P-I-OPEN MAPPINGS, P-I-CONTINUOUS MAPPINGS AND P-I-IRRESOLUTE MAPPINGS

JI YOON KIM^{a,*} AND CHANG SU KIM^b

ABSTRACT. The notions of P- \mathcal{I} -open (closed) mappings, P- \mathcal{I} -continuous mappings, P- \mathcal{I} -neighborhoods, P- \mathcal{I} -irresolute mappings and \mathcal{I} -irresolute mappings are introduced. Relations between P- \mathcal{I} -open (closed) mappings and \mathcal{I} -open (closed) mappings are given. Characterizations of P- \mathcal{I} -open (closed) mappings are provided. Relations between a P- \mathcal{I} -continuous mapping and an \mathcal{I} -continuous mapping are discussed, and characterizations of a P- \mathcal{I} -continuous mapping are considered. Conditions for a mapping to be an \mathcal{I} -irresolute mapping (resp. P- \mathcal{I} -irresolute mapping) are provided.

1. Introduction

In 1990, D. Janković, and T.R. Hamlett have introduced the notion of \mathcal{I} -open sets in topological spaces. Since then, several kinds of \mathcal{I} -openness, that is, (weakly) semi- \mathcal{I} -open set, δ - \mathcal{I} -open sets, β - \mathcal{I} -open sets, α - \mathcal{I} -open sets, b- \mathcal{I} -open sets, (weakly) pre- \mathcal{I} -open sets, etc. are introduced, and several properties and relations are investigated (see [2, 3, 8, 9, 10, 11, 12, 25, 28]). In [18], Kang and Kim first introduced the notions of pre-local function, semi-local function and α -local function with respect to a topology and an ideal, and investigated several properties. They next introduced the concept of P- \mathcal{I} -open set and P- \mathcal{I} -closed set in ideal topological spaces, and investigated related properties. They discussed relations between \mathcal{I} -open sets and P- \mathcal{I} -open sets. Finally they introduced the notion of P-*-closure, and investigated many properties related to P- \mathcal{I} -open set, pre-local function, semi-local function and α -local function with respect to a topology and an ideal.

In this paper, we deal with P- \mathcal{I} -open mappings, P- \mathcal{I} -continuous mappings and P- \mathcal{I} -irresolute mappings. In section 3, we define the notion of P- \mathcal{I} -open (closed) mappings, and give relations between P- \mathcal{I} -open (closed) mappings and \mathcal{I} -open (closed)

Received by the editors April 18, 2009 and, in revised form, November 19, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 54A40.

Key words and phrases. P-I-open (closed) mapping, P-I-continuous mapping, P-I-neighborhood, P-I-irresolute mapping, I-irresolute mapping.

^{*}Corresponding author.

mappings. We provide characterizations of P- \mathcal{I} -open (closed) mappings. In section 4, we define a P- \mathcal{I} -continuous mapping and a P- \mathcal{I} -neighborhood, and then we investigate relations between a P- \mathcal{I} -continuous mapping and an \mathcal{I} -continuous mapping. We discuss characterizations of a P- \mathcal{I} -continuous mapping. In the final section, we introduce the notions of P- \mathcal{I} -irresolute mappings and \mathcal{I} -irresolute mappings. We give conditions for a mapping to be an \mathcal{I} -irresolute mapping (resp. P- \mathcal{I} -irresolute mapping).

2. Preliminaries

Through this paper, (X, τ) and (Y, κ) (simply X and Y) always mean topological spaces. A subset A of X is said to be semi-open [19] (respectively, $\alpha-open$ [26] and pre-open [24]) if $A \subset Cl(Int(A))$ (respectively, $A \subset Int(Cl(Int(A)))$ and $A \subset Int(Cl(A))$). The complement of a pre-open set (respectively, an α -open set and a semi-open set) is called a pre-closed set (respectively, an α -closed set and a semi-closed set). The intersection of all pre-closed sets (respectively, α -closed sets and semi-closed sets) containing A is called the pre-closure (respectively, α -closed sets and semi-closure) of A, denoted by pCl(A) (respectively, $\alpha Cl(A)$ and sCl(A)). A subset A is also pre-closed (respectively, α -closed and semi-closed) if and only if A = pCl(A) (respectively, $A = \alpha Cl(A)$ and A = sCl(A)). We denote the family of all pre-open sets (respectively, α -open sets and semi-open sets) of (X, τ) by τ^p (respectively, τ^α and τ^s).

An *ideal* is defined as a nonempty collection \mathcal{I} of subsets of X satisfying the following two conditions.

- (1) If $A \in \mathcal{I}$ and $B \subset A$, then $B \in \mathcal{I}$. (heredity)
- (2) If $A \in \mathcal{I}$ and $B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$. (finite additivity)

An *ideal topological space* is a topological space (X, τ) with an ideal \mathcal{I} on X, and it is denoted by (X, τ, \mathcal{I}) . For a subset $A \subset X$, the set

$$A^*(\tau, \mathcal{I}) = \{ x \in X : U \cap A \notin \mathcal{I} \text{ for each } U \in \tau(x) \}$$

is called the local function of A with respect to τ and \mathcal{I} , where

$$\tau(x)=\{U\in\tau:x\in U\}.$$

We will use A^* and/or $A^*(\mathcal{I})$ instead of $A^*(\tau, \mathcal{I})$.

Lemma 2.1 ([16]). Let (X, τ) be a topological space with ideals \mathcal{I} and \mathcal{J} on X. For subsets A and B of X, we have the following assertions.

- (i) $A \subset B \Rightarrow A^* \subset B^*$.
- (ii) $\mathcal{I} \subset \mathcal{J} \Rightarrow A^*(\mathcal{J}) \subset A^*(\mathcal{I})$.
- (iii) $A^* = \operatorname{Cl}(A^*) \subset \operatorname{Cl}(A)$ (A^* is a closed subset of $\operatorname{Cl}(A)$).
- (iv) $(A^*)^* \subset A^*$.
- (v) $(A \cup B)^* = A^* \cup B^*$.
- (vi) $A^* \setminus B^* = (A \setminus B)^* \setminus B^* \subset (A \setminus B)^*$.
- (vii) $U \in \tau \Rightarrow U \cap A^* = U \cap (U \cap A)^* \subset (U \cap A)^*$.
- (viii) $B \in \mathcal{I} \Rightarrow (A \cup B)^* = A^* = (A \setminus B)^*$.

Definition 2.2. Let (X, τ, \mathcal{I}) be an ideal topological space. A subset A of X is said to be \mathcal{I} -open [1] if $A \subset \text{Int}(A^*)$.

The set of all \mathcal{I} -open sets in ideal topological space (X, τ, \mathcal{I}) is denoted by $\mathcal{I}O(X, \tau, \mathcal{I})$ or written simply as $\mathcal{I}O(X)$ when there is no chance for confusion.

Definition 2.3 ([18]). Let (X, τ, \mathcal{I}) be an ideal topological space and let A be a subset of X. Then the set

$$A_n^*(\tau, \mathcal{I}) = \{ x \in X : U \cap A \notin \mathcal{I} \text{ for each } U \in \tau^p(x) \}$$

is called the pre-local function with respect to τ and \mathcal{I} , where

$$\tau^p(x) = \{ U \in \tau^p : x \in U \}.$$

We will use A_p^* and/or $A_p^*(\mathcal{I})$ instead of $A_p^*(\tau, \mathcal{I})$.

Lemma 2.4 ([18]). Let (X, τ, \mathcal{I}) be an ideal topological space and let A be a subset of X. Then

- (i) If $\mathcal{I} = \{\emptyset\}$, then $A_p^* = p\operatorname{Cl}(A)$, $A_s^* = s\operatorname{Cl}(A)$ and $A_\alpha^* = \alpha\operatorname{Cl}(A)$.
- (ii) If $\mathcal{I} = \mathcal{P}(X)$, then $A_p^* = A_s^* = A_\alpha^* = \emptyset$.

Lemma 2.5 ([18]). Let (X, τ) be a topological space with ideals \mathcal{I} and \mathcal{J} on X, and let A, B be subsets of X. Then

- (i) $A \subset B \Rightarrow A_p^* \subset B_p^*$.
- (ii) $\mathcal{I} \subset \mathcal{J} \Rightarrow A_p^*(\mathcal{J}) \subset A_p^*(\mathcal{I}).$
- (iii) $A_p^* = p\operatorname{Cl}(A_p^*) \subset p\operatorname{Cl}(A)$ $(A_p^* \text{ is a pre-closed subset of } p\operatorname{Cl}(A)).$
- (iv) $(A_p^*)_p^* \subset A_p^*$.
- (v) $B \in \mathcal{I} \Rightarrow B_p^* = \emptyset$.
- (vi) $U \in \tau^{\alpha} \Rightarrow U \cap A_p^* = U \cap (U \cap A)_p^* \subset (U \cap A)_p^*$.
- (vii) $B \in \mathcal{I} \Rightarrow (A \cup B)_p^* = A_p^* = (A \setminus B)_p^*$.
- (viii) $A_p^*(\mathcal{I} \cap \mathcal{J}) \supset A_p^*(\mathcal{I}) \cup A_p^*(\mathcal{J}).$

Definition 2.6 ([18]). Let (X, τ, \mathcal{I}) be an ideal topological space. A subset A of X is said to be $P\text{-}\mathcal{I}\text{-}open$ if $A \subset pInt(A_p^*)$. A subset B of X is said to be $P\text{-}\mathcal{I}\text{-}closed$ if the complement of B is $P\text{-}\mathcal{I}\text{-}open$.

The set of all P- \mathcal{I} -open sets in (X, τ, \mathcal{I}) is denoted by $P\mathcal{I}O(X, \tau, \mathcal{I})$. Simply $P\mathcal{I}O(X, \tau, \mathcal{I})$ is written as $P\mathcal{I}O(X)$ or $P\mathcal{I}O(X, \tau)$ when there is no chance for confusion.

Definition 2.7 ([1]). A mapping $f:(X,\tau)\to (Y,\kappa,\mathcal{J})$ is said to be \mathcal{I} -open (resp. \mathcal{I} -closed) if for each $U\in\tau$ (resp. $U^c\in\tau$), f(U) is an \mathcal{I} -open (resp. \mathcal{I} -closed) set.

Theorem 2.8 ([18]). Let $A \in PIO(X, \tau)$. Then A is I-open.

Remark 2.9. By Theorem 2.8, we know that P- \mathcal{I} -open set implies \mathcal{I} -open set. By [1, Remark 2.2], we know that \mathcal{I} -open set implies pre-open set. Hence we can deduce that P- \mathcal{I} -open set implies pre-open set. The converse is not true, in general.

Theorem 2.10 ([18]). Let $\{U_i \in PIO(X) : i \in \Lambda\}$ be a class of P-I-open sets in an ideal topological space (X, τ, I) . Then $\bigcup_{i \in \Lambda} \{U_i \in PIO(X) : i \in \Lambda\}$ is P-I-open.

Theorem 2.11 ([18]). If A is P-I-closed in an ideal topological space (X, τ, I) , then $A \supset (p\operatorname{Int}(A))_p^*$.

Lemma 2.12 ([17]). Let A be a subset of a topological space (X, τ) . Then the following assertions are satisfied.

- (i) $(pInt(A))^c = pCl(A^c)$.
- (ii) $(pCl(A))^c = pInt(A^c)$.

3. P- \mathcal{I} -open Mappings and P- \mathcal{I} -closed Mappings

Definition 3.1. A mapping $f:(X,\tau)\to (Y,\kappa,\mathcal{J})$ is said to be $P\text{-}\mathcal{I}\text{-}open$ (resp. $P\text{-}\mathcal{I}\text{-}closed$) if for each $U\in\tau$ (resp. $U^c\in\tau$), f(U) is a $P\text{-}\mathcal{I}\text{-}open$ set (resp. $P\text{-}\mathcal{I}\text{-}closed$ set).

Example 3.2. Consider a topological space (X, τ) with $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$, and consider an ideal topological space (Y, κ, \mathcal{I}) where $Y = \{1, 2, 3, 4\}$, $\kappa = \{\emptyset, Y, \{3\}, \{1, 2\}, \{1, 2, 3\}\}$, and $\mathcal{I} = \{\emptyset, \{1\}\}$. Then

$$PIO(Y, \kappa) = \{\emptyset, \{2\}, \{3\}, \{2, 3\}, \{2, 3, 4\}\}.$$

Let $f:(X,\tau)\to (Y,\kappa,\mathcal{I})$ be a mapping given by f(a)=2=f(b) and f(c)=3. Then $f(\{a\})=\{2\},\,f(\{b,c\})=\{2,3\},\,f(X)=\{2,3\}$ and $f(\emptyset)=\emptyset$. Hence f is a P- \mathcal{I} -open mapping. Let $g:(X,\tau)\to (Y,\kappa,\mathcal{I})$ be a mapping given by g(a)=1=g(b) and g(c) = 4. Then $g(\{b, c\}) = \{1, 4\} = g(X)$, $g(\{a\}) = \{1\}$ and $g(\emptyset) = \emptyset$. Hence g is a P- \mathcal{I} -closed mapping.

Theorem 3.3. Let $f:(X,\tau)\to (Y,\kappa,\mathcal{I})$ be a P-I-open (resp. P-I-closed) mapping. Then f is an I-open (resp. I-closed) mapping.

Proof. Suppose that $f:(X,\tau)\to (Y,\kappa,\mathcal{I})$ be a P- \mathcal{I} -open (resp. P- \mathcal{I} -closed) mapping. Let $G\in\tau$ (resp. $G^c\in\tau$). Then f(G) is a P- \mathcal{I} -open set (resp. P- \mathcal{I} -closed set) in Y. Since P- \mathcal{I} -open (resp. P- \mathcal{I} -closed) set is an \mathcal{I} -open (resp. \mathcal{I} -closed) set by Theorem 2.8, f(G) is an \mathcal{I} -open (resp. \mathcal{I} -closed) set. Hence f is \mathcal{I} -open (resp. \mathcal{I} -closed).

The converse of Theorem 3.3 may not be true as seen in the following example.

Example 3.4. Consider a topological space (X,τ) with $X = \{a,b,c,d\}$ and $\tau = \{\emptyset, X, \{a,b\}, \{a,b,c\}\}$, and consider an ideal topological space (Y,κ,\mathcal{I}) where $Y = \{1,2,3,4\}$, $\kappa = \{\emptyset,Y,\{3\},\{1,2\},\{1,2,3\}\}$, and $\mathcal{I} = \{\emptyset,\{1\}\}$. Then a mapping $f:(X,\tau)\to (Y,\kappa,\mathcal{I})$ given by f(a)=1, f(b)=2=f(c), and f(d)=3 is \mathcal{I} -open. Since $f(\{a,b\})=\{1,2\}\not\subset\{2\}=p\mathrm{Int}(\{1,2\}_p^*)$, we know that f is not P- \mathcal{I} -open.

Corollary 3.5. Let $f:(X,\tau)\to (Y,\kappa,\mathcal{I})$ be a P-I-open (resp. P-I-closed) mapping. Then f is a pre-open (resp. pre-closed) mapping.

Proof. Using Theorem 3.3 and Remark 2.9, we know that f is a pre-open (resp. pre-closed) mapping.

Example 3.6. Consider a topological space (X,τ) with $X=\{1,2,3\}$ and $\tau=\{\emptyset,X,\{1\},\{2,3\}\}$, and consider an ideal topological space (Y,κ,\mathcal{I}) where $Y=\{a,b,c,d\}$, $\kappa=\{\emptyset,Y,\{c\},\{a,b\},\{a,b,c\}\}$, and $\mathcal{I}=\{\emptyset,\{a\}\}$. Then a mapping $f:(X,\tau)\to(Y,\kappa,\mathcal{I})$ given by f(1)=b=f(2) and f(3)=c is P- \mathcal{I} -open. But f is not an open mapping because $f(1)=\{b\}\notin\kappa$ for $\{1\}\in\tau$.

Example 3.7. Consider a topological space (X, τ) with $X = \{1, 2, 3\}$ and $\tau = \{\emptyset, X, \{1\}, \{2, 3\}\}$, and consider an ideal topological space (Y, κ, \mathcal{I}) where $Y = \{a, b, c, d\}$, $\kappa = \{\emptyset, Y, \{c\}, \{a, b\}, \{a, b, c\}\}$, and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then a mapping $g: (X, \tau) \to (Y, \kappa, \mathcal{I})$ given by g(1) = c, g(2) = a, and g(3) = b is an open mapping. But g is not a P- \mathcal{I} -open mapping since $g(\{2, 3\}) = \{a, b\} \not\subset p \text{Int}(\{a, b\}_p^*) = \{b\}$ for $\{2, 3\} \in \tau$.

Remark 3.8. We know that the P- \mathcal{I} -open mapping and the open mapping are independent notions as seen in Examples 3.6 and 3.7.

Theorem 3.9. Let $f:(X,\tau)\to (Y,\kappa,\mathcal{J})$ be a mapping. Then the following statements are equivalent.

- (i) f is a P- \mathcal{I} -open mapping.
- (ii) For each $x \in X$ and each open neighborhood U of x, there exists a P- \mathcal{I} -open set $W \subset Y$ containing f(x) such that $W \subset f(U)$

Proof. (i) \Rightarrow (ii). Suppose that f is a P- \mathcal{I} -open mapping. Let $x \in X$. Then for each open set G containing x, $f(x) \in f(G)$. Since f is P- \mathcal{I} -open, f(G) is a P- \mathcal{I} -open set in Y. Putting W := f(G), we obtain (ii).

(ii) \Rightarrow (i). Let G be an open set in X. Then for any $x \in G$, there exists $W_x \in \mathcal{PIO}(Y,\kappa)$ such that $f(x) \in W_x \subset f(G)$. This implies that $f(G) = \bigcup_{x \in G} f(x) \subset \bigcup_{x \in G} W_x \subset f(G)$. Hence $\bigcup_{x \in G} W_x = f(G)$. By Theorem 2.10, f(G) is $P\text{-}\mathcal{I}$ -open. Therefore f is a $P\text{-}\mathcal{I}$ -open mapping.

Theorem 3.10. Let $f:(X,\tau)\to (Y,\kappa,\mathcal{I})$ be a mapping. Then f is P-I-open if and only if it satisfies the following assertion:

(3.1)
$$f(\operatorname{Int}(A)) \subset p\operatorname{Int}(f(A)_{n}^{*})$$

for all A in (X, τ) .

Proof. Suppose that f is a P- \mathcal{I} -open mapping. Let A be a subset of X. Then Int(A) is an open set and f(Int(A)) is a P- \mathcal{I} -open set. Hence

$$f(\operatorname{Int}(A)) \subset p\operatorname{Int}(f(\operatorname{Int}(A))_p^*) \subset p\operatorname{Int}(f(A)_p^*).$$

Conversely, suppose that f satisfies (3.1). Let G be an open subset of X. Then $f(G) = f(\operatorname{Int}(G)) \subset p\operatorname{Int}(f(G)_p^*)$. Hence f(G) is a P- \mathcal{I} -open set in (Y, κ, \mathcal{I}) . Therefore f is a P- \mathcal{I} -open mapping.

Corollary 3.11. Let $f:(X,\tau)\to (Y,\kappa,\mathcal{I})$ be a mapping satisfying the inclusion $f(\operatorname{Int}(A))\subset \operatorname{pInt}(f(A)_p^*)$ for all A in (X,τ) . Then f is an \mathcal{I} -open mapping.

Proof. Straightforward.

If f is an \mathcal{I} -open mapping then is Theorem 3.10 true? The answer is negative as seen in the following example.

Example 3.12. Consider a topological space (X, τ) with $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$, and consider an ideal topological space (Y, κ, \mathcal{I}) where $Y = \{1, 2, 3, 4\}$, $\kappa = \{\emptyset, Y, \{3\}, \{1, 2\}, \{1, 2, 3\}\}$, and $\mathcal{I} = \{\emptyset, \{1\}\}$. Then a mapping $f: (X, \tau) \to (Y, \kappa, \mathcal{I})$ given by f(a) = 1, f(b) = 2 = f(c), and f(d) = 3 is an \mathcal{I} -open

mapping. If $A = \{a, b, d\}$, then $f(Int(A)) = f(\{a, b\}) = \{1, 2\}$ and

$$pInt(f(A)_p^*) = pInt(\{1, 2, 3\}_p^*) = pInt(\{2, 3, 4\}) = \{2, 3, 4\}.$$

Hence we know that $f(\operatorname{Int}(A)) \not\subset p\operatorname{Int}(f(A)_p^*)$.

Theorem 3.13. Let $f:(X,\tau)\to (Y,\kappa,\mathcal{I})$ be a mapping. Then f is P-I-open if and only if it satisfies the following assertion:

(3.2)
$$\operatorname{Int}(f^{-1}(B)) \subset f^{-1}(p\operatorname{Int}(B_p^*))$$

for all B in (Y, κ, \mathcal{I}) .

Proof. Suppose that f is P- \mathcal{I} -open. Let B be a subset of Y. Then $f^{-1}(B)$ is a subset of (X, τ) . Since f is P- \mathcal{I} -open, we obtain

$$f(\text{Int}(f^{-1}(B))) \subset p\text{Int}(f(f^{-1}(B))_{p}^{*}).$$

It follows that

$$Int(f^{-1}(B)) \subset f^{-1}(f(Int(f^{-1}(B))))$$

$$\subset f^{-1}(pInt(f(f^{-1}(B))_p^*))$$

$$\subset f^{-1}(pInt(B_p^*)).$$

Conversely, suppose that f satisfies (3.2). Let G be an open set in (X, τ) . Then $\operatorname{Int}(f^{-1}(f(G))) \subset f^{-1}(p\operatorname{Int}(f(G)_p^*))$ since f(G) is a set in (Y, κ, \mathcal{I}) . Since $G \subset f^{-1}(f(G))$ and $\operatorname{Int}(G) = G$, we have

$$G \subset \operatorname{Int}(f^{-1}(f(G))) \subset f^{-1}(p\operatorname{Int}(f(G)_p^*)).$$

This implies that $f(G) \subset f(f^{-1}(p\operatorname{Int}(f(G)_p^*))) \subset p\operatorname{Int}(f(G)_p^*)$. Hence f(G) is a $P\text{-}\mathcal{I}$ -open set in (Y, κ, \mathcal{I}) . Therefore f is $P\text{-}\mathcal{I}$ -open.

If f is an \mathcal{I} -open mapping then does Theorem 3.13 hold? The answer is negative as seen in the following example.

Example 3.14. In Example 3.12, let $B = \{1, 2\}$. Then

$${\rm Int}(f^{-1}(B))={\rm Int}(\{a,b,c\})=\{a,b,c\}$$

and $f^{-1}(p\text{Int}(B_p^*)) = f^{-1}(p\text{Int}(\{2\})) = \{b, c\}$. Hence we know that $\text{Int}(f^{-1}(B)) \not\subset f^{-1}(p\text{Int}(B_p^*))$.

Theorem 3.15. Let $f:(X,\tau)\to (Y,\kappa,\mathcal{I})$ be a mapping. Then f is P- \mathcal{I} -closed if and only if it satisfies the following assertion:

$$(3.3) pCl(((f(Cl(A))^c)_n^*)^c) \subset f(Cl(A))$$

for A in X.

Proof. Let f be a P- \mathcal{I} -closed mapping. Then

$$f(\mathrm{Cl}(A))^c \subset p\mathrm{Int}((f(\mathrm{Cl}(A))^c)_n^*).$$

Hence $p\mathrm{Cl}(((f(\mathrm{Cl}(A))^c)_p^*)^c) \subset f(\mathrm{Cl}(A)).$

Conversely, assume that (3.3) is valid and let B be a closed set in X. Then

$$p\mathrm{Cl}(((f(B)^c)_p^*)^c) = p\mathrm{Cl}(((f(\mathrm{Cl}(B))^c)_p^*)^c) \subset f(\mathrm{Cl}(B)) = f(B).$$

This implies that $f(B)^c \subset p \operatorname{Int}((f(B)^c)_p^*)$. Hence f is a $P - \mathcal{I}$ -closed mapping. \square

If f is an \mathcal{I} -closed mapping then do f satisfy the following assertion?

$$p\mathrm{Cl}(((f(\mathrm{Cl}(A))^c)^*_p)^c) \subset f(\mathrm{Cl}(A))$$

The answer is negative as seen in the following example.

Example 3.16. Let (X, τ) be a topological space with $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$, and consider an ideal topological space (Y, κ, \mathcal{I}) where $Y = \{1, 2, 3, 4\}$, $\kappa = \{\emptyset, Y, \{3\}, \{1, 2\}, \{1, 2, 3\}\}$, and $\mathcal{I} = \{\emptyset, \{1\}\}$. Then a mapping $f: (X, \tau) \to (Y, \kappa, \mathcal{I})$ given by f(a) = 2 = f(b), f(c) = 1, and f(d) = 4 is an \mathcal{I} -closed mapping. Let $A = \{d\}$. Then we know that $p\mathrm{Cl}(((f(\mathrm{Cl}(A))^c)_p^*)^c) = \{1\}$ and $f(\mathrm{Cl}(A)) = \{4\}$. Hence

$$p\mathrm{Cl}(((f(\mathrm{Cl}(A))^c)_p^*)^c) \not\subset f(\mathrm{Cl}(A)).$$

Theorem 3.17. Let $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ be P-I-open such that

$$(3.4) \qquad (\forall A \subset X)(f(A^*) \subset f(A)_p^* \ or \ f(A^*) \subset f(A)).$$

Then the image of each I-open set is P-I-open.

Proof. Suppose that $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ is a P- \mathcal{I} -open mapping. Let A be an \mathcal{I} -open set in X. Then $A\subset \operatorname{Int}(A^*)$. Since f is a P- \mathcal{I} -open mapping, $f(\operatorname{Int}(A^*))$ is a P- \mathcal{I} -open set in Y. It follows that

$$f(A) \subset f(\operatorname{Int}(A^*)) \subset p\operatorname{Int}(f(\operatorname{Int}(A^*))_p^*) \subset p\operatorname{Int}(f(A^*)_p^*)$$

Since $f(A^*) \subset f(A)_p^*$ or $f(A^*) \subset f(A)$, we have

$$f(A) \subset p \operatorname{Int}((f(A)_p^*)_p^*) \subset p \operatorname{Int}(f(A)_p^*),$$
 and so $f(A) \subset p \operatorname{Int}(f(A)_p^*)$.

The converse of Theorem 3.17 is not valid as seen in the following example.

Example 3.18. Consider two ideal topological spaces (X, τ, \mathcal{I}) and (Y, κ, \mathcal{J}) where $X = \{a, b, c, d\}, \ \tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}, \ \mathcal{I} = \{\emptyset, \{a\}\}, \ Y = \{1, 2, 3, 4\}, \ \kappa = \{\emptyset, Y, \{1, 2\}, \{1, 2, 3\}\}, \ \text{and} \ \mathcal{J} = \{\emptyset, \{3\}\}.$ Then a mapping $f: (X, \tau, \mathcal{I}) \to (Y, \kappa, \mathcal{J})$ given by f(a) = 1, f(b) = 2 = f(c) and f(d) = 4 is a P- \mathcal{I} -open mapping in which the image of each \mathcal{I} -open set is a P- \mathcal{I} -open set. But if $A = \{b, c\}$ then $f(A^*) = f(X) = \{1, 2, 4\} \not\subset \{2\} = f(A)^*_n = f(A)$.

Corollary 3.19. Let $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ be P- \mathcal{I} -open. Assume that every subset A of X satisfies $f(A^*)\subset f(A)_p^*$ or $f(A^*)\subset f(A)$. Then the image of each P- \mathcal{I} -open set is P- \mathcal{I} -open.

Proof. We can obtain the result by analogous way to Theorem 3.17.

We have a question: In Theorem 3.17, if we use the following condition

$$(3.5) \qquad (\forall A \subset X)(f(A^*) \subset f(A)^*)$$

instead of the condition (3.4), then does Theorem 3.17 hold?

We provide a partial answer to the above question.

Theorem 3.20. Let $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ be P-I-open such that

(3.6)
$$(\forall A \subset X)(f(A^*) \subset f(A)^*)$$
$$(\forall B \subset Y)((B^*)_p^* \subset B_p^*).$$

Then the image of each \mathcal{I} -open set is P- \mathcal{I} -open.

Proof. Suppose that $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ is P- \mathcal{I} -open. Let A be an \mathcal{I} -open set in X. Then $A\subset \operatorname{Int}(A^*)$. Since f is P- \mathcal{I} -open, $f(\operatorname{Int}(A^*))$ is a P- \mathcal{I} -open set in Y. It follows that

$$f(A) \subset f(\operatorname{Int}(A^*))$$

$$\subset p\operatorname{Int}(f(\operatorname{Int}(A^*))_p^*)$$

$$\subset p\operatorname{Int}(f(A^*)_p^*)$$

$$\subset p \operatorname{Int}((f(A)^*)_p^*)$$

 $\subset p \operatorname{Int}(f(A)_p^*).$

Hence f(A) is a P- \mathcal{I} -open set in Y.

Theorem 3.21. Let $f:(X,\tau)\to (Y,\kappa,\mathcal{I})$ be a P-I-open mapping. If $W\subset Y$ and F is a closed set in X containing $f^{-1}(W)$, then there exists a P-I-closed set H in Y containing W such that $f^{-1}(H)\subset F$.

Proof. Let $f:(X,\tau)\to (Y,\kappa,\mathcal{I})$ be a P- \mathcal{I} -open mapping. Suppose that $W\subset Y$ and F is a closed set in X containing $f^{-1}(W)$. Then F^c is open in X and $f(F^c)$ is P- \mathcal{I} -open in Y. Putting $H:=f(F^c)^c$, we get

$$f^{-1}(W) \subset F \Rightarrow f^{-1}(W^c) \supset F^c$$

$$\Rightarrow f(f^{-1}(W^c)) \supset f(F^c)$$

$$\Rightarrow W^c \supset f(f^{-1}(W^c)) \supset f(F^c)$$

$$\Rightarrow W \subset f(F^c)^c = H,$$

and $f^{-1}(H) = f^{-1}(f(F^c)^c) \subset (F^c)^c = F$. Hence H is a P- \mathcal{I} -closed set containing W and $f^{-1}(H) \subset F$.

Lemma 3.22. For any bijective mapping $f:(X,\tau)\to (Y,\kappa,\mathcal{I}),\ f$ is P-I-open if and only if f is P-I-closed.

Proof. Suppose that f is P- \mathcal{I} -open. Let F be closed in X. Then F^c is open in X. This implies that $f(F^c) = f(F)^c$ is P- \mathcal{I} -open in Y. Hence f(F) is P- \mathcal{I} -closed in Y. Therefore f is a P- \mathcal{I} -closed mapping.

Conversely, we can obtain the result by analogous way

Theorem 3.23. Let $f:(X,\tau)\to (Y,\kappa,\mathcal{J})$ and $g:(Y,\kappa,\mathcal{J})\to (Z,\delta,\mathcal{H})$ be two mappings, where $\mathcal{I},\mathcal{J},\mathcal{H}$ are ideals on X,Y and Z respectively. Then

- (i) $g \circ f$ is P-I-open if f is an open mapping and g is a P-I-open mapping.
- (ii) Assume that $g(V^*) \subset g(V)_p^*$ or $g(V^*) \subset g(V)$ for every subset V of Y. If f is \mathcal{I} -open and g is P- \mathcal{I} -open, then $g \circ f$ is P- \mathcal{I} -open.

Proof. (i) Straightforward.

(ii) Let $A \subset X$ be an open set. Since f is \mathcal{I} -open, f(A) is an \mathcal{I} -open set. Since g is P- \mathcal{I} -open, it follows from Theorem 3.17 that g(f(A)) is a P- \mathcal{I} -open set. Hence $g \circ f$ is a P- \mathcal{I} -open mapping.

Corollary 3.24. Let $f:(X,\tau) \to (Y,\kappa,\mathcal{J})$ and $g:(Y,\kappa,\mathcal{J}) \to (Z,\delta,\mathcal{H})$ be two mappings, where $\mathcal{I},\mathcal{J},\mathcal{H}$ are ideals on X,Y and Z respectively. Assume that $g(V^*) \subset g(V)_p^*$ or $g(V^*) \subset g(V)$ for every subset V of Y. If f is P- \mathcal{I} -open and g is P- \mathcal{I} -open, then $g \circ f$ is P- \mathcal{I} -open.

Proof. Straightforward.

If f is P- \mathcal{I} -open and g is P- \mathcal{I} -open then is $g \circ f$ P- \mathcal{I} -open? The answer is negative as seen in the following example.

Example 3.25. Consider a topological space

$$(X = \{1, 2, 3, 4\}, \tau = \{\emptyset, X, \{1, 2\}, \{1, 2, 3\}\})$$

and ideal topological spaces (Y, κ, \mathcal{J}) and (Z, δ, \mathcal{H}) where $Y = \{x, y, z\}$, $\kappa = \{\emptyset, Y, \{x\}\}$, $\mathcal{J} = \{\emptyset, \{y\}\}$, $Z = \{a, b, c, d\}$, $\delta = \{\emptyset, Z, \{c\}, \{a, b\}, \{a, b, c\}\}$, and $\mathcal{H} = \{\emptyset, \{a\}\}$. A mapping $f: (X, \tau) \to (Y, \kappa, \mathcal{J})$ given by f(1) = x, f(2) = y = f(3), and f(4) = z is a P- \mathcal{I} -open mapping. And a mapping $g: (Y, \kappa, \mathcal{J}) \to (Z, \delta, \mathcal{H})$ given by g(x) = b, g(y) = d, and g(z) = c is a P- \mathcal{I} -open mapping. Let $A = \{1, 2\} \in \tau$. Then $g \circ f(A) = \{b, d\}$ is not a P- \mathcal{I} -open set in (Z, δ, \mathcal{H}) . Hence $g \circ f$ is not a P- \mathcal{I} -open mapping.

Remark 3.26. From Theorem 3.3 and Example 3.25, we know that the answers to the following questions are negative.

- (i) If a mapping f is P- \mathcal{I} -open and a mapping g is \mathcal{I} -open, then is $g \circ f$ P- \mathcal{I} -open?
- (ii) If a mapping f is \mathcal{I} -open and a mapping g is P- \mathcal{I} -open, then is $g \circ f$ P- \mathcal{I} -open?
- (iii) If a mapping f is \mathcal{I} -open and a mapping g is \mathcal{I} -open, then is $g \circ f$ P- \mathcal{I} -open?

If a mapping f is P- \mathcal{I} -open and a mapping g is open, then is $g \circ f$ P- \mathcal{I} -open? The answer is negative as seen in the following example.

Example 3.27. Consider the example as presented in Example 3.25. A mapping $f:(X,\tau)\to (Y,\kappa,\mathcal{J})$ given by f(1)=x, f(2)=y=f(3), and f(4)=z is a P- \mathcal{I} -open mapping. And a mapping $g:(Y,\kappa,\mathcal{J})\to (Z,\delta,\mathcal{H})$ given by g(x)=c, g(y)=a, and g(z)=b is an open mapping. Let $A=\{1,2\}\in\tau$. Then $g\circ f(A)=\{a,c\}$ is not a P- \mathcal{I} -open set in (Z,δ,\mathcal{H}) . Hence $g\circ f$ is not a P- \mathcal{I} -open mapping.

Let $f:(X,\tau)\to (Y,\kappa,\mathcal{J})$ and $g:(Y,\kappa,\mathcal{J})\to (Z,\delta,\mathcal{H})$ be two mappings. We have two questions as follow.

- (i) If $g \circ f$ is P- \mathcal{I} -open and g is P- \mathcal{I} -open, then is f an open mapping?
- (ii) If $g \circ f$ is P- \mathcal{I} -open and f is open, then is g a P- \mathcal{I} -open mapping?

The answers to these questions are negative as seen in the following two examples.

Example 3.28. Let $X = \{1, 2, 3, 4\}$, $\tau = \{\emptyset, X, \{1, 2\}, \{1, 2, 3\}\}$. Let $Y = \{x, y, z\}$ $\kappa = \{\emptyset, Y, \{x\}\}, \mathcal{J} = \{\emptyset, \{y\}\} \text{ and let } Z = \{a, b, c, d\}, \delta = \{\emptyset, Z, \{c\}, \{a, b\}, \{a, b, c\}\}, \mathcal{H} = \{\emptyset, \{a\}\}$. Consider mappings $f : (X, \tau) \to (Y, \kappa, \mathcal{J})$ given by f(1) = x = f(2), f(3) = z = f(4) and $g : (Y, \kappa, \mathcal{J}) \to (Z, \delta, \mathcal{H})$ given by g(x) = b, g(y) = d and g(z) = c. Then $g \circ f$ and g are P- \mathcal{I} -open. But f is not an open mapping because $f(A) = \{x, z\} \notin \kappa$ for $A = \{1, 2, 3\} \in \tau$.

Example 3.29. Let $X = \{1, 2, 3, 4\}$, $\tau = \{\emptyset, X, \{1, 2\}, \{1, 2, 3\}\}$. Let $Y = \{x, y, z\}$ $\kappa = \{\emptyset, Y, \{x\}, \{x, y\}\}$, $\mathcal{J} = \{\emptyset, \{y\}\}$ and let $Z = \{a, b, c, d\}$, $\delta = \{\emptyset, Z, \{c\}, \{a, b\}, \{a, b, c\}\}$, $\mathcal{H} = \{\emptyset, \{a\}\}$. Consider mappings $f : (X, \tau) \to (Y, \kappa, \mathcal{J})$ given by f(1) = f(2) = f(3) = x, f(4) = y and $g : (Y, \kappa, \mathcal{J}) \to (Z, \delta, \mathcal{H})$ given by g(x) = b, g(y) = c, g(z) = a. Then $g \circ f$ is P- \mathcal{I} -open and f is open. But g is not a P- \mathcal{I} -open mapping because $g(Y) = \{a, b, c\}$ is not a P- \mathcal{I} -open set in Z.

4. P-I-CONTINUOUS MAPPINGS

Definition 4.1. A mapping $f:(X,\tau,\mathcal{I})\to (Y,\kappa)$ is said to be $P\text{-}\mathcal{I}$ -continuous if $f^{-1}(V)\in P\mathcal{I}O(X,\tau,\mathcal{I})$ for all $V\in\kappa$.

Example 4.2. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$ and an ideal $\mathcal{I} = \{\emptyset, \{c\}\}$. Then we know that

$$P\mathcal{I}O(X,\tau,\mathcal{I}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,d\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, X\}.$$

Let $Y = \{1, 2, 3, 4, 5\}$ with topology $\kappa = \{\emptyset, Y, \{2\}, \{3\}, \{2, 3\}\}$. Then a mapping $f: (X, \tau, \mathcal{I}) \to (Y, \kappa)$ given by f(a) = 2, f(b) = 3, and f(c) = 5 = f(d) is a P- \mathcal{I} -continuous mapping.

Theorem 4.3. If a mapping $f:(X,\tau,\mathcal{I})\to (Y,\kappa)$ is P-I-continuous, then it is I-continuous.

Proof. It follows from Theorem 2.8.

Corollary 4.4. If a mapping $f:(X,\tau,\mathcal{I})\to (Y,\kappa)$ is P-I-continuous, then it is pre-continuous.

Proof. It follows from Remark 2.9.

Is any \mathcal{I} -continuous mapping a P- \mathcal{I} -continuous mapping? The answer to this question is negative as seen in the following example.

Example 4.5. Consider an ideal topological space (X, τ, \mathcal{I}) where $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{c\}, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then

$$PIO(X, \tau, I) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}\},\$$

$$\mathcal{I}O(X,\tau,\mathcal{I}) = \{\emptyset,\{b\},\{c\},\{a,b\},\{b,c\},\{a,b,c\},\{b,c,d\},X\}.$$

Let (Y, κ) be a topological space where $Y = \{1, 2, 3, 4\}$ and

$$\kappa = {\emptyset, Y, {1}, {2}, {1, 2}, {1, 2, 3}}.$$

Consider a mapping $f: (X, \tau, \mathcal{I}) \to (Y, \kappa)$ given by f(a) = 3 = f(d), f(b) = 1 and f(c) = 2. Then $f^{-1}(\{1\}) = \{b\}$, $f^{-1}(\{2\}) = \{c\}$, $f^{-1}(\{1,2\}) = \{b,c\}$ and $f^{-1}(\{1,2,3\}) = X = f^{-1}(Y)$. Hence f is \mathcal{I} -continuous. But f is not P- \mathcal{I} -continuous because $f^{-1}(\{1,2,3\}) = X$ is not P- \mathcal{I} -open.

Is any P- \mathcal{I} -continuous mapping a continuous mapping and vice versa? The following examples show that the answer to this question is negative.

Example 4.6. Let (X, τ, \mathcal{I}) be an ideal topological space with $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$, and $\mathcal{I} = \{\emptyset, \{a\}\}$. Consider a topological space (Y, κ) with $Y = \{1, 2, 3\}$ and $\kappa = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}\}$. Let $f: (X, \tau, \mathcal{I}) \to (Y, \kappa)$ be defined by f(a) = f(b) = f(c) = 1 and f(d) = 3. Then $f^{-1}(\{1\}) = \{a, b, c\} = f^{-1}(\{1, 2\})$, $f^{-1}(\{2\}) = \emptyset$ and $f^{-1}(Y) = X$. Hence f is continuous. But f is not P- \mathcal{I} -continuous because $f^{-1}(Y) = X$ is not P- \mathcal{I} -open.

Example 4.7. Consider an ideal topological space (X, τ, \mathcal{I}) with $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$, and $\mathcal{I} = \{\emptyset, \{b\}\}$. Let $Y = \{1, 2, 3, 4\}$ with topology $\kappa = \{\emptyset, Y, \{1, 2\}, \{1, 2, 3\}\}$. Define a mapping $g: (X, \tau, \mathcal{I}) \to (Y, \kappa)$ by g(a) = 1, g(b) = 2 and g(c) = 4. Then $g^{-1}(\{1, 2\}) = \{a, b\} = f^{-1}(\{1, 2, 3\})$ and $f^{-1}(Y) = X$. Hence f is P- \mathcal{I} -continuous. However, f is not continuous because $f^{-1}(\{1, 2\}) = \{a, b\}$ is not open.

Definition 4.8. Let (X, τ, \mathcal{I}) be an ideal topological space. A subset S of X is called a P- \mathcal{I} -neighborhood of x if S is a superset of a P- \mathcal{I} -open set G containing x.

Example 4.9. Let $X = \{a, b, c, d\}$ with a topology $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$ and an ideal $\mathcal{I} = \{\emptyset, \{c\}\}$. Then

$$PIO(X, \tau, \mathcal{I}) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\},\$$

and the set $S = \{a, c, d\}$ is a P- \mathcal{I} -neighborhood of a because there exists a P- \mathcal{I} -open set $\{a, d\}$ such that $a \in \{a, d\} \subset S$. But S is not a P- \mathcal{I} -neighborhood of c.

Theorem 4.10. For a mapping $f:(X,\tau,\mathcal{I})\to (Y,\kappa)$, the following statements are equivalent.

- (i) f is P- \mathcal{I} -continuous.
- (ii) For each $x \in X$ and each $V \in \kappa$ containing f(x), there exists

$$W \in P\mathcal{I}O(X, \tau, \mathcal{I})$$

containing x such that $f(W) \subset V$.

- (iii) For each $x \in X$ and each $V \in \kappa$ containing f(x), $f^{-1}(V)_p^*$ is a P-I-neighborhood of x.
- (iv) For each $x \in X$ and each $V \in \kappa$ containing f(x), $f^{-1}(V)_p^*$ is a preneighborhood of x.
- *Proof.* (i) \Rightarrow (ii) Let $x \in X$ and $V \in \kappa$ containing f(x). Since f is P- \mathcal{I} -continuous, $f^{-1}(V)$ is a P- \mathcal{I} -open set. Putting $W := f^{-1}(V)$, we have $f(W) \subset V$.
- (ii) \Rightarrow (i) Let A be an open set in Y. If $f^{-1}(A) = \emptyset$ then $f^{-1}(A)$ is clearly $P\text{-}\mathcal{I}$ -open. Assume that $f^{-1}(A) \neq \emptyset$. Let $x \in f^{-1}(A)$. Then $f(x) \in A$, which implies that there exist $P\text{-}\mathcal{I}$ -open W containing x such that $f(W) \subset A$. Thus $W \subset f^{-1}(f(W)) \subset f^{-1}(A)$. Since W is $P\text{-}\mathcal{I}$ -open, $x \in W \subset p\mathrm{Int}(W_p^*) \subset p\mathrm{Int}(f^{-1}(A)_p^*)$ and so $f^{-1}(A) \subset p\mathrm{Int}(f^{-1}(A)_p^*)$. Hence $f^{-1}(A)$ is a $P\text{-}\mathcal{I}$ -open set and so f is $P\text{-}\mathcal{I}$ -continuous.
- (ii) \Rightarrow (iii) Let $x \in X$ and $V \in \kappa$ containing f(x). Then there exist P- \mathcal{I} -open W containing x such that $f(W) \subset V$. It follows that $W \subset f^{-1}(f(W)) \subset f^{-1}(V)$. Since W is P- \mathcal{I} -open,

$$x \in W \subset p \operatorname{Int}(W_n^*) \subset p \operatorname{Int}(f^{-1}(V)_n^*) \subset f^{-1}(V)_n^*$$

Hence $f^{-1}(V)_p^*$ is a P- \mathcal{I} -neighborhood of x.

- (iii) ⇒ (iv) By Remark 2.9, it is straightforward.
- (iv) \Rightarrow (i) Let A be an open set in Y. If $f^{-1}(A) = \emptyset$ then $f^{-1}(A)$ is clearly P- \mathcal{I} -open. Assume that $f^{-1}(A) \neq \emptyset$ and let $x \in f^{-1}(A)$. Then $f(x) \in A$. Since $f^{-1}(A)_p^*$ is a pre-neighborhood of x, there exists a pre-open set H such that $x \in H \subset f^{-1}(A)_p^*$. Since H is pre-open, $x \in H = p \operatorname{Int}(H) \subset p \operatorname{Int}(f^{-1}(A)_p^*)$ and so

 $f^{-1}(A) \subset p \operatorname{Int}(f^{-1}(A)_p^*)$. Hence $f^{-1}(A)$ is a P- \mathcal{I} -open set. Therefore f is P- \mathcal{I} -continuous.

Theorem 4.11. For a mapping $f:(X,\tau,\mathcal{I})\to (Y,\kappa)$, the following statements are equivalent.

- (i) f is P-I-continuous.
- (ii) The inverse image of each closed set in Y is P-I-closed.
- (iii) For each subset A of Y, $f^{-1}(\operatorname{Int}(A)) \subset p\operatorname{Int}(f^{-1}(A)_p^*)$.

Proof. (i) \Rightarrow (ii) Let F be a closed subset of X. Then F^c is open in Y. Since f is P- \mathcal{I} -continuous, $f^{-1}(F^c) = (f^{-1}(F))^c$ is P- \mathcal{I} -open. Hence $f^{-1}(F)$ is P- \mathcal{I} -closed.

- (ii) \Rightarrow (i) Let G be an open set in (Y, κ) . Then G^c is closed. By (ii), $f^{-1}(G^c) = (f^{-1}(G))^c$ is P- \mathcal{I} -closed. Hence $f^{-1}(G)$ is P- \mathcal{I} -open, and so f is P- \mathcal{I} -continuous.
- (i) \Rightarrow (iii) Suppose that f is P- \mathcal{I} -continuous. Let A be a subset of Y. Then $f^{-1}(\operatorname{Int}(A))$ is P- \mathcal{I} -open. It follows that

$$f^{-1}(\operatorname{Int}(A)) \subset p\operatorname{Int}(f^{-1}(\operatorname{Int}(A))_{p}^{*}) \subset p\operatorname{Int}(f^{-1}(A)_{p}^{*}).$$

(iii) \Rightarrow (i) Let A be an open set in (Y, κ) . Then $f^{-1}(A) = f^{-1}(\operatorname{Int}(A)) \subset p\operatorname{Int}(f^{-1}(A)_p^*)$ by (iii). Hence $f^{-1}(A)$ is P- \mathcal{I} -open. Therefore f is P- \mathcal{I} -continuous.

Proposition 4.12. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following statements are equivalent.

- (i) $X = X_n^*$.
- (ii) $\tau^p \cap \mathcal{I} = \{\emptyset\}$. $(\tau^p \text{ is a set of all pre-open sets in } (X, \tau))$.
- (iii) If $A \in \mathcal{I}$, then $pInt(A) = \emptyset$.

Proof. (i) \Rightarrow (ii) Suppose that $\tau^p \cap \mathcal{I} \neq \{\emptyset\}$. Then there exists $G(\neq \emptyset) \in \tau^p \cap \mathcal{I}$. Let $a \in G$, i.e., $a \notin X \setminus G$. Then $G \in \tau^p(a)$ and $X \cap G = G \in \mathcal{I}$. Thus $a \notin X_p^*$ and so $X_p^* \subset X \setminus G$. Since $G \neq \emptyset$, $X_p^* \neq X$. This is a contradiction. Hence $\tau^p \cap \mathcal{I} = \{\emptyset\}$.

- (ii) \Rightarrow (iii) Let $A \in \mathcal{I}$. If $A = \emptyset$ then clearly $p \operatorname{Int}(A) = \emptyset$. Assume that A is not empty. Then for every $H \in \tau^p \setminus \{\emptyset\}$, we have $H \notin \mathcal{I}$ by (ii) and so, $H \not\subset A$. Hence $p \operatorname{Int}(A) = \emptyset$.
- (iii) \Rightarrow (i) Let $x \in X$. If there exist $G_x \in \tau^p(x)$ such that $G_x \cap X \in \mathcal{I}$, then $G_x = p \operatorname{Int}(G_x) = p \operatorname{Int}(G_x \cap X) = \emptyset$ by (iii). It is a contradiction. Hence $G_x \cap X \notin \mathcal{I}$ for every $G_x \in \tau^p(x)$ and so $x \in X_p^*$. This means that $X = X_p^*$.

Theorem 4.13. Let (X, τ, \mathcal{I}) be an ideal topological space. If $U \subset U_p^*$ for every pre-open U, then $X = X_p^*$.

Proof. Since X is always pre-open, $X \subset X_p^*$ by the hypothesis. In general, $X_p^* \subset X$. Hence $X = X_p^*$

The converse of Theorem4.13 may not be true as seen in the following example.

Example 4.14. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$, ideal $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\tau^p = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. We knows that $X = X_p^*$ but there exist a pre-open set $\{a, c\}$ such that $\{a, c\} \not\subset \{a, c\}_p^* = \{a\}$.

Theorem 4.15. If $f:(X,\tau,\mathcal{I})\to (Y,\kappa)$ is P-I-continuous, then $X=X_p^*$.

Proof. Suppose that $f:(X,\tau,\mathcal{I})\to (Y,\kappa)$ is $P\text{-}\mathcal{I}$ -continuous. Since Y is an open set in (Y,κ) and f is $P\text{-}\mathcal{I}$ -continuous, $f^{-1}(Y)=X$ is a $P\text{-}\mathcal{I}$ -open set and thus $X\subset p\mathrm{Int}(X_p^*)\subset X_p^*$. Hence $X=X_p^*$ because $X_p^*\subset X$ in general. \square

The converse of Theorem 4.15 may not be true as seen in the following example. **Example 4.16.** Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$, ideal $\mathcal{I} = \{\emptyset, \{c\}\}$. Let $Y = \{1, 2, 3\}$ with a topology $\kappa = \{\emptyset, Y, \{1\}, \{1, 2\}\}$, ideal $\mathcal{J} = \{\emptyset, \{2\}\}$. Consider a mapping $f: X \to Y$ defined by f(a) = 2 = f(b), f(c) = 1, f(d) = 3. Then $X = X_p^*$ but f is not P- \mathcal{I} -continuous.

Remark 4.17. By Proposition 4.12 and Theorem 4.15, we can deduce that if $f:(X,\tau,\mathcal{I})\to (Y,\kappa)$ is $P\text{-}\mathcal{I}$ -continuous, then the following statements are valid.

- (i) $X = X_n^*$.
- (ii) $\tau^p \cap \mathcal{I} = \{\emptyset\}$, $(\tau^p \text{ is a set of all pre-open sets in } (X, \tau)).$
- (iii) If $A \in \mathcal{I}$, then $pInt(A) = \emptyset$.

5. $P-\mathcal{I}$ -IRRESOLUTE MAPPINGS

Definition 5.1. A mapping $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ is said to be $P\text{-}\mathcal{I}$ -irresolute if $f^{-1}(V)\in P\mathcal{I}O(X,\tau,\mathcal{I})$ for all $V\in P\mathcal{I}O(Y,\kappa,\mathcal{J})$.

Definition 5.2. A mapping $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ is said to be \mathcal{I} -irresolute if $f^{-1}(V)\in \mathcal{I}O(X,\tau,\mathcal{I})$ for all $V\in \mathcal{I}O(Y,\kappa,\mathcal{J})$.

Example 5.3. Let (X, τ, \mathcal{I}) be an ideal topological space with $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{c\}, \{a, b\}, \{a, b, c\}\}, \mathcal{I} = \{\emptyset, \{a\}\}, \text{ and let } (Y, \kappa, \mathcal{I}) \text{ be an ideal topological space with } Y = \{1, 2, 3, 4\}, \kappa = \{\emptyset, Y, \{1, 2\}, \{1, 2, 3\}\} \text{ and } \mathcal{I} = \{\emptyset, \{2\}\}.$ Then

$$\mathcal{I}O(X,\tau,\mathcal{I}) = \{\emptyset, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{b,c,d\}, X\}, \\ P\mathcal{I}O(X,\tau,\mathcal{I}) = \{\emptyset, \{b\}, \{c\}, \{b,c\}, \{b,c,d\}\}, \\ \mathcal{I}O(Y,\kappa,\mathcal{J}) = \{\emptyset, \{1\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, Y\}, \\ P\mathcal{I}O(Y,\kappa,\mathcal{J}) = \{\emptyset, \{1\}, \{1,3\}, \{1,4\}, \{1,3,4\}\}.$$

- (a) A mapping $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ given by f(a)=2, f(b)=1, f(c)=4=f(d) is both P- \mathcal{I} -irresolute and \mathcal{I} -irresolute.
- (b) A mapping $g:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ given by $g(a)=2=g(d),\ g(b)=1,$ g(c)=3 $P\text{-}\mathcal{I}$ -irresolute which is not \mathcal{I} -irresolute.
- (c) A mapping $h: (X, \tau, \mathcal{I}) \to (Y, \kappa, \mathcal{J})$ given by h(a) = 3, h(b) = 1, $h(c) = 2 = h(d) \mathcal{I}$ -irresolute which is not P- \mathcal{I} -irresolute.
- (d) A mapping $i:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ given by $i(a)=1,\ i(b)=2=i(c),$ i(d)=3 is neither \mathcal{I} -irresolute nor P- \mathcal{I} -irresolute.

The above example shows that an \mathcal{I} -irresolute mapping and a P- \mathcal{I} -irresolute mapping are independent.

Theorem 5.4. If a mapping $f:(X,\tau,\mathcal{I})\to (Y,\kappa)$ satisfy the following conditions,

- f is P-I-continuous.
- $f^{-1}(V^*) \subset f^{-1}(V)$ or $f^{-1}(V^*) \subset f^{-1}(V)_p^*$ for each $V \subset Y$.

then f is both an I-irresolute mapping and a P-I-irresolute mapping.

Proof. Assume that f satisfy two conditions. It is sufficient to show that the inverse image of \mathcal{I} -open set is P- \mathcal{I} -open set because every P- \mathcal{I} -open set is an \mathcal{I} -open set by Theorem 2.8. Let A be an \mathcal{I} -open set. Then $A \subset \operatorname{Int}(A^*)$. Since f is P- \mathcal{I} -continuous, $f^{-1}(\operatorname{Int}(A^*))$ is P- \mathcal{I} -open and hence $f^{-1}(\operatorname{Int}(A^*)) \subset p\operatorname{Int}(f^{-1}(\operatorname{Int}(A^*))_p^*)$. It follows from the second condition that

$$f^{-1}(A) \subset p \operatorname{Int}(f^{-1}(\operatorname{Int}(A^*))_p^*)$$
$$\subset p \operatorname{Int}(f^{-1}(A^*)_p^*)$$
$$\subset p \operatorname{Int}(f^{-1}(A)_p^*).$$

Hence $f^{-1}(A)$ is P- \mathcal{I} -open. Since every P- \mathcal{I} -open set is an \mathcal{I} -open set by Theorem 2.8, f is both an \mathcal{I} -irresolute mapping and a P- \mathcal{I} -irresolute mapping.

The following example shows that a P- \mathcal{I} -continuous mapping is neither an \mathcal{I} -irresolute mapping nor a P- \mathcal{I} -irresolute mapping.

Example 5.5. Consider two ideal topological spaces (X, τ, \mathcal{I}) and (Y, κ, \mathcal{J}) where $X = \{a, b, c, d\}, \ \tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}, \ \mathcal{I} = \{\emptyset, \{c\}\}, \ Y = \{1, 2, 3, 4\}, \ \kappa = \{\emptyset, Y, \{3\}, \{1, 2\}, \{1, 2, 3\}\}, \ \text{and} \ \mathcal{J} = \{\emptyset, \{1\}\}.$ Define a mapping $f: (X, \tau, \mathcal{I}) \to \{0, \{1\}\}$.

 (Y, κ, \mathcal{J}) by f(a) = 3, f(b) = 1, f(c) = 4 and f(d) = 2. Then f is a P- \mathcal{I} -continuous mapping. Note that $A = \{2\}$ is both an \mathcal{I} -open set and a P- \mathcal{I} -open set in (Y, κ, \mathcal{J}) . But $f^{-1}(A) = \{d\}$ is neither an \mathcal{I} -open set nor a P- \mathcal{I} -open set. Hence f is neither an \mathcal{I} -irresolute mapping nor a \mathcal{I} -irresolute mapping.

Theorem 5.6. If a mapping $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ satisfy the following conditions,

- f is I-continuous.
- $f^{-1}(V^*) \subset f^{-1}(V)$ or $f^{-1}(V^*) \subset f^{-1}(V)^*$ for each $V \subset Y$.

then f is an I-irresolute mapping.

Proof. Assume that f satisfy two given conditions. Let A be an \mathcal{I} -open set. Then $A \subset \operatorname{Int}(A^*)$. Since f is \mathcal{I} -continuous, $f^{-1}(\operatorname{Int}(A^*))$ is \mathcal{I} -open. It follows that

$$f^{-1}(A) \subset f^{-1}(\operatorname{Int}(A^*))$$

$$\subset \operatorname{Int}(f^{-1}(\operatorname{Int}(A^*))^*)$$

$$\subset \operatorname{Int}(f^{-1}(A^*)^*)$$

$$\subset \operatorname{Int}(f^{-1}(A)^*)$$

so that $f^{-1}(A)$ is \mathcal{I} -open. Therefore f is an \mathcal{I} -irresolute mapping.

The following example shows that although a mapping f satisfy two conditions of Theorem 5.6, f may not be a P- \mathcal{I} -irresolute mapping.

Example 5.7. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Let $Y = \{1, 2, 3\}$, $\kappa = \{\emptyset, Y, \{1\}, \{1, 2\}\}$, and $\mathcal{J} = \{\emptyset, \{2\}\}$. A mapping $f : (X, \tau, \mathcal{I}) \to (Y, \kappa, \mathcal{J})$ given by f(a) = f(c) = 1, f(b) = 2, and f(d) = 3 is \mathcal{I} -irresolute and satisfy the condition

$$f^{-1}(V^*) \subset f^{-1}(V)$$
 or $f^{-1}(V^*) \subset f^{-1}(V)^*$ for each $V \subset Y$.

But f is not P- \mathcal{I} -irresolute because $f^{-1}(\{1\}) = \{a,c\} \not\in P\mathcal{I}O(Y,\kappa,\mathcal{I})$.

Theorem 5.8. Let $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ be a mapping. If

$$f^{-1}(A_p^*) \subset p \operatorname{Int}(f^{-1}(A)_p^*)$$

for each $A \subset Y$, then f is a P- \mathcal{I} -irresolute mapping.

Proof. Let A be a P-I-open set. Then $A \subset pInt(A_p^*)$ which implies that

$$f^{-1}(A) \subset f^{-1}(p \mathrm{Int}(A_p^*)) \subset f^{-1}(A_p^*) \subset p \mathrm{Int}(f^{-1}(A)_p^*).$$

Hence f is a P- \mathcal{I} -irresolute mapping.

The converse of above theorem may not be true as seen in the following example.

Example 5.9. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Let $Y = \{1, 2, 3\}$, $\kappa = \{\emptyset, Y, \{1\}, \{1, 2\}\}$, and $\mathcal{J} = \{\emptyset, \{2\}\}$. A mapping $f : (X, \tau, \mathcal{I}) \to (Y, \kappa, \mathcal{J})$ given by f(a) = 1, f(b) = 2 = f(c) and f(d) = 3 is P- \mathcal{I} -irresolute. For a set $A = \{1\}$, we have

$$f^{-1}(A_p^*) = X \not\subset p \mathrm{Int}(f^{-1}(A)_p^*) = \{a\}.$$

If $f^{-1}(A_p^*) \subset p \operatorname{Int}(f^{-1}(A)_p^*)$ for each $A \subset Y$, then is f a \mathcal{I} -irresolute mapping? The answer is negative as seen in the following example.

Example 5.10. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{c\}, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Let $Y = \{1, 2, 3, 4\}$, $\kappa = \{\emptyset, Y, \{1, 2\}, \{1, 2, 3\}\}$, and $\mathcal{J} = \{\emptyset, \{2\}\}$. A mapping $f : (X, \tau, \mathcal{I}) \to (Y, \kappa, \mathcal{J})$ given by f(a) = 2 = f(d), f(b) = 1, f(c) = 3, is satisfied $f^{-1}(A_p^*) \subset p \text{Int}((f^{-1}(A))_p^*)$ for each $A \subset Y$. But f is not a \mathcal{I} -irresolute mapping because $f^{-1}(\{1, 2\}) = \{a, b, d\} \not\in \mathcal{I}O(X, \tau, \mathcal{I})$ for $\{1, 2\} \in \mathcal{I}O(Y, \kappa, \mathcal{J})$.

Theorem 5.11. Let $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ be a mapping. If

$$f^{-1}(A^*) \subset \operatorname{Int}(f^{-1}(A)^*)$$

for each $A \subset Y$, then f is an \mathcal{I} -irresolute mapping.

Proof. Let A be an \mathcal{I} -open set. Then $A \subset \operatorname{Int}(A^*)$ which implies that

$$f^{-1}(A) \subset f^{-1}(\text{Int}(A^*)) \subset f^{-1}(A^*) \subset \text{Int}(f^{-1}(A)^*).$$

Hence f is an \mathcal{I} -irresolute mapping.

The converse of above theorem may not be true as seen in the following example.

Example 5.12. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Let $Y = \{1, 2, 3\}$, $\kappa = \{\emptyset, Y, \{1\}, \{1, 2\}\}$, and $\mathcal{J} = \{\emptyset, \{2\}\}$. A mapping $f : (X, \tau, \mathcal{I}) \to (Y, \kappa, \mathcal{J})$ given by f(a) = 1 = f(c), f(b) = 2 and f(d) = 3 is \mathcal{I} -irresolute. For a set $A = \{3\}$, we obtain

$$f^{-1}(A_p^*) = \{d\} \not\subset p \text{Int}(f^{-1}(A)^*) = \emptyset.$$

If $f^{-1}(A^*) \subset \text{Int}(f^{-1}(A)^*)$ for each $A \subset Y$, then is f a P- \mathcal{I} -irresolute mapping? The answer is negative as seen in the following example.

Example 5.13. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Let $Y = \{1, 2, 3, 4\}$, $\kappa = \{\emptyset, Y, \{3\}, \{1, 2\}, \{1, 2, 3\}\}$, and $\mathcal{J} = \{\emptyset, \{1\}, \{3\}, \{1, 3\}\}$. A mapping $f: (X, \tau, \mathcal{I}) \to (Y, \kappa, \mathcal{J})$ given by f(a) = 2 = f(c), f(b) = 1, f(d) = 3,

is satisfied $f^{-1}(A^*) \subset \operatorname{Int}(f^{-1}(A)^*)$ for each $A \subset Y$. But f is not a P- \mathcal{I} -irresolute mapping because $f^{-1}(\{2\}) = \{a, c\} \notin P\mathcal{I}O(X, \tau, \mathcal{I})$ for $\{2\} \in P\mathcal{I}O(Y, \kappa, \mathcal{I})$.

Lemma 5.14 ([18]). Let A be a subset in an ideal topological space (X, τ, \mathcal{I}) . Then $p\text{Int}(A_p^*) \subset \text{Int}(A^*)$.

Lemma 5.15 ([18]). For any subset A of an ideal topological space (X, τ, \mathcal{I}) , we have

- (i) $A_p^* \subset A^*$.
- (ii) $A_p^* \subset p\mathrm{Cl}(A)$.

Corollary 5.16. Let $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ be a mapping. If

$$f^{-1}(A^*) \subset p \operatorname{Int}(f^{-1}(A)_p^*)$$

for each $A \subset Y$, then f is both an I-irresolute mapping and a P-I-irresolute mapping.

Proof. Since $A_p^* \subset A^*$ by Lemma 5.15(i), $f^{-1}(A_p^*) \subset f^{-1}(A^*)$. It follows that $f^{-1}(A_p^*) \subset f^{-1}(A^*) \subset p \operatorname{Int}(f^{-1}(A)_p^*) \subset \operatorname{Int}(f^{-1}(A)^*)$ by the hypothesis and Lemma 5.14. Thus f is both P- \mathcal{I} -irresolute and \mathcal{I} -irresolute by Theorem 5.8 and Theorem 5.11.

Theorem 5.17. For two mappings $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J})$ and $g:(Y,\kappa,\mathcal{J})\to (Z,\delta,\mathcal{H})$, the following statements are valid.

- (i) If f is P- \mathcal{I} -irresolute and g is P- \mathcal{I} -irresolute, then $g \circ f$ is P- \mathcal{I} -irresolute.
- (ii) If f is P-I-irresolute and q is P-I-continuous, then $q \circ f$ is P-I-continuous.
- (iii) If f is \mathcal{I} -irresolute and g is \mathcal{I} -irresolute, then $g \circ f$ is \mathcal{I} -irresolute.
- (iv) If f is \mathcal{I} -irresolute and g is P- \mathcal{I} -continuous, then $g \circ f$ is \mathcal{I} -continuous.

(v) If f is \mathcal{I} -irresolute and g is \mathcal{I} -continuous, then $g \circ f$ is \mathcal{I} -continuous.

Proof. Straightforward.

Theorem 5.18. Let mapping $f:(X,\tau,\mathcal{I})\to (Y,\kappa,\mathcal{J}),\ g:(Y,\kappa,\mathcal{J})\to (Z,\delta,\mathcal{H}).$ If g is an injective mapping then the followings are valid.

- (i) If g is P- \mathcal{I} -open and $g \circ f$ is P- \mathcal{I} -irresolute, then f is P- \mathcal{I} -continuous.
- (ii) If g is \mathcal{I} -open and $g \circ f$ is \mathcal{I} -irresolute, then f is \mathcal{I} -continuous.
- (iii) If g is open and $g \circ f$ is P-I-continuous, then f is P-I-continuous.
- (iv) If q is open and $g \circ f$ is \mathcal{I} -continuous, then f is \mathcal{I} -continuous.

Proof. Straightforward.

References

- M.E. Abd El-Monsef, E.F. Lashien & A.A. Nasef: On I-open sets and I-continious funtions. Kyungpook. Math. J. 32 (1992), 21-30.
- 2. A. Açikgöz, T. Noiri & Ş. Yüksel: On δ -I-open sets and decomposition of α -I-continuity. Acta Math. Hungar. 102 (2004), no. 4, 349-357.
- 3. _____: On α -I-continuous and α -I-open functions. Acta Math. Hungar. 105 (2004), no. 1-2, 27-37.
- 4. D. Andrijevic: On b-open sets. Mat. Vesnik 48, (1996), 59-64.
- 5. _____: Some properties of the topology of α -sets. Mat. Vesnik 36 (1984), 1-10.
- 6. M. Akdağ: On b-I-open sets and b-I-continuous functions. Internat. J. Math. Math. Sci. 2007 Article ID 75721, 13 pages.
- 7. M. Caldas: A note on some applications of α -sets. Int. J. Math. Math. Sci. 2003 (2003), no. 2, 125-130.
- 8. M. Caldas & J. Dontchev: On spaces with hereditarily compact α -topologies. Acta Math. Hung. 82 (1999), 121-129.
- 9. E. Hatir, A. Keskin & T. Noiri: A note on strong β -I-open sets and strongly β -I-continuous functions Acta Math. Hungar. 108 (2005), no. 1-2, 87-94.
- 10. E. Hatir & T. Noiri: On decompositions of continuity via idealization. Acta Math. Hungar. 96 (2002), no. 4, 341-349.
- 11. _____: Weakly pre-I-open sets and decomposition of continuity. Acta Math. Hungar. 106 (2005), no. 3, 227-238.
- 12. E. Hatir & T. Noiri: On semi-I-open sets and semi-I-continuous functions. Acta Math. Hungar. 107 (2005), no. 4, 345-353.
- On β-I-open sets and a decomposition of almost-I-continuity. Bull. Malay. Math. Sci. Soc. 29 (2006), no. 2, 119-124.
- S. Jafari & T. Noiri: Contra-α-continuous functions between topological spaces. Iranian Int. J. Sci. 2 (2001), no. 2, 153-167.
- 15. _____: Some remarks on weak α -continuity. Far East J. Math. Sci. 6 (1998), no. 4, 619-625.
- 16. D. Janković & T.R. Hamlett: New topologies from old via ideals. Amer. Math. Monthly 97(4) (1990), 295-310.
- 17. Y.B. Jun, S.W. Jeong, H.J. Lee & J.W. Lee: Application of pre-open sets. Appl. General Top. 9 (2008), no. 2, 213-228.
- 18. J.G. Kang & C.S. Kim: On P-I-open sets. Honam Math. J. (to appear).
- N. Levine: Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70 (1963), 36-41.
- 20. S.N. Maheshwari & S.S. Thakur: On α -irresolute mappings. Tamkang J. Math. 11 (1980), 209-214.

- 21. _____: On α-compact spaces. Bull. Inst. Math. Acad. Sinica 13 (1985), 341-347.
- H. Maki, R. Devi & K. Balachandran: Generalized α-closed sets in topology. Bull. Fukuoka Univ. Ed. Part III 42 (1993), 13-21.
- 23. H. Maki & T. Noiri: The pasting lemma for α -continuous maps. Glas. Mat. 23 (1988), no. 43, 357-363.
- 24. A.S. Mashhour, I.A. Hasanein & S.N. El-Deeb: A note on semi-continuity and precontinuity. *Indian J. Pure Appl. Math.* 13 (1982), no. 10, 1119-1123.
- 25. A.S. Mashhour, I.A. Hasanein & S.N. El-Deeb: α -continuous and α -open mappings. *Acta Math. Hungar.* 41 (1983), no. 3-4, 213-218.
- 26. O. Njåstad: On some classes of nearly open sets. Pacific J. Math. 15 (1965), 961-970.
- 27. I.L. Reilly & M.K. Vamanamurthy: On α -sets in topological spaces. Tamkang J. Math. 16 (1985), 7-11.
- 28. J. Tong: On decomposition of continuity in topological spaces. *Acta Math. Hungar.* **54** (1989), no. 1-2, 51-55.

Email address: lovelyyooni@hotmail.com

^bDepartment of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

Email address: rnswk@chol.com

^aDepartment of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea