K*/(K*)P" for all i.

(3) di, - ,dr are independent by mod (K*)P".

(4) The residue classes of dy,- -+ ,d, in K*/(K*)P" are linearly independent.
(5) [KP"(dy, - ,dr) - K7"] = ("',

(6) KP* C KP*(dy) C--- C KP*(dy,--- ,d,) is a strictly increasing tower.
(7) TIi—1 di* (0 < a; < p*) form a vector basis for KP"(dy,--- ,d,) over KP",

Proof. The equivalence of (1), ..., (5) are obvious.
(5) = (6). Since dﬁ?" € KP', [KP"(dy, -+ ,djt1) : KP"(d1,- -~ ,d;)] < p¥. If (6) is
not strictly increasing then K?"(dy,- - ,d;+1) = K?"(d1,- -+ ,d;) for some j would

yield [KP"(dy, - ,d,) : KP*] < (p%)".
(6) = (7). Since KP* C KP“(d;) is strictly increasing, di ¢ KP* so XP* —

d1 = 0 is not solvable in KP*. Thus 1,d;,d?,---,d® ' is a basis for K?"(d;)
over KP“. Tt is not hard to see that each tower step KP* C KP“(d;) € --- C
KP*(d1,--- ,d.) has basis {1,di, - ,d’l’u_l}, o, {1,dp,---,dE 1}, respectively.
Thus the set {d{*---d% | 0 < a; <p* ! 1 <j<r}of all product elements from
each basis forms a KP"“-vector space basis for KP*(dy, - - - ,d,) over KP".

(7) = (5). There are (p“)" monomial elements []]_; d¥* (0 < a; < p*) in
KP"(dy,- - ,d,), thus the KP"-vector space basis is of (p*)"-elements. O

The p-independence can be generalized to any n-independence that, dy,--- ,d, €
K* are n-independent in K if []]_, di* € K™ implies n| a; for all i =1,--- ,r.

Proposition 4. Let n = pi* .- p.* and &, € K. The following are equivalent.
(1) di,--- ,d, are n-independent in K.
(2) dq,--- ,d, are p?"-independent inK forallj=1,--- k.
(8) dy,--- ,dyr are pj-independent in K for allj=1,--- k.

Proof. For (1) & (2), write n = p}”n} such that ged(pj,nj) = 1for 1 <j < k. We
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) uj
assume [[;_, di* € K®5". Then

T "_’1 uj
(H d‘f) € K% " = K"
i=1

and it thus follows from (1) that n| a,m;., ie., p;fjl a;foralll <i<r sody, - ,d,are
p;-‘j -independent for j = 1,--- ,k. On the other hand, suppose that []_, d;* € K"
Then there is 6 € K such that

r . .

[[de =0 = (%)% e K% for1<j<k.

i=1
From (2) we have p;‘j la; for 1 € i < r, 1 <j <k, thus by employing the fact (if
zla, yla and ged(z,y) = 1 then zyla), it follows pi? - - pp* |as, i.e., n| a; for all 4.

For (2) < (3), if [[7_; d% € KP then [[[_,(di)*?" " e (KPi)pi"" ™" = kPl If

dy,--- ,d, are p;“i-independent then p;"/ divides every aipj“i‘l, i.e., pj] a; for all 4.
Conversely suppose that [];_; & € K Pi" . Since KPi° C KP, [Ti=; di* belongs to
KP?i, thus due to assumption we have pj;la;, i.e. a; = p; A1; for some Xy ; € Z and

for all 1 <¢ < r. Hence we may write

T Pj r \ w -
(Hd? ) = [T d™ = m™ = g7y
=1 i=1

i € K, we can have a 1-step reduced form that

for some 6 € K. Since &p

-1

r

M _ pgps%iT? psi
[l =67 € ks
i=1

. w1 . r Al
Again since KPi C K75, we have []I_, d;

for \p; € Z, 1 <i<r. Thus

T p; T A L )

Az,i - Pir2i __ ap;“iT T4\ ps
E =[] a7 = 07" = (97" ypi,
FES] f==]1 .

so it follows the 2-step reduced form that

€ KPi, so PjI/\l,i; ie A= Pj Ag,i

T
[I&% = 07" e k7" c K.
F=1

Hence the pj-independence of dy, - -- ,d, implies that p;|Ag;, i.e. A2; = p; A3; for
Azi € Z, 1 €1 < r. Continuing this process until we get

T
Anim1,i . .
[Id:; ™" =67 e k75,

i=1
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so the p;-independence yields pj|/\uj_17i, Le. Ay—14=pj Ay for Ay, i €Z, 1 <0 <

r. We therefore conclude that p;“ divides every a;, because

a; =pj- A= pj2 A= =pi - Ay for all 4

3. ITERATIONS OF POLYNOMIALS
For a binomial polynomial f(z) = z™ + a € Z[z], let
b1 = f(0) and by = f(bm-1) forallm > 1
and, by means of Mébius function u we let

Cm = Hbs(m/d) for all m > 0.
dim

Since by = f(O)’ by = f(bl) = f(f(o)) = fZ(O) and by, = f(bm) = f2(bm—2) ==
fm-1(b1) = fm(0) for all m, i.e., by, is the constant term of f,(z).

In next proposition, we develop an explicit formula of c,, for next use.

Proposition 5. If m = q'fl e qft (k; > 1) is a prime factorization then

(bm) (Hil,iz bm/qil qiz)(Hil,ig,i_g,u bm/fhl Qi2Qi3Qi4) e

Cm:

where each product runs over all different 1 < i; < t that gi; 1s a prime factor
of m. Moreover the number of product terms in nominator of c,, equals that in
denominator, which is equal to (3i_,:C;)/2 where ;C; = t!/i\(t — i)

Proof. Recall that u(n) = 0 if n has a square divisor. And u(n) =1 (or, —1) if n is

square free with even (or, odd) number of prime divisors.
. — k _ by, bk
(i)Ifm=4q° (k>1) then c,, = b = —”—bqk_l.

(ii) When m = qlflq;”, there are (k; 4+ 1)(k2 + 1) divisors of m, so

k1—i ky—j
em = [O4™D =TT6"% 2 ) for 0<i<hy, 0<j<ks
il L5
dim 2y}
If either ky — 4 > 2 or kg — 7 > 2 then ,u(qfl_iqu_j) = 0. Hence there are only 4
cases to be considered with nontrivial Mobius value :
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(ki —i,ka—7) | (0,0) (1,0) (0,1) (1,1)
(4,7) (k1,k) | (k1 —1,kg) | (k1, k2 —1) [ (k1 —1,kg — 1)
Thus
bqquk2 b kl 1qk2 1 b, - bm/q1q2
C'rn 1 42 —

(i) When m =

k2 k
_ ql q22q33

_bk—lk bk kg1 b -b '
1-1gky " Ok gk m/q1 " Ym/qs

k]lkzjkgt)

having nontrivial Mobius value p(gy" "g5° g3

(ki > 1), in the form of ¢, there are 8 possible (3, j,t)’s

, . . plar gy gy
(k1 — 1, k2 — j, k3 — 1) (5,5,t) QI(Q;q'i Y
(0,0,0) (k1, ko, k3) b
(1,0,0) (ky — 1, kg, k3) br/as
©0.1,0) (k1 k2 — 1, k3) brn/gn
(0,0,1) (k1, k2, k3 — 1) b;z}qs
(1,1,0) (k1—1,ky — 1,k3) bm/qiqs
(1,0,1) (k1 —1,kg, k3 — 1) bm/qgs
(0,1,1) (k1,ko — 1,k3 — 1) ™/q2q3
(1,1,1) (k1 —1,ka —1,k3 — 1) 7-71/'11(12113
Thus
- bm, - bm/qlqz ' bm/ths ) bm/flzqs '
bm/ql : bm/qz : bm/qs : an/quIz%
(iv) In general if m = ¢® ... ¢®, there are (ky 4+ 1)--- (ke + 1) divisors d of m,

and the number 1 of d’s having u(d) #0is 1 = Y'_, +Cs due to the next table:

k1—i1 kg—ip T ki—it
(k1 —41,--+ , k¢ — ig) | #of the type “,Sf kg lqzt %t
91 9" 9
(0,0,---,0) +Co bm
0,---,1,---,0) 1 b;/q]
(1) 1) 07 e :O) tC2 bm/q1q2
=1
(1a171)0)"' ’0) tC3 m/q1492q3
ES)
(]., ]_"-- ,1) tCt m/q1q2'“lIt

Clearly [ is always even, since | = 2 Z (t-1)/2 +Cs if t is odd while | = 2 Zgg)—l +Cs +
tCyyo if t is even. Moreover the number of d such that u(d) = 1 is exactly half of

l. Thus in the expression of ¢,,, there are same numbers of b;’s in denominator and
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numerator, such as

(bm) (bm/qmz bm/«nqs bm/qz_m) T

Cm =
(bm/q1 bm/qz e 'bm/qt) (bm/q1q2q3 o 'bm/q:«zqt—mt) T

_ (bm) (Hi1,i2 bm/‘lil Qiz)(Hil,iz,ig,i4 bm/qil qz'2Qi3qi4) T
(Hil bm/qil) (Hil,iz,ig bm/qilqizqia)(Hil,iz,ig,i4,i5 bm/Qi1QiQQi3Qi4Qi5) e

where ¢;; (1 < i; < t) is a prime factor of m, and the last term in numerator and
denominator depends on whether ¢ is even or odd. O

Proposition 6. Let f(z) =z"+a (a #0). Then every by divides by; for all j > 0.
Moreover for a prime p such that p||by and n > 1,

(1) if klm then p&||by,.

(2) the converse of (1) holds if k is the smallest to be p | by.

(3) every cm is a pairwise coprime integer.
Proof. By induction on j, we will show b1]b;. by = f2(0) = f(a) = a™ +a is
divisible by a = b;. Assume b, divides b;, say b; = b10 for some 6 € Z. Then
bjr1 = f(b;) = (b;)" +a = (b16)" + by is a multiple of b;.

Moreover by divides by; for all j > 0 because (by mod by)

bij = fri(0) = frj-1)fx(0) = fi(j—1)(bk) = fr(i-1)(0)

= fr(j-2)fk(0) = fegi—2)(bk) = -+ = fi(be) = fi(0) = b = 0.
(1) Let m = dk (d € Z). Then p®||bx implies p|b,, and by mod p® we have
bm = fa-1)£fx(0) = fra—1)k(br) = fla—1yx(0) = - - = fx(0) = b =0,

50 p®lbm. If we let by = p°b) with ged(p, b)) = 1 then b7 = p®*(b})". Since n > 1,
en>e+1and b} =0 (mod p°*!). Thus by modulo p°*? we have
bm = fla-1)k-1k+1(0) = fa—1)k-1f(bx) = fra—1)r-1(bg +a)
= fla-1k-1(a) = fa—1k-1(01) = fa—1)x(0) = - -- = fi(0) = bs.
Hence p¢*! fb,,, so p®||bp. _
(2) Let m = dk + r with 0 < r < k. Since b, = by, = 0 (mod p®), we have
0= bm = fr (far(0)) = fr (Fa-1)6(f%(0))) = fr (fa—1)k (b))
= fr (fa-0r(0)) = -+ = fr (f1(0)) = fr(bx) = fr(0) = b, (mod p°),

so p |br. But since k is the smallest to be p |bg, we have r = 0 so m = kd.
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(3) Let m = qf‘ = -qtk‘. If p is a prime divisor of denominator of c¢,,, we may
assume pellbm/(h‘l"'q:‘j (Proposition 5). Since there are 2/ multiples of m/g;, - - - gi; in
¢m having the same vy (b,, /iy s, ), and exactly half of them are placed in numerator

7
and the others are in denominator, v,(c,) = 0 so any prime divisor of denominator
is canceled out in ¢,,. Moreover if p divides some b, then p divides only one of ¢,

thus all ¢, are pairwise coprime integers. (see [7] and [9] for deg f(z) = 2.) O

4. GALOIS GROUP FOR ITERATION POLYNOMIALS

We will discuss the important role of by, and ¢, in determining the Galois group.

Proposition 7. Let f(z) = 2" + a € Z[z] with n = p' (p a prime). Let f(z) be
irreducible in Q, and E,, be the splitting field of fr, for all m. Then
(1) [Em+1: Em] =n"" if and only if bmy1 & (Em)?
(2) Let Gal(fm/Q(en)) = [Crn]™ and by, - -+ , by be n-independent in Q(e,). For
b€ Q(en), if b1, -+ ,bm,b are n-independent then b & (E,)P.

Proof. We remark that E, C E, is an n-Kummer extension such that [Ep 41 :
En] < n™". The Proposition was proved in [3] if n = p (p odd prime), and in [7] (and
[9]) if n = 2 and t = 1. Similar to [7], we can prove this when n = 22, then it can be
generalized to n = 2¢ (¢ > 1). In fact, if f(z) = 2* + a then f,,(z) is of degree 4™. If

Bm,1,* " s Pmam are all roots of f,(z) in Ep, then fr,(z) = H?:l(x_ﬂm,j) € Enlz],
and
4m
bmt1 = fnt1(0) = fm(£(0)) = fm(a) = [ (a = Bm.s).
j=1

Suppose that by € (Em)?. In order to show [Emy1 @ Em] = 4*", we will prove
that all a — Bm1, @ ~ Bm2, -, a — B 4m are 4-independent in E,,, i.e., they are
2-independent, due to Proposition 3 and 4.

Assume that H;:l(a = Bm,j)% € (Ep)?. Let

4m
V= {(dl,.-. ydam) € Zy x - x Zy | [J(a~Bmj)¥ € (Em)2}.
j=1
Let 0 € G = Gal(fm/Q(eq)) be any element. Then 0(Bm;) = Bm; let Brm,o(i)
for 1 < 4,5 = 0(i) < 4™, and by defining o - (dy,--- ,dym) = (doqr)s -+ doam)),
V is a Z3[Gm]-module. If V' # 0 then it can be seen V¢™ # 0. Hence there is
0# (di, - ,dsm) € VOm satisfying H?:l(a — Bmj)% € (Em)?, and
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(d1,~ .- ,d4m) =0- (d1,~-- ,d4m) = (da(l):' o ,da(4m)) for all 0 € Gpp.

Since o permutes d; to do(;) = d;, we must have d; = d; for all 4,j. Furthermore
since not every d; are zero, d; = d; = 1 for all ¢, j. Hence H;’-:l(a — Bm,j) € (En)?,
ie., bm+1 € (Em)? a contradiction. Therefore it should be V = 0, so every d; = 0 in
Z3, i.e., d; is a multiple of 2.

On the other hand, if by, 41 € (Ep)? then it is clear that [Epy1 : Em] < 447,

(2) By Proposition 2, the maximal Kummer n-extension F in E,, over Q(g,) is
of degree n™. We claim F = Q(&,)(¥/b1, -, ¥bm). In fact if S is the set of all
roots of fy_1 in Ex_; then fy_1(z) = [[,cg(z —s) and by = fr_1(f(0)) = fr_1(a) =
[I,es{a —s). Since any root v of fi belongs to Ej and

0 = fx(v) = fxk-1(f(v)) = fem1(v" + a),

we have v" +a € S. Thus for any s € S, a — s = —v", 50 b = [[,cg(a—s) € (Ex)"
for all 1 < k < m. Hence by, - by € (Ep)", ie., Vb1, -+, ¥bm € E,. Now
from Q(en) C Q(en)(¥b1,- -, ¥bm) C En, since by, , by, are n-independent in
Q(en), the abelian extension Q(e,)(¥/b1, -, ¥/bm) is of degree n™ over Q(e,,), so
Q(en)(¥/b1, -, ¥/by) is the Kummer n-extension F in E,,. Thus if b € (E,,)P then
Ybe Eny, Ube F,s0b,by,--- b, are n-dependent. O

Proposition 8. Let f(z) = 2" +a (n = 2!, a # 0,—1) be irreducible over integer
ring. Then every b,, is positive for all m > 1. When a > 0, ¢, > 0 for every m.

When a < 0, every ¢, is positive if and only if m is not a square free integer.

Proof. Clearly b1 = a, by = a(a™ ! +1), and b3 = a(a™ }(a”"* +1)" + 1), etc. Thus
if @ > 0 then b,, and ¢, are positive.

Suppose that a < 0. Then b; < 0, but by = a(a® ! +1) > 0 for a® 1 +1 < 0.
Furthermore since a®}(a" ™! + 1)" + 1 < ™! 4+ 1 < 0, we have

by =a(@" @ 1 +1)"+1) > al@™ ' +1) >0,

thus b3 > by > 0. Hence we can have b,, > 0 for all m > 1.

Let m = q’fl . ..qft, If m is square free then b; = bm/ H§=1‘41 appears in the
formula of ¢, in Proposition 5. Thus ¢, < 0 because by is the only negative among
all b;’s. But if m is not square free then at least one of k; is larger than 1. Since by

is not equal to any of b,, /Tlg; it does not show up in ¢, so ¢, > 0. O

Proposition 9. The n-independence of by, -+ , by and c1,- -+ , ¢y, are equivalent.
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k
Proof. Let [Tix, 67" € Q™ (z; € Z). Since ¢x = Hdlk b“(d), be = 14 ca so

i=1"%4
T
ot (e1c2)™ (crca)™ (crcaca)™ -+ ([ | ca)™
dim
i<m 2i<m 3i<m mism
=) 4 T T 3 X34 i1 Tmi
= clzt_l 10221_1 2tc§:1_1 31 .. c’rzn:l‘l mi e Qn

If k is the largest integer < % and u > k + 1 then ui < m implies i = 1, so

i< ki<
czl HES .. czi;Tm Thi | GFh+l | Imoo Q"
1 k k+1 :

But since c1, -, ¢ are n-independent, it is clear that n|Tgy1,- -+ ,n|Trm. Further-
more csz;slm T — Coi+zy. and m|Tp + xox imply n|zy. Continuing this we can
conclude that n divides xt, - - ,z3, too. Thus by, - , by, are n-independent.

Now suppose that m is the minimal to be ¢, - ,cn are n-dependent. Let
M2, =60"ec Q" for € Q (y; € Z). If n|yy, then ' - ¥} = (W) c Q.
Due to the minimality of m, ¢, ,cm—1 are n-independent, so n|yy, -+ ,n|ym-1.
Then together with n|ynm,, it would yield ¢, - , ¢y, are n-independent. So we must

have n fym,. Moreover owing to form of ¢;’s in Proposition 5, we have

on —byl(b2)y2 b3 ys H bﬂ( T ) Ym—1 Hbu( )ym_bulh_ pim=i . pym

by
dm-—1 dim
foruy, - ,um—1 € Z. Since by, - - , by, are n-independent, we have n|ug, -, n|um_1
and n|ym, a contradiction. Therefore cy,- - - , ¢,y are n-independent. O

Proposition 10. Let f(z) = 2" + a € Z[z| (a > 0, n = 2!) be irreducible. If none
of c1,--+ ,em are in Q" then Gal(fm/Q(en)) = [Ca]™.

Proof. The irreducibility of f(z) implies that all f,,,(z) are irreducible since the unit
elements in Z are only %1 ([4, Corollary 4]). Due to Proposition 6 and 8, every ¢; > 0
and ged(c;, ¢j) = 1 for all ¢, j. Thus the nonzero residue classes of ¢; in Q/(Q*)" are
linearly independent and ci,--- , ¢, are n(= 2t)-independent in Q by Proposition
3. Owing to Proposition 9, we will show that the n—indépendence b1, by in Q
implies Gal(fm/Q(er)) = [Cr]™ by induction on m.

Clearly Gal(f/Q(en)) = Cn because z" + a is irreducible over Q(g,). Assume
that Gal(fm/Q(en)) = [Cp]™ if by, -+ , by, are n-independent. Now let by, - - - , byt
be n-independent. Then by,- -, by, are n-independent, so Gal(fm/Q(en)) = [Cp]™
due to the hypothesis. Hence bnt1 & (Em)?, 50 [Emt1 : Em] = n™" by Proposition

7 (2) and (1). Thus together Gal(fm/Q(en)) & [Cu]™ with [Emy1 : Em] = 0"
yields Gal(fm+1/Q(g,)) & [Cr]J™*! by Proposition 2. O
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We let
9(@) =’z +1, f1=g(0) and B = g(Bnr) forall m>1
and, with the Mobius map g, let

Y = Hﬂg(m/d) for all m > 0.
dlm

Proposition 11. Let f(z) = #* 4 a (a # 0,—1) be irreducible, and g(x) = a3z* + 1.
Then By, is a constant term of gm(z), whose sign is equal to that of a for m > 1.

Moreover by, = afBy, for m > 1, and ¢y = Y for m > 1.

Proof. Obviously Bm = g(Bm-1) = gm/(0) the constant term of g, (x). Moreover since

Bi=g(0)=1, B2 =g(B1) =a®+1and B3 = g3(0) = g(a® + 1) = a®(a® + 1)* + 1, if

a >0 then 3, >0 for all m > 1, and if a < 0 then G,, < 0 for all m > 1.
Furthermore since b) = a = af; and by = a(a® + 1) = afa, it is clear that

by = f(bm—l) = (aﬁm-1)4 +a= a(asﬂfn_l + 1) = ag(ﬁm—l) =afm

for all m > 1. Therefore, for any m > 1

em = [ (@B = [[ D T 8% = aSam D T] 9% = 3,

djm dlm dlm dlm
because ), #(d) = 0 for all k > 1. We note that ¢; = a while y; = 1. [J

Proposition 12. Let f(z) = z 4 a, g(z) = a3z* + 1, and Bm, vm be as before.
Let m = m'vy, (M’ the square free part of m), and My = Bu,, + Bon+1- Then
Ym = =1 (mod My), Bu,.+1 =1 (mod B,,) and gcd(By,,, Mm) = 1.

Proof. Let m = g™ ...¢f m' = ¢;---¢ and v, = m/m/. Since g(z) is an even
function, so are every g, (z), thus by mod Mp,,

ﬂvm—}-l = g(ﬂvm) = g(_ﬂvm+1) = g(ﬁum+1) = ﬁvm+2 = ﬁvm+3 == ﬁvay
thus Bay,, = Bu,+1 = —Bu,, (mod M,,). Moreover, since
B3vm = Gom (ﬂ2vm) = gvm(_,gvm) = Gum (,va) = Bovm (IhOd M),

it follows that B4y, = Bav,, = —fu,, for all d > 1. Hence by mod Mp,,

i = [](B)# ) = [T (Bawn %)

dim dim/!
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= Bun™ T Baom)™ % = (B ] (=B %)

1<dim/ 1<dlm’
= (~)(=Bon )™ T (=B )" = (=1) [] (=80, )P
1<dm/ djm’

= (= 1)(— ) o W) = 1,

S0 Cm = Ym = —1 (mod My,) for all m > 1. It is also clear that By, +1 = 9(Bu,,) =
9(0) =1 (mOd By, ) thus

ng(ﬂ'Um? Mm) = ng(ﬂvmaﬂvm +ﬁvm+1) = ng(,vaaﬂvm+l) = ng(/gUm) 1) =1.

0

Now we are able to compute the Galois group of fr(z) over Q(e4).

Theorem 13. Let f(z) = 2! + a (0 < a integer) be an irreducible polynomial over
Q. Ifa# %1 (mod 8) then Gal(fm/Q(es)) is isomorphic to [Cq]™ for all m.

Proof. Due to Proposition 10, it is enough to show that ¢;,--- , ¢, & Q*. Consider
g(z) = a3z + 1, B = g(0), Bm = 9(Bm-1), and v = Hd,m Bs(m/d). Let m = m/vn,
(m' the square free part of m) and M,, = B, + B, +1-

Suppose that some ¢; (1 < t < m) belong to Q* Then the equation X* =
c: is solvable over Z. Since ¢; and 3; are positive integers, and ¢; = v = —1 (mod M)
(t > 1) by Proposition 6, 11 and 12,

X*=-1 (mod M;) is solvable over Z fort > 1,
that is,
X*= -1 (mod p°) is solvable for every p°||M;, (p:prime,t > 1).

(i) We first consider the case a = +2 (mod 8), i.e., f(z) = z* £ 2 (mod 8) and
g(z) = +£82* + 1 = 1 (mod 8). Then every 8; = v = 1 (mod 8) for all 4, and
M; = By, + Bu,+1 = 2 (mod 8). Since My = 2(4k+1) (k € Z) and 4k + 1 is odd, we
have 2||M;. However due to (*): X* = —1 (mod p) is solvable if and only if p = 1
(mod 8) (refer [8, p.100]), X* = —1 (mod 2) is not solvable. This yields a contra-
diction to ¢, € Q for 1 < £t < m.

In particular if ¢; = £2 (mod 8) belongs to Q* then +2 + 8k = u* for some
k,u € Z. Since u is even, say u = 2v (v € Z), we have +2 + 8k = 161, ie,
+1 = 4(2v* — k), a contradiction. So every ¢; (1 < t < m) does not belong to Q4.
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(ii) If @ = 3 (mod 8) then b; = 3, by = 4, and b; = 3 or 4 (mod 8) depending

on t is odd or even. Also ¢; = 3, ¢3 = % = 4.3 = 4, and we can show that ¢; = 1
b

(mod 8) for t > 2. In fact if t = ¢* > 2 then ¢, = b—"f— is either g— or %, socg =1

-

(mod 8). When t = qf‘qé”, if g1,q2 > 2 then ¢ =
When ¢ =2, ¢4 = 3% =1if ky = 1, while ¢; = 44 =1 if k; > 1. Similarly when
t = q{ﬂ . ..qfs with all k; > 1, if every ¢; > 2 then ¢; = %-% = 1. If ¢ = 2, there

% = 1 due to Proposition 5.

are the same number of b;’s in denominator and numerator which are even (or odd),
hence ¢; =1 (mod 8). (See the Table below.)

Now f1 =1, =4,83=3-4"+1=1 (mod 8). And 3 is either 1 or 4 (mod 8)
alternatively, because b; = af; (¢ > 1) in Proposition 11. Furthermore y; = 1,
72 =4, and ¢ =1 for all £ > 2. Therefore M; = (3,, + By,+1 = 5 (mod 8), which
shows that X* = —1 (mod M;) is not solvable for ¢ > 1 by (*), a contradiction.

In particular if ¢; = 3 (mod 8) € Q* then 3 + 8k = u? for some k,u € Z. Since
w is odd (say, u = 2v+ 1, v € Z), 3 + 8k = 160v* + 3203 + 240 4 8v + 1 yields a
contradiction 8|2. Hence every ¢; (1 < ¢t < m) does not belong to Q*.

(ii) If @ = 5 (mod 8) then b; = 5, by = 6 (mod 8), and b; is either 5 or 6
(mod 8) whether ¢ is odd or even. And ¢; =5, ¢ = % =6-5=6 (mod 8), and it
is easy tosee c; = 1 for all ¢ > 2. Moreover 81 =1, B =6, S35 =5-362+1=1
(mod 8). And f; is either 1 or 6 (mod 8) alternatively. Hence 41 = 1, 42 = 6, and
¥ =1 for all t > 2. Since M; = B, + Bu,+1 = 7 (mod 8), this shows that the
equation X? = —1 (mod M;) is not solvable by (*). Hence c; ¢ Q% for t > 1.

In particular if ¢; = 5 (mod 8) € Q* then 5+ 8k = u* for some k,u € Z. So
uis odd (say u = 2v+1, v € Z), 5 + 8k = 16v* 4 320% + 240 + 8v + 1 yields a
contradiction 8/4. Thus every ¢; (1 <t < m) does not belong to Q*.

| t Ja=3 (mod8)] a=5 I a=4 |
mvtllbtlctlﬁtI’Yt Hbtlctlﬂtl%“btlct|5t|7t—’

1131311551144 ]1]1
2114|444 |6|6|6[6(4|1]1]1
313111511141 ]1]1
412 4|1 |4|1]6|1|6]|1]4[1]1]1
sl 3j1i1 15711141 (1f]1

(iv) Finally if a = 4 (mod 8) then by = 4 forallt > 1 and ¢; = 4, ¢; = 1 for all
t>1. And Bt =+ =1 (mod 8), so M; =2 (mod 8). Hence the equation X4 = —1
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(mod M) is not solvable, thus ¢; Q% for t > 1. If ¢; = 4 (mod 8) € Q* then
4+ 8k = u? for k,u € Z. Since u is even (say u = 2v, v € Z), 1 + 2k = 4v? yields a
contradiction. Hence every ¢; (1 <t < m) does not belong to Q*.

Therefore we conclude that in cases of a = £2,+3,4 (mod 8), every c; does not
belong to Q*. Thus Gal(f,/Q(e4)) = [Co]™. a

Remark. We consider the cases that ¢ = 1 (mod 8). If a = 1 (mod 8) then
fx)=z*+1=g(x),by =01 =1, by =y =2, 50 b, = 3, is either 1 or 2 (mod 8)
alternatively. And c; =1 (mod 8). If 1 + 8k = u* = (2v + 1)* for some u,v € Q
then k = 2v* +4v3 4+ 3v2 +v. Hence, for instance if v = 0,1 0r 2 then k£ = 0,10 or 78,
so c1 = 1,81 or 625 are contained in Q*. If a = —1 (mod 8), f(z) = z* -1 (mod 8)
yields b; = —1 or 0 (mod 8) according to i odd or even, furthermore ¢; = —1 and
ci =0 (even i) or 1 (mod 8) (odd i > 1). Hence every ¢; (i > 1) belong to Q*.
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