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INTEGRAL TRANSFORMS AND INVERSE INTEGRAL
TRANSFORMS WITH RELATED TOPICS ON FUNCTION SPACE
I

SEUNG JUN CHANG® AND HYun S00 CHUNG?

ABSTRACT. In this paper we establish various relationships among the generalized
integral transform, the generalized convolution product and the first variation for
functionals in a Banach algebra S(LZ,[0,T]) introduced by Chang and Skoug in
[14]. We then derive an inverse integral transform and obtain several relationships
involving inverse integral transforms.

1. INTRODUCTION

Let Cp[0, T] denote one-parameter Wiener space, that is, the space of real-valued
continuous functions z on [0, T} with £(0) = 0. The concept of the integral transform
F, g was introduced by Lee in [19]. The theory of integral transform was studied
extensively and applied to various subjects by many mathematicians. Recently,
in [13, 17, 18, 20], the authors studied relationships between the integral transform
and the convolution product for functionals in several interesting classes. For certain
values of the parameters v and 3 and for certain classes of functionals, the Fourier-
Wiener transform [1, 2], the modified Fourier-Wiener transform (3], the Fourier-
Feynman transform [4] and the Gauss transform are special cases of Lee’s integral
transform F., g. Also see papers {13, 20} for further work involving integral transform.

The function space C, [0, T} induced by generalized Brownian motion was intro-
duced by J. Yeh in [22] and was used extensively by Chang and Chung [9]. In this
paper, we establish various interesting relationships among the generalized integral
transform, the generalized convolution product and the first variation for functionals
in the Banach algebra § (Li,b[(}s T)). Finally, we derive an inverse integral transform
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and obtain several relationships involving inverse integral transforms. The gener-
alized Fourier-Wiener function space transform in [11] and the generalized analytic
Fourier-Feynman transform in [8, 10, 14] are special cases of our integral transform.

The Wiener process used in [1-5, 13, 16-19, 20] is stationary in time and is free
of drift while the stochastic process used in this paper as well as in [6-12, 14] is
nonstationary in time and subject to a drift a(t). This process can be used to
explain the position of the Ornstein-Uhlenbeck process in an external force field
[21).

2. DEFINITIONS AND PRELIMINARIES

Let D = [0,7] and let (2, B, P) be a probability measure space. A real-valued
stochastic process Y on (£, B, P) and D is called a generalized Brownian motion
process if Y (0,w)=0 almost everywhere and for 0 = ¢y < t; < --- < t, < T, the
n-dimensional random vector (Y (t1,w), -+ ,Y (ts,w)) is normally distributed with

density function
n

WalE) = (@m)" TL0(t5) = bitj-0)) ™

(2.1) j=11 = (15 — alty)) — (ni-1 = a(tj-1)))?
. exp{--z-; }

b(tj) - b(tj_l)

where 7= (71, - %), 10 = 0, £ = (t1,-- ,tn), a(t) is an absolutely continuous
real-valued function on [0,T] with a(0) = 0, a’(t) € L2[0,T] and b(¢) is a strictly
increasing, continuously differentiable real-valued function with 5(0) = 0 and '(t) >
0 for each t € [0, T].

As explained in {23, p.18-20], Y induces a probability measure y on the measur-
able space (RP, BP) where R? is the space of all real-valued functions z(t), t € D,
and BP is the smallest o-algebra of subsets of RP where all of the coordinate evalu-
ation maps e;(z) = z(t) defined on RP are measurable. The triple (RP, BP, u) is a
probability measure space. This measure space is called the function space induced
by the generalized Brownian motion process Y determined by a(-) and b(-).

We note that the generalized Brownian motion process Y determined by a(-) and
b(-) is a Gaussian process with mean function a(t) and covariance function r(s,t) =
min{b(s), b(t)}. By Theorem 14.2 [23, p.187], the probability measure p induced
by Y, taking a separable version, is supported by Cq (0, T] (which is equivalent to
the Banach space of continuous functions z on [0, 7] with (0) = 0 under the sup
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norm). Hence (C, [0, T}, B(Co 5[0, T]), i) is the function space induced by Y where
B(C, 5[0, T]) is the Borel o-algebra of Cq (0, T7.

A subset B of C, [0, T is said to be scale-invariant measurable provided pB is
B(C, [0, T])-measurable for all p > 0, and a scale-invariant measurable set N is
said to be a scale-invariant null set provided u(pN) = 0 for all p > 0. A property
that holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere(s-a.e.).

Let Lg’b[O,T] be the Hilbert space of functions on [0,7] which are Lebesgue
measurable and square integrable with respect to the Lebesgue Stieltjes measures
on [0, T} induced by a() and b(-); i.e.,

T T
2 = v 'U2 S 1 2 o0
12,00,T] = { /0 (s)db(s) < o0 and /0 v2(s)dlal(s) < }

where |a|(t) denotes the total variation of the function a(-) on the interval [0, ¢].
For u,v € Lg,b[O,T], let

T
(6, )ap = /0 w(tyu(t)dlb(t) + lal(t)]

Then (:,)ap is an inner product on Lg’b[O,T] and ||ullap = v/(u, u)qp is @ norm on
Lg,b{O,T]. In particular note that ||uflep = 0 if and only if u(t) = 0 a.e. on [0,T].
Furthermore (Lg,b[O, T), || - la,p) is & separable Hilbert space. Note that all functions
of bounded variation on [0,T] are elements of Lz,b[O, T]. Also note that if a(t) =0
and b(t) =t on [0, T}, then L2 ,[0,T] = L?[0,T]. In fact,

(L2600, 1N - lla) € (L3610, TN 11 - o) = (L2[0, T, | - ll2)

since the two norms || - [lo and || - ||z are equivalent.
Let {¢; 521 be a complete orthonormal set of real-valued functions of bounded
variation on [0, T] such that

0 ,j#k
1 ,j=k

3

(b5, Pk)ap = {

and for each v € L2 [0, T}, let

Un (t) == Z(% ¢j)a,b¢j (t)

=1
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for n = 1,2,---. Then for each v € Lg,b[O, T}, the Paley-Wiener-Zygmund(PWZ)
stochastic integral (v, z) is defined by the formula

T
(v,2) = lim /0 vn(8)d(t)

for all z € C,[0,T] for which the limit exists. For a more detailed study of the
PWZ integral, see |7, 8, 9, 14].

Let M (Lib[O, T)) be the space of complex-valued, countably additive Borel mea-
sures on Lg’b[(), T]. The Banach algebra & (Li,b[O, T)) consists of those functionals F
on C, [0, T) expressible in the form

(22 rw= [, ewlitd

L2,[o,T

for s-a.e. = € Cy [0, T) where the associated measure fis an element of M (Lz’b[O, T)).

Remark 2.1. (1) When a(t) =0 and b(t) =t on [0, T}, S(Lg’b[O, T1}) reduces to the
Banach algebra S introduced by Cameron and Storvick in [5].
2y M (Li,bma T)) is a Banach algebra under the total variation norm where con-
volution is taken as the multiplication.
(3) One can show that the correspondence f — F is injective, carries convolution
into pointwise multiplication and that & (Lib[i), T]) is a Banach algebra with norm
1F1= s = [

Lg’b[(),

|df (v)].
7]

In [5], Cameron and Storvick carried out these arguments in detail for the Banach
algebra S. Further works on S shows that it contains many functionals of interest
in Feynman integration theory. For a more detailed see in [5, 15, 16].

The following integration formula is used several times throughout this paper.
For any complex number 4 and nonzero element v € Li,b[O, ],

2
@) [ el = ee{ TR £
where T r
2 . _ 20\ _ 2
(W2, b) = /0 V()b (t)dt = /0 2 ()db(t)
and T r
(v,a)=/0 v(t)a (t)dts/(; v(t)da(t).

Note that (v2,¥) is always positive, while (v, a’) may be positive, negative or zero.
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In this paper, let K, [0, T] be the set of all complex-valued continuous functions
z(t) defined on [0, 7] which vanish at ¢ = 0 and whose real and imaginary parts are
elements of C, [0, T] namely,

Kop[0,T) = {z:[0,T] = C | z(0) = 0, Re(z) € C,3[0,T] and Im(z) € C, (0,71}
Thus clearly C, [0, T] is a subspace of K, [0, T].

We are now ready to state the definition of the generalized integral transform
F, g introduced in [10, 12].

Definition 2.2. Let F be a functional defined on K,4(0,T]. For each pair of
nonzero complex numbers v and 3, the generalized integral transform F, gF' of F
is defined by
08  FpFe)= [ FOatf)i@), ye KT,
Cap[0.T]

if it exists.
Remark 2.3. (1) When a(t) = 0 and b(t) = t on [0,T], Fy g is the integral
transform used by Kim and Skoug [18]. In particular, 7, is the Fourier-Wiener
transform introduced by Cameron in [1] and used by Cameron and Martin in [2].
Also F s ; is the modified Fourier-Wiener transform used by Cameron and Martin
in [3].

(2) When v = v/2 and 8 = i, F 3, is the generalized Fourier-Wiener function
space transform introduced by Chang and Chung in [11].

Next, we state definitions of the generalized convolution product and the first
variation on K, (0, T}.

Definition 2.4. Let F and G be functionals defined on K, (0, T']. For each nonzero
complex number ~, the generalized convolution product (F+G)., of F and G is defined
by

3 (Fronw - | MOIT}F(”*\;;””)G(";;m)dm), y € Kapl0,T],

Definition 2.5. Let F be a functional defined on K, 3[0,T"] and let w be an element
of K, 5[0, T). Then the first variation 0F of F' is defined by

if it exists.

(2.6) SF(z|w) = %F(z + kw)

k=0
if it exists.
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3. GENERALIZED INTEGRAL TRANSFORMS, GENERALIZED CONVOLUTION
PRODUCTS AND FIRST VARIATIONS OF FUNCTIONALS IN S(L2,[0,T])

In this section, we establish several interesting relationships among the inte-
gral transform, the convolution product and the first variation for functionals in
S(Lz,b[O,T]).

In our first theorem, we establish basic formulas relating integral transforms,

convolution products and first variations for functionals in S(L2 0, T]).

Theorem 3.1. Let v and (3 be nonzero complex numbers and let F € S(L b[O T))
be given by (2.2). Let G be an element of S(L? 50, T]) of the form

(3.1) 6w = [, el a)dsr)

for some g in M(Lg,b[O,T]) and let w be an element of K, [0, T]. Then the general-
ized integral transform F, gF, the generalized convolution product (F * G) and the

first variation 0F(-|w) are given by formulas

2
02 Fpr)= [ ew{isn - T +ir0d) 40,

(F *G)4y(y) / / exp{ (v+ h,y)
Lz b[0 T] JLZ ,[0,T]

(3.3)
S (=) + ﬁ(v—h,a')}df(v)dg(h),
and
(3.4) sFh) = [, ifo,w) exp(iCo, 1)1 0)
LZ ,[0,T]

for y € K, [0, T] if these exist.
Proof. Equations (3.2)-(3.4) follow easily from equations (2.3)-(2.6) and the Fubini

theorem. O
Remark 3.2. (1) We can rewrite equations (3.2) and (3.4) as
(35) FagF) = [, expliB(v,u)}don)
21071
and as
(3.6) R = [ enlit )

La,b[O,T
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where ¢; and ¢2 are set functions defined by

2
(37) 018) = [ en{-T020) +irtwa) a0
and
(3.9 #2(8) = [ ito,whdf(v)
E
for E € B(Lz,b[O,T]), respectively. Also, we can rewrite equation (3.3) as
(39) Fruw= [, enlitulise i)

where ¢3 is a set function defined by
2
i 7 LRy .Y _ '
(3.10) ¢3(E) = [3 exp{ - (= 1% ¥) +ivs h,a)}df(v)dg(h)

for E € B(Lib[O,T] X Lgyb[O,T]) and @3 is a continuous function on Lﬁlb[{},T] X
L% ,[0,T) given by

o3(0,h) = -J%m- ).

Generally, the integrands in equations (3.5)-(3.10) are unbounded as functions of
vE Lg,b[O, T). Thus F,gF(y),0F(yjw) and (F * G),(y) might not exist.

(2) In [8, 9, 10, 14], the authors gave some conditions for the existences of their
transforms, convolutions and first variations. Also, we can establish some conditions
for the existences of our assertions. For example, we assume that

_M_Z. T 2 2
/Lz,bfm /Lg,,,[o,ﬂ e"p{ 1 /0 (w2 (t) + (1)) db(2)
M (T M2
+$/0 (lv(@)] + |h(t)])dlal(t) + T”U”“’b”hnasb}Idf(v)lldg(h)l < oo

for some real number M > 0. Then for all nonzero complex number v with |y] < M,
the generalized convolution product (F * G), with respect to v of F' and G exists.
Moreover, if Im(y) = 0, then and (F x G),(y) is an element of S(Lg’b[O,T]) as a
function of y € C,[0,T]. From now on, for simplicity of our results, we assume
that integral transforms, convolution products and first variations in theorems and
corollaries below all exist.

Note that using equations (2.4) and (2.5) it follows that

(3.11) (F*1)5(v) = F3 1 Fy/V2)
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and
(3.12) (1xG)y(y) = f__};,lG(y/\/E)
for y € K,[0,T).

The following theorem is one of main results in this paper.

Theorem 3.3. Let vy and § be nonzero complex numbers. Let F' and G be given by
(2.2) and (3.1), respectively. Then

(3.13) Fyg(F x G)y(2) = Fy g(F % 1)4(2)Fy5(1 * G)4(2)

for z € Kq4[0,T). Furthermore, both of the expressions in equation (3.13) are given
by the expression

. B
expyti—{(v+h,z
/L'fl’b[o,’j‘] /Lz'b[(),’l‘} p{ \/5( )

(3.14) 2
L4 R,8) + VB (0,d) }df(v)dg(h)

for z € Kq[0,T).

Proof. Using equation (3.2) with F replaced with (F x G),, the Fubini theorem and
equation (2.3), the left-hand side of equation (3.13) is equal to the expression (3.14).
On the other hand, using equations (3.2), (3.11) and (3.12) we obtain that

(3.15)

FagFe (e = [ (F ety +82)dute)

Ca,b[OyT] ﬂ
Yy + Pz
F F( )d
/C oy 7 u(y)

2
= [, ew{iZn - Te20) +invaea) Jar)
12,[07]

Wi
and

Frp(1%G)y(2) = ]C oy 17 O+ 8:14(0)
(3.16) = /C - 0T] FozaG (w;/%ﬂz)dﬂ(y)

Hence, using equations (3.15) and (3.16), the right-hand side of equation (3.13) also
is equal to the expression (3.14). 0
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Corollary 3.4. Let v,3,F and G be as in Theorem 3.3. Then

1) FralFCh) = FraF (25 = T - Va)a) FrpG( 25 - Ja)

for z € K4[0,T]. In particular when v = v2 and 8 = i,

K4 . 2 .
for z € Kq[0,T).
Proof. Equation (3.17) follows easily from equations (2.4) and (2.5). O

Next, we give another expression for F,, g(F * G), in Theorem 3.3. The equation

(3.18) is used several times in theorems and corollaries throughout Sections 3 and
4.

Theorem 3.5. Let v, 8, F and G be as in Theorem 3.3. Then
(3.18) Foyp(F % G)y(2) = f'%,ﬁf_}a,lﬁ'(z/\/é)f%,ﬁf__k,la(z/\/ﬁ)
for z € K, [0,T}.

Proof. Taking the integral transform F., g of each side of equations (3.11) and (3.12),
and using equation (2.4), we obtain equation (3.18) as desired. O

Remark 3.6. On the whole, our integral transforms are not commutative. But for
special parameters, we can obtain the commutativity of our integral transforms. Let
o, 8, and » be nonzero complex numbers such that

(3.19) FoaFynF(z) = FynFapF(z)
for 2 € K, (0, T]. Then the equation (3.19) reduces to a system
{ 7+ aPn? = a? + 077,
Y+on=a+pfy

However the set of solutions of this system is given by

{(e, 1,7, 1) : 0,y € C= {0} U{(e, B,7,m) : ¢ =, 8=}
Hence we know that two integral transforms F, g and F,, are equal or
(3.20) Fa1Fy1F(2) = FyiFanF(2)
for z € K,[0,T].

Next we give an interesting formula involving integral transforms and convolution

products. Corollary 3.7 follows easily from equations (3.2), (3.3), (3.11), (3.12) and
(3.20).
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Corollary 3.7. Let v, F and G be as in Theorem 3.3, and let o be a complex number
satisfying the condition (3.20). Then

(‘F'};»lF *1)o(2) = (f%’lF * 1), (2)
for z € Kq4[0,T).

The following theorem tells us that the integral transform F,g and the first

variation § are commutative.

Theorem 3.8. Let v,53, F and w be as in Theorem 3.1. Then

(3.21) BFyp0F (|lw)(z) = 6F pF(z|w)

for z € K,,[0,T].

Proof. Using equation (3.2) with F replaced with 6F and using equation (3.4) with
F replaced with F, gF, we can easily prove Theorem 3.8. O

Next, we establish interesting relationships among the integral transform, the
convolution product and the first variation for functionals in S (Lﬁ,b[O,T]). These
relationships are given by (3.22) through (3.26) below. Equations (3.22)-(3.26) now
follow from (3.2)-(3.4), (3.18) and (3.21).

Corollary 3.9. Let o,v, 53, F and G be as in Corollary 3.7 and let w be as in
Theorem 3.1. Then

(3.22) 8(F * G)y(zlw) = (§F (-lw/v2) x G)y(2) + (F * 6G(-|w/V2))(2),

(3.23) Fa1Fy16F(lw)(z) = 6Fy 1 Fa1F(2zlw),
(3.24) B2 Fy(8F (-|w) * 6G(-|w))(2)
: = 5?5,5,131’-:}511F(z/\/§|w)6f§,5,ﬂf.%z,,lc:(z/\/ﬂw),
BF,80(F x G)y(-|w)(2)
(3.25) =8(Fx pF 1 F(/ \/-2-)-7‘-35,6-7:-%,16;('/ V2))(z|w)
= 6F,8(F x G)y(2|w)
and

(3.26)  B(Fyp0F (lw) * Fyg0G(-|w))y(2) = (65 s F (-|w) * 6Fy,5(-|w))y(2)

for z € K,[0,T).
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4. INVERSE INTEGRAL TRANSFORMS

In this section we derive a version of the inverse integral transform. We then
obtain several relationships involving the inverse integral transform.

The following theorem is one of main results in this paper.

Theorem 4.1. Let v, B and F be as in Theorem 3.1. Then

(4.1) f_i'y’lfi'y,lf_%‘éf»y’ﬁF(x) = f‘y’ﬁ]:—i'y,lfi'nlf_%'%F(w) = F(z)

for x € Kq3[0,T]. That is to say, the inverse integral transform is given by
Frg = FoiyaFira F_ 38

Proof. Using equation (3.2) several times, we can prove Theorem 4.1. O

Remark 4.2. Let v;, 79, f1 and £, be nonzero complex numbers. By careful exam-
ination we see that there are no nonzero complex numbers v’ and #' such that
For 1 Fraps = For

Hence our inverse integral transform .7-',7‘, [1, can not be expressed by one pair of any
parameters, that is to say,

F;;la # ]'-"/’,ﬂ’
for any 4/, 8’ in C —~ {0}. But a(t) = 0 and b(t) = ¢ on [0,T], we have

FomFaaFg gy =Fig s
In this case, we can write
—1 -
f‘Y,ﬂ - .F,L%,_é_.

Our next goal is to obtain other versions for our inverse integral transform.

Theorem 4.3. Let v,3,F and G be as in Theorem 3.3. Then
FL FxF~Y G)y(z
(4.2) ( o h(2)
= 7,5(f%,ﬁF('/\/—z_)f—\—}EﬁG(‘/\/é))(z)
for z € K, [0,T].
Proof. Using equations (3.18) and (4.1), it follows that
-1 —1
}',y,p(}'%’lF * f_}’?’lG)W(Z) |
(4.3) = Fx gF 3. F 2,1F(z/\/§)f§§,5,¢_v_~;_§,1f_ %,1G(z/\/§)
= fg;,ﬁF(z/ﬁ)f%,ﬂG(z/\/i)
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Now taking the inverse integral transform F é of each side of equation (4.3), we
obtain equation (4.2) as desired. a

Theorem 4.4. Let v, 3, F and G be as in Theorem 3.3. Then
(44)  Fop p(FiFx F211G) jgy(2) = Py gF(2/V2) Fr g C(z/V2)
Jor z € K, [0, T].
Proof. Proceeding as in the proof of Theorem 4.3, we can obtain equation (4.4). O
Corollary 4.5. Let v, and F be as in Theorem 3.5. Then

(FLaF*F2Y \Fh(@) = Foi(F 3 6F (/VEP)(2)
and

nyﬂ( 1F*f »ylF)\/‘f,(z) [f,,,,gF(z/\/i)]"Z

for z € Kq4[0,T).
Remark 4.6. In view of Theorems 4.3 and 4.4, we see that there is an interesting

viewpoint. In Theorem 4.3, if we take v replaced with v/2v then equation (4.2)

becomes
(F P« F 710)f (2)
=f?%7, (FypF (V2 Fyg GV (2)

for z € K, [0, T]. Now taking the integral transform F, N of each side of equation

(4.5)

(4.5), we obtain equation (4.4). Hence we can obtain various alternative forms of
equations (4.2) and (4.4).

In our last theorem, we establish a formula involving inverse integral transforms.
Theorem 4.7. Let v, F and G be as in Theorem 3.3. Then
(4.6) (F1F x1) 5, (2)(1 % F2) 1G) 5, (2) = F(2/V2)G(2/V2)
for z € K,(0,T).
Proof. Using equations (3.11) and (3.12), we obtain equation (4.6) as desired. DO

We finish this section by establishing several relationships involving inverse in-
tegral transforms. These relationships are given by (4.7)-(4.9) below. We omit the
proof of our next corollary because the proof is similar to the proof of Corollary 3.9.

Corollary 4.8. Let~v,3,F and G be as in Theorem 4.4 and let w be as in Theorem
3.8. Then

(4.7) F 30F (-lw)(2) = BOF 4 F (2|w),
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(4.8) ﬁéf,;é(f‘ * G)y(z|lw) = f;lé(F * Gy (-|lw)(2)
and

(49)  (FR0F(|w) = F7 36G(|w))y(2) = B (6F; hF (-lw) * 6F; 4G (-|w))(2)

for z € Kg3[0,T).
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