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CONVERGENCE THEOREMS FOR NEWTON’S AND MODIFIED
NEWTON’S METHODS

TIoanNis K. ARGYROS

ABSTRACT. In this study we are concerned with the problem of approximating a
locally unique solution of an equation in a Banach space setting using Newton’s
and modified Newton’s methods. We provide weaker convergence conditions for
both methods than before [5}-[7]. Then, we combine Newton's with the modified
Newton’s method to approximate locally unique solutions of operator equations.
Finer error estimates, a larger convergence domain, and a more precise information
on the location of the solution are obtained under the same or weaker hypotheses
than before [5]-{7]. The results obtained here improve our earlier ones reported in
{4]. Numerical examples are also provided.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution z* of nonlinear equation

(1.1) F(z) =0,

where F is a Fréchet-differentiable operator defined on an open convex subset D of
a Banach space X with values in a Banach space ).

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations, and
their solutions usually represent the states of the systems. For the sake of simplicity,
assume that a time-invariant system is driven by the equatibn & = @Q(z) for some
suitable operator (), where z is the state. Then the equilibrium states are determined
by solving equation (1.1). Similar equations are used in the case of discrete systems.
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The unknowns of engineering equations can be functions (difference, differential, and
integral equations), vectors (systems of linear or nonlinear algebraic equations), or
real or complex numbers (single algebraic equations with single unknowns). Except
in special cases, the most commonly used solution methods are iterative — when
starting from one or several initial approximations a sequence is constructed that
converges to a solution of the equation. Iteration methods are also applied for
solving optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the same
recursive structure, they can be introduced and discussed in a general framework.

The most popular methods for approximation z* are undoubtedly Newton’s
method

(1.2) Tnt1 = Tn — F'(za)  F(2,) (n2>0), (x0€ D),
and the modified Newton’s method
(1.3) Ynt1=Un— F'(y0) ™" Flgn) (n20), (yo=20).

There is an extensive literature on the semilocal as well as the local convergence
results for both methods under various hypotheses. Such results can be found in
[1]-{7], and the references there.

The most popular hypotheses are of Newton-Kantorovich type [4], [6], [7]. Indeed,
let zg € D. Assume there exist constants n > 0, £ > 0 such that

(1.4) Fl(z0)™! e LY, X),

(1.5) |F' (o) "  F(zo)ll < m,

(1.6) | F'(zo) " [F'(z) - F'()lll < £ ||z — y|| forall z,y € D,
1

(1.7) h=£¢n< o

and

(1.8) U(zo,s*)={z€ X : |lz— 20| £ s*} C D,

where,

(1.9) o lZVIz2h V;_Zh

Estimate (1.7) is the crucial non-optimum sufficient condition for the semilocal con-
vergence of both methods {2}, [4], [6], [7] (see also Theorem 1).
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Under condition (1.7) method (1.2) converges quadratically to z* (if (1.7) holds
as a strict inequality) whereas method (1.3) converges linearly to z*. There are
examples in the literature where both methods converge to z* but condition (1.7)
is violated. Therefore one would expect that there may be conditions weaker than
(1.7). This is the motivation for our study. Note that in view of the Lipschitz
condition (1.6) it follows that there exists £p > 0 such that the center-Lipschitz

condition
(1.10) IF (o) "} [F'(z) = F'(m0)]ll < o llx = zol| forallz € D
holds.
In general
(1.11) 4 < ¢,

holds true, and ;— can be arbitrarily large [1]-[2].

0

Recently, in (3, p. 387, Case 3, for § = &), [2], we showed that condition (1.7)

can always be replaced by the weaker
1 1

(1.12) h1=€177$§, €1=§(Z~+~4E0+\/€2+8€0€),
in the case of Newton’s method (1.2) (see also, Example 10).

Here, we show that in the case of the modified method (1.3), for convergence,
condition (1.7) can be replaced by

1

(1.13) ho =4y n< >
and (1.6) by weaker condition (1.10). Finer error estimates on the distances involved,
a larger convergence domain, and a more precise information on the location of the
solution than in earlier results [6] are also obtained this way (see Theorem 3 for
method (1.2), and Theorem 5 for method (1.3)).

Using (1.13) (whenever (1.7) (or (1.12) do not hold), we can employ method (1.3)
for a finite number of steps, say N until condition (1.7) (or (1.12)) is satisfied for
xo = yn. Then faster method (1.2) takes over from method (1.3). The results also

improve further the corresponding ones in [4], where was used instead of £;
(see Remark 9).
Numerical examples are also provided. The technique introduced here can extend

to other Newton-type iterative methods [2], [3], [6], [7].
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2. SEMILOCAL ONVERGENCE ANALYSIS

The following semilocal convergence result for methods (1.2) and (1.3) can be
found in 2], [6], [7):
Theorem 1. Let F: D C X — ) be a differentiable operator.
Assume there exist xg € D, and constants £ > 0, 7 > O such that
F'(zo)™' € L(Y, X),
I’ (o)™ F (o)l < m,
IF'(zo) ! [F' (@) = F'(y)ll S € llz =yl forall z,ye€ D,

1
= <2,
h=€fn< 7
and
(.'170, )CD
where,
S*_l—\/1—2£n
=—

Then sequences {yn}, {zn} are well defined, remain in U(xo,s*) for alln > 0
and converge to a unique solution =* of equation F(z) = 0 in U(zo,s*). Moreover
the following estimates hold:

lyn+1 — ynll < ¢ lly1 — voll < ¢ m,

qn
lyn — 2™l < —— il

1-
£ (3n+1 - Sn)2
_ < _Aonl o)
and
|zn — 2*]| £ 8% —sp, §* = lim sp,
krhande o)
where,
l (5n+1 - Sn)2
== = = s —————— >
s0=0, s1=7 Sn42=Snt1¥ g g 5 (n20),
and
(2.1) g=1—-vV1-2¢h.

Remark 2. There is a plethora of estimates on the distances ||zp4+1—2Zn||, {|£n—2* |},
lynsr = nlls lyn —2*|| (n > 0) {1}-[7]. However we decided to list only the estimates
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related to what we need in this study. In the case of Newton’s method (1.2) we
showed in [3] the following improvement of Theorem 1.

Theorem 3 ([3]). Let F: D C X — Y be a differentiable operator.
Assume there exist zg € D, and constants by > 0, £ > 0, n > 0 such thaot

F'(zmo)™! € L(Y, X),

I1F' (o)™  F (o)l < m,

(1F (o) Y [F'(x) — F'(x0)]|| < 4o ||z — 2ol for all z € D,
| F'(20) " [F'(z) = F'(y))ll < £ |l — yl| for all 2,y € D,

1
hlzglnSEa
U(zo,t*) C D,
where,
e(tn+1”tn)2
tg=0, t; = t =t _—_ >0
0 y L1=1, tny2 "+1+2(1—-€0tn+1) n > 0),
and
RO
27] 80 ZO ZO
* _
t-y}irxgotn£2~£2, by = 7 ,

Then sequence {z,} (n > 0) generated by Newton’s method (1.2) is well defined,
remains in U(zg,t*) for all n > 0 and converges to a unique solution z* of equation
F(z) =0 in U(zo, t*).

Moreover the following estimates hold for alln > 0:

lZn+1 = Zull < tatr — ta,
fzn — || <t~ ta,

(2.2) tn < 8p,

(2.3) tos1 — tn < Sn41 — S,
and

(2.9) " —t, <s" — s,

Remark 4. Note also that (2.2) and (2.3) hold as strict inequalities if £y < £ [1]-[4].
Moreover we have:

1 1
2. < - < -
(5) h_.2:>h'1....2y
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but not vice versa unless if £y = £. That is under the same computational cost we
managed to weaken (1.7) since in practice the computation of £ also requires the
computation of £y. Furthermore, in Example 10, we show that (1.12) holds but
condition (1.7) is violated.

Concerning the semilocal convergence of the modified Newton’s method we show
that (1.13) replaces condition (1.7).

Theorem 5. Let F: D C & — Y be a differentiable operator.
Assume there exist zg € D and constants £y > 0, n > 0, such that
F,(mﬂ)_l € L(y> X)v
I F' (z0) ™" F(20)]] < m,
| E (o) " [F'(z) — F'(z0)]|| < o ||z — zo|| for all z € D,

1
ho—%n<§,
and
(2.6) Ulzo, s) C D,
where,
o = 2
T 1+Vi—2%4n

Then sequence {y,} (n > 0) generated by the modified Newton’s method (1.3) is
well defined, remains in U(zo,s]) for alln > 0 and converges to a unique solution
z* of equation F(z) = 0 in U(zo, s3).

Moreover the following estimates hold for alln > 0:

"yn+1 - 'yn“ < 95" “yl - %ol
and
o — 1l < 2,
1-q
where
go=1—-vV1-2641.
Proof. We shall show that the assumptions of the contraction mapping principle (2],

[6] are satisfied for the operator

(2.7) P(z) =z — F'(z0) ' F(z) on Uf{xo,s}).
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Let 2,y € U(zo, s}). Then we can obtain the identity
P(z) ~ P(y) =z —y ~ F'(z0) "' (F(z) - F(y))
1
= Flao)™ [ {Pla) = Ply+to - 1)Ha - ) dt

This identity together with (1.10) implies the estimate

1
I1P(z) = Py)ll < o /0 [(1 =) llz — zoll + ¢ fly — zoll] dt
(2.8) <fo sp llz - yll = qo llz - yll.

Consequently, P is a contraction operator in the ball Ul(xg, s5). To complete the
proof, it remains to show that

P U(zo,s8) € Ulzo, s5)-
Let = € U(zo, s§). Then by (2.7) we can obtain in turn
1P(z) — zol| < |P(z) — P(zo)ll + || P(x0) — zoll

< []F'm)-l / (P (w0)  F'lso + Hz — <o)} (@ - 20) it +1

1
14
<t [tdlo-mlP 40 Ly n=s,
0

by the choice of sj. That completes the proof of Theorem 5. O

Remark 6. Note that by (2.8) the operator P satisfies a Lipschitz condition with
constant qq in the ball U(zo, s5). The modified Newton’s method thus converges at
the rate of a geometric progression with quotient qq.

The above analysis of method (1.3) relates to the simplest case. More subtle
arguments (see, e.g. Kantorovich and Akilov [6]) show that Theorem 5 remains
valid if the sign < in (2.6) is replace by <. Therefore from now on we can replace
(2.6) by (1.13) in Theorem 5.

Remark 7. If §y = £, Theorems 3 and 5 reduce to Theorem 1. Otherwise these
theorems constitute improvements of it. Indeed see (2.2)—(2.5), and notice that

q <q
and

sy < s~
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Notice also that (1.7) (or (1.12)) implies (1.13) and if t* < sj the quadratic con-
vergence of method (1.2) is guaranteed. Moreover sj given in closed form can then
in practice replace t*. Furthermore if sy < ¢* then there exists N > 1 such that
zn, € U(zg, s}) for n > N and then again s} can replace t*.

Next we show that we can start with method (1.3) and after a finite number of
steps continue with faster method (1.2):

Proposition 8. Under hypotheses (4)-(16), (10), (13), and (19), for zo = yo, define
1

T 1t sy

L=al,

(o4

for a fized integer N
! -1 4 S
e sy LG FE) - P |
xe{—f(yN,rN) “ T—YN ”
Lo=at <L,
L if Ly=L

1
—8—(L+4L0+\/L2+8L0L) if Ly < L,

In2 T a?
N=[~ n2La n}_{_l)
In qo

-1 =9
! —2lov e p-

?

t~l
i

L
TN =
2N )

— L L

2—Lon ‘lf 0 < L,
o =aq n,

and
L)
L L L
Loy = — 20 0, for Lo #0,

where [r] denotes the integer part of real number r. Set

To = YN-
Moreover, assume:

(2.9) U(yn,vn) € D.
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Then the following hold:

(2.10) I F'(yn)™ Fyn) || < 0w,

(2.11) I F yn) ™ [F () - F@II <L =y,
(2.12) I F'(yn)™ [F'(z) ~ F'uw)] | < Lo |z —yw |,
(2.13) Hy =Ty <3

Newton’s method (1.2), starting at o = Ty converges to a unique solution z** of
equation F(z) =0 in U(yn,rn), and
N(] S Nl)
where
No=N for Lg=1L,
and
Ni=N for Ly < L.
Moreover, if the inclusion
(2.14) Ulyn,rn) S Ulyo, 5p),
hold, then
¥ = z**,
Note that parameter Lg is independent of N if Lo = L, and the inclusion (2.14)
holds id and only if
lyn — o |l +7v < s¢-

Proof. Using Theorem 5, and the estimates
I F'(yw) ™t Flyw) I <l F/(un) ™" F'(30) I | F'(30)™" Flyw) |

1
F'(yo)™ F
1- ¢ ” YN — %0 ” ” (yO) (yN) “

L) P |
- 1-4£p s5

| F'lun)™ [F'(@) - Pl | < e || F'(yo)™! [F'(z) - F'(y)] |
Salfz—yl=L |z-yl,
I F'(yw)™" [F'(2) = F'ym)] || < @ || F'(wo) ™" [F'(=) = F'(yn)] |l
Saly |z-ynl=Lo |z —yn |,

<aq n=nn,
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we obtain

Hyv=Lnv=a*L ¢l n<

8=

and

Ny < Ny,

by the choice of N.

It follows by Theorems 1 and 3, with Ly, L, ny, rn, Ty replacing &y, £, n, s*,
ty respectively, that there exists a unique solution z** of equation F(z) = 0 in
Ulyn,TN).

Moreover, if inclusion (2.14) holds by the uniqueness of the solution z* in Uy, s§),

we deduce z* = z**. That completes the proof of Proposition 8. g

Remark 9. In our related work [4], we used hg, £5, Ny instead of hy, £;, Np,
respectively given by:

1
(2.15) hy =148 n< 3
(2.16) =0 tE
2
and
o [=In((lo+£) no?

(2.17) N = [t hnaf)y

In go
However, we have
(2.18) <t forall >0 and £¢>0.

Therefore, the following implication holds

1 1
2.1 hy < = hi £ =
(2.19) 255 = n1 < 5
but not necessarily vice verca,
and
(2.20) Ny £ Ny.

Note also that strict inequality can hold in (2.18) and (2.20). Hence, we have
improved our earlier results in [4], which in turn improved the corresponding results
in [5]-[7] (see also the example that follows).
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Example 10. Let Y =Y =R, D =[a,2—a],a € [O, -;—) and define scalar function
Fon D by

(2.21) F(z) =2° - a.

Choose yg = 1. Using (1.5), (1.6), (1.10) and (2.21), we obtain

(2.22) n=§ (l—a), ¢=3-a<f=2(2-aqa) forall ac [0,%).
The Newton-Kantorovich hypothesis (1.7) becomes

(2.23) h=2(-a) 20> ;

foralla € [0, %—) That is according to Theorem 1 there is no guarantee that either
methods (1.2) or (1.3) starting at zp = yp = 1 converge to z*.
Howeover, according to (2.15):

(2.24) h2=%(1—a) B-a+22-a) <3,

provided that

(2.25) e ke m, L ,  where 5- VI3 _ 46481624,
3 2 3
By (1.12), we get
1
(2.26) hy < =
2
1
for all a € [.450339002, —2-)
Using condition (1.13) we can do even better since
1 1
(2.27) ho=3(1-a)(3-a)s3,
‘provided that
- —
(2.28) € [42————‘/_0, %) where 2 2‘/E = .41886117.

which improves the choice for a given by (2.25). However only linear and not
quadratic convergence is guaranteed.

Let us now use a = .49. In particular (1.7) does not hold since for n = .17,
£=3.02

1
h=5134> .
” 2
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However, (1.13) holds, since for £y = 2.51:
ho = 4267 <

.

[ 3

We get
go = .617116205, o = 2.61175848, sy = .24586303,
and
N =[4.0325)+ 1 = 5.
Moreover, we obtain
To = y4 = .78911736.
Finally, note that z* = .788373516.

The ideas presented here can be extented to other Newton-type iterative methods
(1], [2], [3], [5] along the same lines (see also [4]).
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