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TOTALLY UMBILIC SPACELIKE SURFACES OF TYPE (I) IN L"

SEoNGg-KowaN HONG

ABSTRACT. In this paper we show that spheres in £2 € L™ and pseudohyperbolic
spaces in L C L™ are the only totally umbilic spacelike surfaces of type (I) in L™.

INTRODUCTION

Define g(v,w) = —vjw; + - + vqwy for v, w in R®. R" together with this
metric is called the Lorentzian n-space, denoted by L™, whereas E™ means the usual
Euclidean n-space. A spacelike surface in L™ means an orientable connected 2-
dimensional submanifold of L™ equipped with the Riemann metric ¢ = 5*7, where
3*7 is the pull back of g via the inclusion map j: M — L".

Let M be a spacelike in L™, D the flat Levi-Civita connection on L", V the
induced connection on M, and h the second fundamental form on M. A point p
of M is umbilic if there is a normal vector z such that h(v,w) = g(v,w)z for all
v, win T,M. The zis called the normal curvature vector of M at p. A spacelike
surface is totally umbilic provided every point of M is umbilic. Note that if M is
totally umbilic, then there is a smooth normal vector field Z on M, called the normal
curvature vector field of M such that A(V,W) = g{V,W)Z for all smooth tangent
vector fields V, Won M.

A totally umbilic spacelike surface in L™ is called totally umbilic of type (I) if for
a normal curvature vector field Z on M, §(Z, Z) does vanish nowhere on M, and
totally umbilic of type (IT) if §(Z, Z) does vanish everywhere on M. Since §(Z, Z) is
constant on M, which is shown in Lemma 5, the two cases are mutually exclusive.

} Our purpose is to show that there are only two kinds of totally umbilic spacelike
surface of type (I) in L™, say spheres and pseudchyperbolic spaces.
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MAIN THEOREMS

Theorem 1. Let V be a k-dimensional subspace of L"™. Then ezactly one of the
following is true:
(1) V = L*, and G| V is nondegenerate,
(2) V = E*, and g| V is nondegenerate,
(3) 9| V is degenerate, and in this case (and only in this case) we may write
V = E*¥1 @ Span¢ , where §(£,£) = 0 and £ is orthogonal to EF-1.

Proof. See [1]. O

Let M be a spacelike surface in L. By (z,y) we always denote isothermal
coordinates compatible with the orientation on M. Then

(i i)_ (2 ﬁ)>0 (2. 2)_0
I\oz 9z) =9 Oy’ By ’ I oz’ dy)

It is well known that (z,y) is defined around each point of M, and we may regard
M as a Riemannian surface by introducing a complex local coordinate z = x + iy.

Definition. Let n > 2. A pseudohyperbolic space of radius » > 0 in L?*! is the
hyperquadric

H(p,r) ={a € L™ |gp —q,p — q) = -7}
with dimension n and index 0.
Theorem 2. If M is a connected totally umbilic spacelike surface in L3, then M is
a portion of a spacelike plane or a pseudohyperbolic space.
Proof. Choose an isothermal parameter (z,y) so that M is defined locally by a map
X (z) = (z1(2), z2(2), z3(2)) € L3, where z = z + iy is a complex local coordinate.

Let D be the Levi-Civita connection on M, and V the induced connection on M.
Denote X; by 01 and Xy by ;. Then

Daiaj = Vaiaj + h(a,;,aj).

Since M is spacelike, there is a C™ unit normal vector field N on M. By Theorem 1,
it must be timelike. Consider the smooth function f = g(N, Z), where Z is a normal
curvature vector field on M such that h(V, W) = g(V,W)Z for any smooth tangent
vector fields V, Won M. Note that Z = —fN. Since 0 = 9;G(N, N) = 2g(N, Dy, N),
Dg; N is a local smooth tangent vector field on M. Since

9(Ds,05, N) = f§(0;, 05)
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and
0 = g(Da,0;, N) +5(95, Ds,N),
we have
9(Do;N,8;) = —fg(0i, 9;)
fori, j =1, 2. Therefore, Dg,N = —f0;.
Consequently,
Ds; Dy, N = —0;(f)0; — fDa,6;
and
Dy, Dy, N = —0;(f)0; — fDa,0;.
From the above we have
(9;£)0; = (6:f)0;
Then the linear independency of 81 and 05 tells us that Vf = 0. Hence fis constant.
f =0 implies Dy; N =0 for j = 1,2, that is, N is a constant vector field, and in
turn M is locally a spacelike plane with a normal vector N.
When f = c(# 0), consider N and §; as a smooth function from an open set
U C R? to L3. Since Dy,N = —cd;, N = —cX + vg for some vg € L3.
From this we obtain
N

X(iv,y)‘—“—c'Jr‘;

and

- Yo Vo _ N N

g (X(.'z:,y) - ?aX(xﬁU) - _c") =9 (""E"-’g)

1

=

Therefore X lies in a pseudohyperbolic space Hg(”icl, T%f) This local argument

can be extended to the global argument using continuation along a path in M. O

Now we know there is only one kind of nontrivial totally umbilic spacelike surface

in L3. But what about a totally umbilic spacelike surface in L™(n > 3)?

Theorem 3. Let M be a totally umbilic spacelike surface of type (I) in L™(n > 3).

Then it is in fact either a pseudohyperbolic space in L3 C L™ or a sphere in E3 C L™,
To prove the theorem 3, we need several preliminary facts.

Proposition 4. Let el,--- ,e" be an orthonormal moving frame on L™ and let ¢*’s

be the dual 1-forms, where el is timelike. Then there exist unique 1-forms wjj (called

the connection forms) such that
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(i) wij = —wji,

(if) do* = Zszwzk Ao,

(ili) dwi; = — Zekw,k A Wkj,
k
whereey = -1 ande;j=14fj#1.

Proof. Define w;; by wi;(X) = g(e*, Dxe’). Since
0= g(ei, Dxej) + -g(DXeia eJ)a

we have w;;(X) = —w;i(X) for any C* vector field X in L™.

Consider the moving frames e!, - - - , e", with a little abuse of notation, as an R"-

valued function e’ : R® — R"™. Then we can consider dI and de'’s as R™-valued

1-forms. Since d> = 0, we have

0=d’I
- d( D¢ A ei>
= Z(;qsi)ei =Y ¢" nde*
- i(dw’)ei - éw A Z ciwine’
=% (dqsi =Y ek A wik> ¢
: p

Setting the coefficient of each e! equal to 0, we obtain

- Z Eiwik N\ ¢k.
k

We also have
0= d2e?
= Z Eidwijei - Z Exwij A de*
% k
= Z (eidwij — Zsiekwkj A wik) e",
1 k

from which we immediately deduce

dwij = — Z EkWwik N Wgj.
k
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Lemma 5. Let Z be a normal curvature vector field of o totally umbilic spacelike
surface M in L™. Then §(Z,Z) is constant everywhere on M.

Proof. If g(Z, Z) vanishes everywhere, then there is nothing to prove. Therefore we
assume g(Z, Z) does not vanish everywhere. There are two possibilities.

(Case 1) There is p in M where g(Z, Z) at p is negative.

Let p € M. In a neighborhood of p, we choose an orthonomal moving frame e?, e
on M, and complete to an adapted orthonormal moving frame el,--- ,e" with the
unit timelike vector field e! in Zdirection. Then, for j = 2, 3, and X tangent to M,

we have
wij(X) = g(e*, Dxe?)
— —Vg(Z)Z)g(X)ej)) i=1
0, i>3,
which means that on TM we have
(1) wij =—e5\/-9(Z, Z)¢
Wyj = 0, ifi>3.
Denote /—g(Z, Z) by A. From (1) and the second structural equation, we find that
on TM we have
dwlj = w&‘jd/\ A (ﬁj - Ej/\d(ﬁj
= — Z ExWik A Wi
k
3
= Z ¢k A Wkj
k=2
while the first structual equation gives

3
d¢P = — Zé‘jwjk A ¢k

k=1

3
= Z quﬁk A wik

k=1

3
= =& Z ¢k A Wiy,

k=2
since ¢! = 0 on T'M, so we find that

—gjdAA Y =0 for j=2,3.
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Hence dA = 0 and so v/—g(Z, Z) is constant around p. This means {q € M |
9(Z,2Z)(q) = 9(Z, Z)(p)} is a nonempty open and closed set in M. Therefore §(Z, Z)
is constant everywhere since M is connected.

(Case 2) There is p in M where g(Z, Z) at p is positive.

In a neighborhood of p, we choose an orthonormal moving frame e"~!,e" on M,
and complete to an adapted orthonomal moving frame el,. .- e with e"~2 in Z
direction. Note that "2 is spacelike. Then, for j = n — 1,n and X tangent to M,

we have
wij(X) = g(e*, Dxe’)

{\/g(z, Z)g(X,e) i=n-—2
0

1< n—2,

which means that on TM we have

@) wi = FZ DY if i=n-2,

wij = 0, if i<n-—2.
From (2) and the second structural equation, we find that on TM we have
dwij = dA A ¢ + Adg

== Z&‘kwik N Wiy
k

n
==X Y ¢ Aw,
k=n-1
while the first structual equation gives
n
d(ﬁi = — z EjWik /\(}5’c

k=n-2
n

= Z Ej¢k/\wjk

k=n-2
n
= - Z ¢k A Wkj
k=n-—1
since ¢"~2 = 0 on T'M, so we find that
dAA =0 forj=n—1,n.

Hence d\ = 0 and so \/g(Z, Z) is constant around p in M and consequently on the
whole M. O
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Lemma 6. Let A be a k-dimensional distribution along the curve c : [a,b] — L™ with
%% € A(t). Suppose A is parallel along c. Then c is a curve in some k-dimensional
plane W C L™, and W is just exp(A(t)) for any t.

Proof. Let W = A(a), considered as a k-dimensional subspace in L™. Then W
is SO(1,n — 1)-equivalent to L¥, E¥, or EF-1 @ span{¢}, where ¢ is a nonzero
lightlike vector in L™ Without loss of generality we may assume W is L, E* or
H* = {(&, 2,91, - ,¥k-1,0,+-- ,0) € L™ | z,y; € R}.

Case 1. W = L*.

If ¢ does not lie entirely in W, then by the mean value theorem some tangent
vector ¢/(t) has a nonzero -th component for some ¢ > k. But this is impossible,
since ¢/(t) € A(t) and A(t) is parallel to W = A(a). Since each A(t) is parallel to
W = A(a) and also contains the points c(t) in W, each A(t) must be equal to W.
In other words, W = exp(A(t)) for all ¢.

Case 2. W = E*.

The exact same proof as in case 1 may be applied here with W = 0 @ E*.

Case 3. W = HF C L*+1,

Since ¢/(t) € A(t) and A(t) is parallel to W = A(a), ¢} (t) = c,(t) for any ¢ and
ci(t) =0 for ¢ > k + 1, and result is proved in this case. O

We also need the converse assertion of this.

Lemma 7. Let A be a smooth k-dimensional distribution along ¢ : [a,b] — L™.
Suppose the induced covariant derivative % belongs to A whenever V is a smooth
vector field along c belonging to A. Then A is parallel along c.

Proof. The proof given in [5, p.41-42] works here. d

Lemma 8. Let M be a connected spacelike surface in L™ and let A be a smooth
k-dimensional distribution along M such that T,M C A(p) for all p € M. Suppose
that A is parallel along every curve ¢ in M. Then M lies in some k-dimensional
plane W c L™,

Proof. Choose a point p € M and let W be the k-dimensional plane of L™ with
exp(A(p)) = W. For any ¢ € M, choose a curve c: [0,1] — M C L™ with ¢(0) = p,
and ¢(1) = ¢. Since T,M C A(p) for all p € M, /() € A(c(t)) for all t € [0,1].
Hence, Lemma 6 applied to the distribution ¢ — A(c(t)) along ¢, implies that c lies
in the k-dimensional plane W = exp(A(0)) C L", because exp A(c(t)) = W for all
t. (Of course W may be degenerate.) d0
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Now we are ready to prove the Theorem 3.

Proof of Theorem 3. Let Z be a normal curvature vector field on M.
(Case 1) Z is timelike.
Denote the constant function \/—g(Z, Z) by A. (1) gives

n
l))(e1 = Z skwkl(X)ek
k=1

(3 3
) =) wi(X)e
k=2
= -\X.
We also have
3
(4) Dxel = Zskwkjek, for j =1,2.
k=1

Let A be the 3-dimensional C* distribution on M with A(P) = M, + R - e!(p).
Equation(3), (4) and Lemma 3 shows that A is parallel along every curve lying
in M. So Lemma 4 implies that M lies in a 3-dimensional plane W of L™. Since
A(p) = L? and exp(A(p)) = W, we know that W has an index 1 and therfore
WxL3cL™

Next, we have to show that M lies in a pseudohyperbolic space of radius % Let
P be the position vector field on L™. Then Dx P = X for all tangent vector field X

to M in L™, and so we can rewrite (3) as
Dx(e! —AP)=0

Thus the vector field e! — AP is parallel along M. Identifying tangent vectors of M
with elements of L™, this means that e! — AP is a constant vector vg on M, so we
have p = ﬂ,\'& fof all p € M, which means that M lies in pseudohyperbolic space
with radius %, center —52.

(Case 2) Z is spacelike.

Denote the constant function \/g(Z, Z) by X. By (2),

n
(5) Dxel = Y wi(X)eF = AX.
k=n—1

for j = n — 2. We also have

n
(6) Dxel = Z wkjek, for j=n-1,n.
k=n-2
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Let A be the 3-dimensional C* distribution on M with A(P) = M, + R - e"%(p).
Then we conclude that M lies in an 3-dimensional plane W of L®. But, in this case,
A(p) = E® implies W = E3 C L". In the similar way to the case 1, we can show
e"2 — \P is a constant vector vg € M C L™ and p = 9':—1:—11‘1 for all p € M, which

means that M lies in a sphere of radius %, center —52. This completes the proof. [J
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