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GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE
FUNCTIONAL EQUATIONS

HARK-MAHN KiM? AND EUNYONUG SON Pt

ABSTRACT. In this paper, we obtain the general solution and the generalized Hyers-
Ulam stability theorem for an additive functional equation

af(e+v)+21 (5 +v) +27 (24 §) = @+ 3)/(@) + /@)

for any fixed integer a.

1. INTRODUCTION

In 1940, S. M. Ulam [11] gave a wide ranging talk before the Mathematics Club of
the University of Wisconsin in which he discussed a number of unsolved problems.
Among these was the following question concerning the stability of homomorphisms:

We are given a group G1 and a metric group Go with metric p(-,-). Given € > 0,
does there exist a § > 0 such that if f : G1 — Gq satisfies p(f(zy), f(z)f(y)) < §
for all z,y € G1, then a homomorphism h : G, — Gq exists with p(f(z), h(z)) < €
forallz € G1?

One of the most famous functional equations is the additive functional equation

which has the following form

flz+y) = flz)+ fw)

It is open called the additive Cauchy functional equation in honor of A.L. Cauchy
(1]. The theory of the additive functional equation is frequently applied to the
development of theories of other functional equations. Moreover, the properties of

the additive equation are powerful tools in almost every field of natural and social
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sciences. Every solution of the additive functional equation is called an additive
function.

In 1941, D. H. Hyers [4] considered the case of approximately additive mappings
f: Ey — E;, where F; and Ej are Banach spaces and f satisfies Hyers inequality

If(@+y) - flz) - fFl <€

for all z,y € E;. It was shown that the limit L(z) = lim, %:i) exists for all
z € E; and that L : E) — E» is the unique additive mapping satisfying

1/ (z) ~ L{z)|l < e
In 1978, Th. M. Rassias [8] addressed the Hyers’ stability theorem and attempted
to weaken the condition for the bound of the norm of Cauchy difference f(z + y) —
f(z) — f(y) and proved a considerably generalized result of Hyers. The stability
theorem for the case p > 1 was proved by Z. Gajda [2]. Let E; be a normed space,
E, a Banach space. Suppose that a mapping f : E; — E5 satisfies the inequality

If(z +y) = f() = F)I < e(ll=ll” + llylP)

forall z,y € By (z,y € E1\{0} if p < 0), where € > 0 and p # 1 are constants. Then
the limit T{z) = limy oo [2r2) exists for each ¢ € F) and that T : E; — E» is the

271
unique additive mapping satisfying
2
- 4
1£(@) =~ T < G=gpelol

for all z € E; (z € E1\{0} if p < 0). Moreover, if the mapping ¢ — f(tz) is
continuous in ¢ € R for each fixed ¢ € F1, then T(tz) = tT(z) for all t € R.

It was shown by Z. Gajda [2], as well as by Th. M. Rassias and P. Semrl [10] that
one cannot prove a Th. M. Rassias’ type theorem when p = 1.

Th. M. Rassias (8] provided a lot of influence in the development of a general-
ization of the Hyers-Ulam stability concept. This concept is known as generalized
Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations [5].

Thereafter, P. Gavruta (3] generalized the stability result of Th. M. Rassias [8].
Let G be an abelian group, E a Banach space and let ¢ : G x G — [0,00) be a
mapping such that

¢(z,y) =Y 2 p(2kz, 2%y) < 00
k=0
for all z,y € G. If a mapping f : G — F satisfies
If{z +y) = flz) = fFI < olz,y)
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for all z,y € G, then there exists a unique additive mapping T : G — E satisfying

1£@) - T@) < 56(z,2)
for all z € G.

During the last three decades a number of papers and research monographs have
been published on various generalizations and applications of the generalized Hyers-
Ulam stability to a number of functional equations and mappings.

Recently, the paper of J. M. Rassias and H.-M. Kim [7] generalizes results ob-
tained for Cauchy-Jensen type mappings and establishes new theorems about the
Ulam stability of general Cauchy-Jensen additive mappings.

In this paper, we consider the following generalized functional equation

e af @ +y) +2f (5 +y) +2f (2 + 2) = @+ 3)f(@) + FW),
where a is any fixed integer.

In addition, we will establish the general solution of equation (1) and the gener-
alized Hyers-Ulam stability of the above equation (1).

2. GENERAL SOLUTION OF EQUATION (1)

Now, we introduce the following lemma due to A. Najati [6].

Lemma 2.1. Let X and Y be linear spaces. A mapping f : X — Y satisfies the
equation

1+ x9 1+ 23 Z2 + 23
i ) +“’3)+f( 2 +a2) +f(T+x1)
=2[f(z1) + f(z2) + f(z3)]
for all x1,z2,x3 € X if and only if f is Cauchy additive .

It is noted that the following equation with z3 = 0 in Lemma 2.1

%f(ml +z2) + f(% + wz) + f(xl + %2') = 2[f(z1) + f(z2)],
which is a special case of the equation (1), is equivalent to f(z +y) = f(z) + f(y)
for all z,y € X.
We will use the following lemma in the proof of the main theorem in Section 3.
First of all, we give the general solution of (1).
Lemma 2.2. Let X andY be vector spaces. For any fized integer a # —2, a mapping

f: X =Y satisfies the equation (1) for all z,y € X if and only if f : X —» Y is
additive.
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Proof. Assume that f satisfies (1) for any integer a # —2. Putting z =y = 0 in (1)
yields
(a+2)f(0)=0
and we get f(0) =0.
If we put y := 0 in (1), we have

(2) 2/(3) = f@)
for all z € X. Replacing = by 2z in (2) yields
(3) 2f(x) = f(2z)

for all z € X. Substituting —z for y in (1) and using (3) yields
(a+2)[f(z) + f(—=2)] =0
and so we have
f(=z) = - f(z)
for all z € X.
Applying (3) to the equation (1), we obtain
(4) af(x+y)+ f(z+2y) + f2x +y) = (a+3)[f(z) + f(¥)]

for all ,y € X. Replacing z,y by = + y,—y in (4) and using the oddness of f, one
gets that

(5) af (@) + flz —y) + f(2z +y) = (a +3)[f(z + y) — f(y)]
for all z,y € X. Letting z, y by y, z in (5), respectively, we have
(6) af(y) — flz—y) + f(z+2y) = (a + 3)[f(z +y) — f()]

for all z,y € X. Adding (5) to (6), we arrive at
(7 fz+y)+ f(z +2y) =2(a+3)f(z +y) — (2a + 3)[f(z) + f(y)]
for all z,y € X. From (4) and (7) it follows that
(Ba+6)f(z+y) = (3a+6)[f(z) + f(y)]
for all z,y € X. Since for any integer a # —2, one has
flz+y)=fz)+ f(y)

for all z,y € X. So the mapping f is additive.
Conversely, if f is additive, then it is obvious that f satisfies the equation (1). O
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Now, we are going to establish the solution of (1) in the case a = —2.
Lemma 2.3. Let X and Y be vector spaces. A mapping f : X — Y satisfies
(8) ~2f(z+y) +2/(5 +y) +2/ (s + ) = f@) + fW)
forall z,y € X if and only if there exists an additive mapping A: X — Y such that
f(z)y = A(z) + f(0) for allz € X.
Proof. Assume that f satisfies (8) and let A(z) := f(z)— f(0). Then we get A(0) =0

and
9) “2A(z + y) +2A<g +y) +24(z + %) = Az) + Aly)
for all z,y € X.

By the similar way to the proof of Lemma 2.2, we see that the mapping A is
additive. Hence f(z) = A(z) + f(0) for all z € X.

Conversely, it is obvious that if there exists an additive mapping A : X — Y such
that f(z) = A(z) + f(0) for all z € X, then f satisfies the equation (8). O

3. GENERALIZED HYERS-ULAM STABILITY OF EQUATION (1)
Throughout this section X and Y will be a vector space and a Banach space,
respectively, unless we give any specific reference. Given f: X — Y, we set

z
Diale,y) = af (@ +3) +2f (5 +y) + 2/ (s + 1) - (a+ 3/ (@) + F(3)]
for all ¢,y € X and for any fixed integer a.
Let ¢ : X x X — [0,00) be a mapping satisfying one of the conditions

= 1

(I)(iL',y) = Z 2_(p(2kw72ky) < oo, (CL)
k=0
> T

U(e,y) = 3 2p(557) < oo, (b)
k=0

forall z,y € X.
Theorem 3.1. Let f : X = Y be a function such that

(10) IDfa(z, y)l < o(z,y)

for all z,y € X. If p satisfies the condition (a), then there eTists a unique additive
mapping T : X — Y such that T satisfies the equation (1) and the inequality

(1) 1)~ (a+3)7(0) - T(@)] < 58(22,0)
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for all z € X, where ||(a +2)f(0)]| < ¢(0,0). The mapping T is defined by

T(z) = lim 125

n—oo 2"

forallz e X.
Proof. The inequality (10) with z = 0, y = 0 implies
(12) |- @+ 2£0)] < ¢(0,0).
If we put y := 0 in (10), we have
lef@ +2£(5) +2£(2) - (a+3)7(@) - (a +3)70)|| < 9(x,0),
(13) |26(3) - 9@)|| < 0(,0)

for all z € X, where g(z) := f(x) — (a+3)f(0). Replacing z by 2z in the inequality
(13), we obtain

(14) 1422 _ o) < Lotaa,0)

forall z € X.
Putting = by 2z, inequality (14) gives

(15) 1279(2%2) - g(20)]| < Sp(2%,0)

for all z € X. From (14) and (15) it follows that

1272g(2%2) - g()||
< [12729(2%2) — 277g(22) | + (127 g(2x) — g(=)|
= 271(27"g(2%z) - g(22)|| + 1271 9(22) — g(=)|
< 550(2%2,0) + 5p(22,0)
for all z € X.
Applying an induction argument to n, we obtain

(16) Hg(zz H < Z w(2’““m 0)

forall z € X.
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Now, we claim that the sequence {1(523:_’02} is a cauchy sequence in the Banach

space Y. Indeed, for any integers n,m with n > m > 0 we have

g(2"z)  g(2™x) 1 g(2""™"2™x)
I
o LI (@5 g, 0)
= om2 2k
k=0

1! p(2P*1z,0)

2 2p

p=m
for all z € X. Since the right hand side of (17) tends to zero as m — oo, we obtain
the sequence {g(g#)} is Cauchy for all z € X. Because of the fact that Y is a
Banach space it follows that the sequence {ﬂgz_x)} converges in Y. Therefore we
can define a function T: X — Y by

T(z) = lim g(—2Tl—$): limw z € X.

n—oo 2 n—oco 20
Then T'(0) = 0.
Now, replacing z, y by 2"z, 2™y in inequality (10), respectively, and dividing
both sides by 2", and after then taking the limit in the resulting inequality, we have

aT(a+y)+27 (5 +y) +27(a+ %) —(a+3)T(z) — (a+3)T(y) = 0

for all ,y € X. By Lemma 2.2 and Lemma 2.3, the mapping T is additive.
Taking the limit in (16) as n — oo, we obtain that

1) - (@ +3)(0) ~ T@)] < 3(22,0)
forall z € X.

To prove uniqueness, we assume that there exists an additive mapping 77 : X —
Y such that

1£(@) - (a+3)/0) - T'(&)] < 52(22,0)
for all x € X. Then it is obvious that
T(2"z) = 2°T(z), T'(2"z) = 2"T"(z)
for all z € X. Thus we have
IT@) - T'(@)]| = 2" T(2"s) - 27T (2"a)|
<2TT(2") - £(270) + (o +3)FO)]| + 27 F(2"2) - (a+3)f(0) - T'(2"0)]
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k+n+1 p+1
n n+1 — 90(2 T 0) (P 2 z, 0)
<2 2{ o(2" g 0)} 2 k§0——————2 p§=n

for all £ € X. Taking the limit as n — oo, we conclude that
T(z) =T (z)
for all z € X. This completes the proof. 0

Further, we are going to establish another theorem about the Hyers-Ulam stability
of the equation (1) as follows.

Theorem 3.2. Let f: X — Y be a function such that

(18) D fa(z, y)l < o(z,y)

for all z,y € X. If ¢ satisfies the condition (b), then there exists a unique additive
mapping T : X — Y such that T satisfies the equation (1) and the inequality

1f(z) - (a+3)f(0) - T'(z)] £ ¥(=,0)
for all z € X, where f(0) =0 if a # —2. The mapping T is defined by
o onf e T
T(@) = lim 2"{f(2) - (@ +3){(0)
forallz e X.
Proof. Substituting z = y = 0 in (18) yields
| = (a+2)f(0)l] <(0,0)
and so we have f(0) =0 if a # —2, since 4o ; 25¢(0,0) < oo and so ¢(0,0) = 0.
If we put y == 0 in (18), we have
z
I26(3) - 9@ < (. 0)
for all z € X, where g(z) := f(z) — (a + 3)f(0). The rest of the proof is similar to
that of Theorem 3.1. O

We observe T(0) = 0 for any given integer @ in the Theorem 3.2.
From the main Theorem 3.1 and 3.2, we obtain the following corollary concerning
the stability of the equation (1).

Corollary 3.3. Let X be a normed space and Y a Banach space. Suppose that a
mapping [ : X — Y satisfies the inequality

(19) D falz, p)l| < e(llzll + flyliF)
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for all z,y € X, where ¢ > 0, 0 < p < 1 are constants. Then there exists a unique
additive mapping T : X — Y which satisfies the equation (1) and the inequality

1 (@) = (a +3)f(0) = T(@)ll < g—5ell=l”
for all x € X, where f(0) =0 if a # —2. The mapping T is defined by
T = Jim, 10

forallz € X.

Proof. Letting o(z,y) := €(||z||P + ||y||P) for all z,y € X and then applying Theorem
3.1, we obtain easily the results. Here if a # —2, then f(0) = 0 since one gets that
¢(0,0)=0 by putting z =y = 0 in (19). O

Corollary 3.4. Let X be a normed space, Y a Banach space. Suppose that a
mapping f : X — Y satisfies the inequality

D fa(z, I < e(ll=ll” + llyl1*)

for all x,y € X, where ¢ > 0 and p > 1 are constants. Then there exists a unique
additive mapping T : X — Y which satisfies the equation (1) and the inequality

17(z) = (a+3)7(0) - T@)l < 55—
for all x € X, where f(0) =0 if a # —2. The mapping T is defined by
T(z) = lim zn{f(zin) - (a+3)f(0)}

N0

ell|?

forallxz € X.

Proof. We set ¢(z,y) := e(||z||” + ||y||P) for all z,y € X. By Theorem 3.2, we obtain
the results. u

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.5. Let X be a normed space, Y a Banach space. Suppose that a
mapping f : X — Y satisfies the inequality
|1 D fa(z, y)ll <6
for all z,y € X, where 8 > 0. Then there exists a unique additive mapping T : X —
Y satisfying the inequality "
f(z) — (a+3)f(0) —T(z)[ <0
forallx € X.
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Proof. Letting ¢(z,y) := 6, we get immediately the result. 0
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