J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 16, Number 4 (November 2009), Pages 427-441

STATIONARY GLOBAL DYNAMICS OF LOCAL MARKETS
WITH QUADRATIC SUPPLIES

YoNG-IN KIM

ABSTRACT. The method of Lattice Dynamical System is used to establish a global
model on an infinite chain of many local markets interacting each other through a
diffusion of prices between them. This global model extends the Walrasian evolu-
tionary cobweb model in an independent single local market to the global market
evolution.

We assume that each local market has linear decreasing demands and quadratic
supplies with naive predictors, and investigate the stationary behaviors of global
price dynamics and show that their dynamics are conjugate to those of Hénon maps
and hence can exhibit complicated behaviors such as period-doubling bifurcations,
chaos, and homoclic orbits etc.

1. INTRODUCTION

The Cobweb model for the local market dynamics has been well introduced and
studied by many researchers (e.g., [6],[7],[8],{14]). The Cobweb model describes
the dynamics of equilibrium prices in a single independent local market for a non-
storable good that takes one time period to produce, so that producers must form
price expectations one period ahead using the past history of prices.

Let p& = H(Pp_1), where pg is the expected price by the producers at time n
and Pn_1 = (Pn-1,Pn-2, " ,Pn-L) Is a vector of past prices of lag-length L and
H(:):RL — R is a real-valued function, so called a predictor. Let p, be the actual
market price at time n by the consumers, and let D(p,) be the consumer demand
and S(p%) be the producer supply for the goods. The supply S(p%) is derived from
producer’s maximizing expected profit with a cost function ¢(q), i.e.,

(1.1) S(py) = arg n;gX{piqn - c(gn)}-
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The demand function D(:) depends on the current market price p, and is assumed
to be strictly decreasing in the price p, to ensure that its inverse D! is well-defined.
The supply function S(-) depends on the expected price p¢ and will be assumed to
be quadratic in our paper. The intersection point p* of the demand and supply
~curve such that D(p*) = S(p*) is called the steady state equilibrium price.

If the beliefs of producers are homogeneous, i.e., all producers use the same
predictor H, then the market equilibrium price dynamics in the cobweb model is
described by

(1'2) D(pn) = S(H(Pn—l))a or, pn= D.‘I(S(H(Pn—l)))'

Thus, the actual equilibrium price dynamics in a local market depends on the

demand D, the supply S, and the predictor H used by the producers.

2. THE MODEL FOR THE GLOBAL MARKET DYNAMICS

Over the last decade, a new class of infinite dimensional dynamical systems, so
called Lattice Dynamical Systems(LDS) have been introduced and studied by many
researchers (e.g., [1],[9],(10]). These LDS’s have been proved to be one of the most
efficient tools to analyze space-time behaviors of the extended systems.

To begin with, we define the phase space (or state space) of the LDS. Suppose
that at each site j of a d-dimensional lattice Z¢, we have a finite dimensional local
dynamical system which is defined by some map f; : M; — M; , where M; is a
local phase space at the site j. For simplicity and applicability to our model, we
will confine our attention to an infinite chain (d = 1) and the identical local map,
ie., fj = f,M; = R1Vj € Z, where R! is a 1-dimensional real Euclidean space with

ordinary inner product (-,-) and the norm |-| = \/(:,-). Then we have an infinite
dimensional dynamical system on a space
(21) M=]]M;={p={p}lpi cR,j € Z}

jEZ

where M is obviously a linear space with respect to componentwise addition and
scalar multiplication. A point (or, a state) p = {p;} € M can be thought of as a
bi-infinite sequence of real numbers. To make the linear space M to be a Hilbert
space, we equip M with the inner product defined by '

(2.2) D), = W Vp,q € M,
jez P
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where p > 1 is some fixed number depending on the particular problem. Then the

Mo = /€50

and now we can define the phase space of our LDS by

(2.3) B, ={p € M||pll, < oo}.

norm || - ||, is induced by

Then it can be easily shown that B, is a Hilbert space (e.g., [1]). Next, we define
the evolution operator on B, in the following.

Definition 2.1. Define the evolution operator ® : B, — B, by

(24) (®p); = F({p;}°),Vi € Z,

where {p;}* = {pi||s — j| < s, s > 1 integer} for each j € Z, i.e., {p;}*® is the set of
values p; at the site 7 which are within the distance of radius s from the site j, and
F:R2»+l , R is a differentiable map of class C? such that

OF OF
<x |an
for any collection {p;}* and some constant K > 0.

(2.5)

— 3y

Then it is easy to verify that under the condition (2.5), ®(B,) C B, and ® is
Lipschitz continuous with the constant L = C(2s + 1)% pE (e.g, [1]).

Definition 2.2. Given a state p(n) = {p;j(n)};2_,, € B, at the moment n, we can
obtain via (2.4) the next state p(n + 1), that is,
(2.6) p(n+1) = &(p(n)), or,
pj(n+1) = (2(p(n))); = F({p;(n)}*).
The dynamical system (®", B,),ez+ is called a Lattice Dynamical System(LDS).

Formula (2.6) implies that given a state p(n) € B, we can calculate its next state
p(n + 1), so we can obtain the forward orbit of the evolution operator ®, i.e.,

p(0),p(1) = 2(p(0)), p(2) = @(p(1)) = *(p(0)), - -
Before ending this section, let us consider several kinds of basic motions (or
solutions) in the LDS (2.6).
Definition 2.3. (i) A state (or solution) p(n) = {p;(n)} for the LDS (2.6) is spatially
homogeneous if p;j(n) = ¥(n)Vj € Z, i.e., a spatially homogeneous solution {¢(n)}
does not depend on the space coordinates j and so has the same value at each site
7
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(ii) A solution p(n) = {p;(n)} is static (or stationary, steady state,standing wave) if
pj(n) = ¢;Vn € Z%, i.e., a static solution {¢;} does not depend on time n, and is
standing there along the space coordinates j at all times n.

(iii) A solution p(n) = {p;(n)} is a traveling wave with wave velocity m/l if p;(n) =
&(lj +mn), where l > 0,m € Z and (I, m) = 1(i.e., relatively prime). Here, the ratio
m/l is called the wave velocity of the traveling wave.

For instance, suppose that the local system f : M; — M; has a fixed point p*.
Then the state p = {p;},p; = p*Vj € Z is a spatially homogeneous static solution,
i.e., a fixed point of the evolution map ® and also can be thought of as a travelling
wave with arbitrary velocity.

Now, as our LDS model for the global market dynamics, we will take the following
form:

(2.7)  pi(n+1) = (2(p(n)));
= (1= a)p;(n) + af(pj(n)) + e(pj-1(n) — 2pj(n) + pj+1(n)),

where a solution p;(n),j € Z,n € Z* represents the price of a good at the site (or
local market)j at the time n, and f : R — R is a Walrasian local market price
dynamics at each site 7, and « € [0, 1] is a parameter denoting the weighted average
between p;(n) and f(p;(n)), and the parameter ¢ is a diffusion coefficient measuring
the intensity of interaction between the neighboring local markets. Thus, in this
global market model, the price p;(n+ 1) at site j and at time n+1 is determined by
several factors, i.e., the previous price p;(n), the local market dynamics f, the weight
a € [0,1] of the average between them, and the diffusion coefficient ¢ > 0. Notice
that the parameter a plays a role of controlling each local market in such a way
that if o = 1 then p;(n+ 1) is determined completely by the local market dynamics
f together with diffusion term and if @ = 0 then the local market dynamics is
suppressed completely and p;(n+ 1) depends only on the present price and diffusion

term.

Remark 2.1. For a solution p;(n) of our model (2.7) to have a meaning in economic
sense, we impose a boundary condition at infinity that p;(n) must be boi.mded, ie.,
Ipj(n)] < C Vj € Z,n € Z* for some C > 0. Also, we require that a solution p;(n)
must have nonnegative value for all j € Z,n € Z*. If a solution of (2.7) does not
satisfy these conditions, then it would not be an admissible solution for our model.

Remark 2.2. Besides the solutions given in the Definition 2.3, there can also be
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many other solutions, e.g., spatially and/or temporally periodic solutions, spatially
and/or temporally chaotic bounded solutions, and so on. In this paper, we restrict
our attention only to those periodic solutions or bounded chaotic solutions which
are the basic solutions mentioned in the Definition 2.3, e.g., spatially periodic static
solutions, temporally periodic spatially homogeneous solutions, spatially and tem-
porally periodic traveling wave solutions, etc.

3. STATIONARY GLOBAL PRICE DYNAMICS

We assume that the predictor H is naive, the demand D is linear decreasing, and
the supply S is quadratic, that is, they are given by

(3.1) ph = H(Pn_1) =pn-1, D(pn) =1~ pn,
S(pn) = S(pn-1) = 4pn-1(1 — Pn-1).-

respectively. Note that the price p, in (3.1) is a scaled price such that 0 < p, < 1,
and the quadratic supply function S(z) = 4z(1—z) is a so called logistic map, which
is known to exhibit chaotic dynamics on the whole interval [0, 1} (e.g., [15]). This
kind of non-monotonic supply curve can be justified in an actual market, e.g., by an
income effect in an agricultural market (e.g., [18], pp 339). This income effect, of
course, may be applied to our fish market as well. In other words, as prices of fish
are getting higher, the income of fishermen is getting higher, and so the production
of fish might be getting less due to their taking more leisure time.

Now, with these choices of H, D, and S, the local market equilibrium price
dynamics, D(p,) = S(pt), is given by

(3.2) 1 —pn =4pp-1(l — pn-1), or,

Pn=1~4pn_1(1 ~ pn-1).
Hence, our local market dynamics f for the global market model (2.7) is given by
(3.3) f(z) =1-4z(1-z) = (1-22)%,

where £ may be assumed to be restricted to the interval 0 < & < 1, since for
z ¢ [0,1], the dynamics of f is very simple, ie., f*(z) — 400 as n — 400, and
so only for z € [0,1], f*(z) € [0,1] for all n € Z* and exhibits interesting chaotic
dynamics.

The map f has two fixed points, one at p* = % where f'(p*) = -2 < -1, and
the other at ¢* = 1 where f'(¢*) = 4 > 1, and so both fixed points are repellors.
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Note that at p* = ;11-, D(%) =5 (%) = %, and prices near p* diverges in an oscillatory
way from p*, while at ¢* = 1, D(1) = S(1) = 0, and prices near and less than ¢*
decreases in a monotone way from ¢* and so prices fluctuates between these two
repellors p* and ¢* in a chaotic way.

Now, let us consider the stationary solutions of the global market dynamics (2.7),
where the local market dynamics f is given by (3.3), i.e.,

(34) pj(n+1)=(1-a)pj(n)+a{l - 2pj(n)}2 + e{pj-1(n) — 2p;(n) + pj+1(n)}.

Hereafter, we will slightly loosen our restriction 0 < p;(n) < 1 so that p;(n) > 0
because interesting dynamics can occur for p;j(n) > 1 in the global market dynamics.
To obtain the stationary solutions, we set p;(n) = ¢; in (3.4), then we have

(3.5) bir1=—P — ¢j—1+ (2+ 58)¢; — 4847,

where § = a/e > 0. Equation (3.5) is a 2nd order nonlinear difference equation
which has two fixed points ¢} = 1 and ¢3 = 1 for 0 < @ < 1. For a = 0, (3.5) is
reduced to a linear equation ¢;41 = 2¢; - ¢j—1 with general solution of the form
¢; = c1+caj (c1, c2 are arbitrary constants) and so any constant solution ¢; = ¢g > 0
is a fixed point. Note that these fixed points are the spatially homogeneous static
solutions of (3.5). Hereafter, we assume that 0 < a < 1, i.e.,, 8 > 0. Letting

T; = ¢j-1, ¥j = ¢;, then (3.5) can be reduced to a 2D discrete dynamical system
defined by

(3.6) Tjrl =Y
Yji+1 = —B —z; + (2+58)y; — 483

Note that an orbit {---,(z-1,y-1), (0, %), (z1,¥1), - } of (3.6) corresponds in a
one-to-one fashion to a solution {--- ,y_1 = ¢_1,y0 = do,y1 = ¢1,---} of (3.5). In
fact, the system (3.6) is a translational dynamical system and is generated by a 2D
map Sp : R? — R? defined by

(3.7) Sp(@,y) = (v, —B — =+ (2+ 50)y — 48y°).

The map Sg clearly has two fixed points @; = (z7,37) = (%, %) and Q2 = (z3,¥3) =
(1,1). Note that the derivative of Sg(z,y) is given by

(3.8) DSp(z,y) = _01 9+ sﬂl_ Sﬂy]

and so det DSp(z,y) = 1 for all (z,y) € R2, B > 0. Hence, Sp(x,y) is an orientation
and area-preserving map. From (3.8), it follows that the matrix DSﬁ(%, ;11-) has
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eigenvalues A1p = 3{(2 +36) + V2+3B)2=4} and so A\; > 1 > Ay > 0 for all
B > 0, and the matrix DSg(1, 1) has eigenvalues py 5 = %{(Q—Bﬂ):}:m}
andso 0> uy > —1 > pa for 8 > % and p12 = ~1,~1for § = % and y1 2 are complex
conjugate eigenvalues lying on the unit circle for 0 < 8 < %.

In other words, the fixed point @, = (%, %) is a hyperbolic fixed point (saddle
point) for all 8 > 0, while the fixed point Q2 = (1,1) is a saddle point for 8 > %,
a parabolic point for § = g—, and an elliptic fixed point (center) for 0 < § < %.
Hence, even with simple looking at the movement of the eigenvalues y; 2 on the unit
circle as the parameter § increases from 0 and crosses the value %, we can notice
that the local dynamics of Sg(z,y) near the fixed point Q2 = (1,1) would be very
complicated.

In fact, our map Sg given in (3.7) turns out to be dynamically same as the
celebrated Hénon map H, : R? — R? defined by

(3.9) Hop(z,y) = (a + by — 2%, 1),

where a, b are real parameters and b = -1 corresponding to our map Sg.

Remark 3.1. The Hénon map was originally defined by Hénon himself in the form
(3.10) Top(@,y) = (1 +y — aa?,ba),

which represents one of the canonical forms for general quadratic maps with constant
Jacobian determinant. But, this map T, ; can be transformed into the form H,,
given in (3.9) with the parameter values a and b unchanged, by the simple scaling
z — z/a,y — by/a for a # 0 and b # 0. Note that if a = 0, then T, ; becomes a

linear map, while in the map Hgp given in (3.9), a = 0 has no special significance.
Now, we first show the dynamical equivalence between our map and the Hénon

map.

Lemma 3.1. Our map Sg given in (3.7) is topologically conjugate to the Hénon
map Hap defined by (3.9) with the parameters a = (g—ﬁ)2 —1and b = -1, via
the affine transformation given by h(z,y) = (a1y + 2,12 + ¢2) with ¢; = 48 and
c2 = —1(58 +2) where B = afe > 0.

Hence, by reflecting with respect to the line y = z, multiplying by 48, and
translating downward along the line y = z, every orbit of Sg is transformed to the
orbit of the Hénon map (and vice versa). Note that det DH,(2,y) = —b and so

2

the Hénon map with b= —1, i.e., Hy—1{z,y) = (a —y — z*, z) is also an orientation

and area preserving map. We will write H, = H, .1 hereafter. Now that we know



434 Yong-In KiM
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Figure 1. When 8 = 4.1/3; (a) the stable (horizontal one) and the unsta-
ble manifold (vertical one) of the fixed point (1, 1) and those of the fixed
point (1,1) for Sg. (b) the stable (vertical one) and the unstable manifold
(horizontal one) of the corresponding fixed point (—3.05, —3.05) and those
of (1.05,1.05) for the Hénon map H, with corresponding value a = 3.2025.
The conjugacy between them is obvious.

from the Lemma 3.1 that the dynamics of our map (3.7) is the same as that of the
area-preserving Hénon map H,, all we have to do is just examine the behavior of
the Hénon map H,. See the stable and unstable manifolds of our map Sg and H, in
Figure 1. Both pictures clearly show the existence of a transversal homoclinic point
to the hyperbolic fixed point and the tangential connection (looking like the figure
00) of the stable and the unstable manifold at the other hyperbolic fixed point.

Over the last thirty years, so many researchers have been devoting themselves
to investigating the dynamics of the Hénon map, howevér, unfortunately, until this
time, it is still far away from being complete to understand its extremely complicated
dynamical nature, even in the subcase of the area-preserving map H,. Drawing the
bifurcation diagram for the Hénon map H,  in the parameter (a, b)-space is still left
as an open problem even in the area-preserving case b = £1.

Let us first consider the local bifurcation problem about the map Sz. Recall that
the fixed point Q1 = (%, %) is always hyperbolic and so no local bifurcations occur
there. But, the fixed point @2 = (1,1) becomes nonhyperbolic (parabolic) when
B = % and is elliptic when 8 < % and is hyperbolic when 8 > %, and hence we

expect very complicated local bifurcation to occur when g3 passes through the value
4

5
In fact, Sterling et al ([24]) have reported various kinds of local bifurcations of
low periodic orbits up to period 6 for the area-preserving Hénon map H, and also
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have proved that there are no local bifurcations for the Hénon map H, when a and

b are in the range given by l—j,i-}i <2y/1-2/ /5. This parameter bound for no local
bifurcations are coincident with the bound given by Devaney and Nitecki ([16]) for
the existence of hyperbolic horseshoe. Now, using Lemma 3.1, we can convert their
results in terms of the parameter § for our map Sg and show the bifurcation table

and the parameter bound in the following lemma.

Lemma 3.2. Our map Sg undergoes a cascade of bifurcations of attracting periodic
orbits (part of which are shown up to period siz in the Table 1) near the fized point
Q2 = (1,1) as the parameter 3 increases from 0 and passes through the value 4/3.
This local bifurcation ends when § = -§-(1 + v/5) =~ 2.15738 and for § > 2.15738,
Sp has a hyperbolic horseshoe and hence has an invariant Cantor set on which the

behavior of Sg is chaotic.

[ values parent type children
1/3=0.333333 Fixed point |[1/6 |Two period-6 orbits
(5 —+/5)/6 = 0.460655 | Fixed point |1/5 |Two period-5 orbits
2/3=0.666667 Fixed point |1/4 |Two period-4 orbits
2v/2/3 = 0.942809 sn | Two period-3 orbits
1.0 Fixed point |1/3 | One period-3 orbit
1.0 period-3 orbit | pd | One period-6 orbit
(5+/5)/6 = 1.20601 | Fixed point |2/5 |Two period-5 orbits
4/3=1.33333 Fixed point pd | One period-2 orbit
4/3=1.33333 period-6 orbit | pf |Two period-6 orbits
1.44555 sn | Two period-6 orbits
Vv19/3 = 1.45297 period-2 orbit |1/3 | One period-6 orbit
2v/5/3 = 1.49071 period-2 orbit | pd | One period-4 orbit
1.70642 sn | Two period-5 orbits
1.72297 sn {Two period-6 orbits

Table 1: The fixed point means the fixed point @y = (1,1) and parent refers to the orbit
that is undergoing the bifurcation and children represents the created orbits through the
bifurcation. type is one of sn, pf, pd, or m/n, corresponding to a saddle-node, pitchfork,
period-doubling, or rotational bifurcation, respectively. A rotational bifurcation denoted by
m/n occurs when the winding number of an elliptic parent orbit becomes m/n or when the

eigenvalues of the fixed point are e2™™/",

Note that the local bifurcations given in the Table 1 is simply a very small
part of the whole scenario and this extremely complicated cascade of bifurcations
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(d) B=0.33~0.34

0.33 0.332 0.334 0.338 0.338 0.34

(£)(¢-1,90)=(0.37, 0.38)

1.0006
1.0004
1.0002

0.9998
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0.2 0.4 0.6 0.8 1 1.2

Figure 2. (a),(b) and (c) show the orbits of Ss with different initial con-
ditions near the fixed point (1,1): (a) and (c) show the orbits when
3 = 0.33,0.34 respectively. In both of (a) and (c), the rotation numbers
are irrational, and so each orbit is dense on the invariant ellipse. (b) When
B = 1/3, since the rotation number is 1/6, each orbit is attracted to a
period-6 orbit. The other repelling period-6 orbit cannot be observed on
the computer. (d) Bifurcation diagram as 3 varies from 0.33 to 0.34 for a
fixed initial condition (0.99,0.99). The interval (0.33,0.34) has 400 step-
points and at each step the y-values of the last 60 points among the 400
iterations are ploted. (e) Bifurcation diagram for 0.1 < 8 < 1.3. All the
bifurcating periodic orbits are contained in a bounded region. (f) The static
solution with initial conditions (¢_1, #o) = (0.97,0.98) when § = 1/3. This
solution is attracted to the period-6 static solution.

successively occurs until 3 reaches the value 8 =~ 2.15738 and hence when our map Sg
has a hyperbolic horseshoe, all the created periodic orbits with any period still exist
and are included in an invariant Cantor set on which the dynamics of Sz becomes
chaotic. As an illustration, the first case in the Table 1 is shown in the Figure 2.
The Lemma 3.2 simply says that just like the 1D map Q,, right after the end
of the successive local bifurcation of periodic orbits near the fixed point (1,1), Sg
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becomes chaotic. Devaney and Nitecki have shown in the below (Lemma 3.3) that
this chaotic motion occurs in a bounded region.

Now let us consider global dynamics of the map S3. Devaney and Nitecki have
already examined the nonwandering set and the global dynamics of the Hénon map
H,; and defined the following three crucial a-values and the radius R of a square;

(3.11)  ag=—(1+b)%/4, a1 =20 +1b)% az=(5+2V5)(1+|b])?/4

R= {1+ |+ T+ B2+ 4o}

and have shown that for any fixed b # 0 (and hence also includes our case b = —1);
(i) if a is small enough, i.e., a < ag, then the nonwandering set Q(H,p) of H,p is
empty, i.e., all points in the plane eventually escape to infinity.

(ii) if @ > ao, then Q(H, ) is contained in a square U = {(z,y)| |z| < R, |y| < R}.
(iii) if @ > a1, then A = Npez HY (V) is a topological horseshoe, i.e., there exists a
continuous semi-conjugacy of Q(H,p) C A onto the 2-shift.

(iv) if a > ag, then A = Q(H, ) has a hyperbolic structure and is topologically con-
jugate to the 2-shift. That is, Q(H, ) is the compact invariant Cantor set obtained
from the Smale horseshoe construction and so the points in the Q(H, ) remain there
forever and moves in a chaotic fashion. Note that the parameter ay is the same as
the one given by Sterling et al ({24]).

Now our map Sg corresponds in a one to one fashion to H, ; with b = —1 through
the parameter relation g = §\/_1_+_5 (Lemma 3.1), and so by converting the above
results by Devaney and Nitecki into our case, we have the following lemma.
Lemma 3.3. The map Sg, depending on the values of 8 > 0, shows the following
global dynamics:

(i) For B > 0, the nonwandering set 2(Sg) is contained in a square
V={@wlz<eivg <u<iegs)

(i) For B = 2, A = NpezSE(V) is a topological horseshoe, i.e., there ezists a con-

tinuous semi-conjugacy of Q(Sg) C A onto the 2-shift.

(iii) For 8 > %(1 + v/5) = 2.15738, A = Q(Sp) is uniformly hyperbolic and Sg|A is

topologically conjugate to the 2-shift.

Note that the left vortex of V' in Lemma 3.3 is just the fixed point Q; = (§, %
for Sg and the right vortex of V is (1 + §15, 14 5%) and so as 8 > 0 increases, the
right vortex gets closer to the fixed point @2 = (1, 1), say, (1.25,1.25) for # = 2 and
(1.23,1.23) for B = 2.15738.
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From the Lemma 3.2 and 3.3, we can see that if § > 0, then the nonwandering
set, say, fixed points, all the bifurcating periodic orbits near (1,1), all the bounded
chaotic motion of Sg are contained in the square V. Specifically, for 0 < 8 < 2,
all the created periodic orbits are contained in V, and for 2 < 8 < 2.15738, the
bounded chaotic orbit of Sg which is semi-conjugate to the 2-shift, is also confined
in V, and for 8 > 2.15738, there is also in V a compact invariant Cantor set of Sg
in which the chaotic motion of points is conjugate to the 2-shift.

Speaking in terms of static solutions of our global market dynamics (by taking y-
components of an orbit of a point under Sg), as 3 increases from 0 until 8 ~ 2.15738,
in the infinite strip between ¢; = 1/4 and ¢; = 1 + 1/23, our map Sg undergoes
a successive bifurcation of periodic orbits of any period and for 2 < § < 2.15738,
there also exist a compact invariant set of values of static solutions whose motion
along the spatial coordinates j is semi-conjugate to the 2-shift. For 8 > 2.15738,
there is no local bifurcation for S and the motion of the static solutions along the
spatial coordinates j is topologically conjugate to the 2-shift.

Chaotic orbits can occur even near the fixed point (1/4,1/4). Kirchgraber and
Stoffer ([21]) have proved that:

(i) for the orientation and area preserving Hénon map H, (i.e., b = —1), a transversal
homoclinic orbit exists for a > é—z- = (.265625 (i.e., 8 > %— = 0.75 for our map Sg).
And with computer assistance they also have shown that:

(ii) this result holds even for a > —0.866360 (i.e., # > 0.243712 for our map Sp).
Kirchgraber and Stoffer’s result supports an old conjecture proposed by Devaney and
Nitecki that the Hénon map H, admits a transversal homoclinic point for a > -1
(i.e., B > 0 for our case). Now let us rewrite the Kirchgraber and Stoffer’s results
in terms of our map Sg in the following lemma.

Lemma 3.4. For § > 0.243712, our map Sg admits a transversal homoclinic orbit
to the hyperbolic fixed point Q) = (%, %). Consequently, near the hyperbolic fized
point Q1 = ( %, %), there exists an invariant Cantor set on which the dynamics of Sg

is topologically conjugate to a 2-shift and so is chaotic.

Now, combining the results of the above four Lemmas, we can state the following
Theorem.
Theorem 3.5. The static solutions pj(n) = ¢; satisfy the 2nd order nonlinear

difference equation given by (3.5):
$ix1 = =B — dj-1 + (2 +56)9; — 4843,
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where B = a/e > 0. Equation (3.5) has two fized points (i.e., the spatially homo-
geneous static solutions) ¢; = ;lf and ¢; =1 for 0 < o £ 1, and ¢; = ¢o 2 0 for
a =0, for all € > 0. The static solutions of (3.5) exhibit the following local and
global dynamics:

(i) If 0 < B < 2.15738, then the static solution ¢; = 1 undergoes a successive bi-
furcation of periodic orbits of any period in the infinite strip I = {{¢j}|% <¢; <
1+ 95, § € Z}.

(i) If B > 2.15738, then there exist compact invariant Cantor sets of real numbers
on which the motions of static solutions are chaotic and are conjugate to the 2-shift.
(iii) If B > 0.243712, then in the strip I, there also exist “homoclinic” static so-
lutions which converge to the spatially homogeneous solution ¢; = % as j — oo
and compact invariant Cantor sets of real numbers on which the motions of static
solutions along the spacial coordinates j are topologically conjugate to the 2-shift.

Therefore, according to Theorem 3.5, the bounded static solutions are as follows:
(i)the static spatially homogeneous solutions, i.e., {¢;} = {3} and {¢;} = {1} for
0<a<1l,and {¢;} = {¢o} fora =0.

(ii) the infinitely many spatially-periodic static solutions with any period created
through the successive bifurcation of periodic orbits near the fixed point (1,1) for
the map Sg.

(iii) the bounded spatially-chaotic static solutions created right after the successive
bifurcation of periodic orbits.

(iv) the homoclinic static solutions which converge to the spatially homogeneous
solution ¢; = % as j — *oo.

(v) the bounded spatially-chaotic static solutions created due to the transversal
homoclinic orbits to the hyperbolic fixed point (1/4,1/4) for the map Sg.

APPENDIX

Proof of Lemma 3.1. By using the relationship a = %(9[32 —4) and b = -1, we

can immediately check that the commutativity relation h o Sg(z,y) = Hap o h(z,y)
holds. O

Proof of Lemma 3.3. By Lemma 3.1, our map Sa(z,y) = (y, —B—z+(2+58)y—48y?)
is transformed to the Hénon map H,p(X,Y) = (a+bY — X2, X) witha = (%ﬂ)2 -1
and b = —1 by the change of coordinates (X,Y) = h(z,y) = (c1y + c2, 12 + ¢c2) with
¢ =40 and ¢y = v%(Sﬁ—f— 2). In the case b = —1, the three crucial a-values ag, a1,
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a2 and the radius R(a) become ag = —1,a; = 8,a3 = 5+2v5and R =141 +are
spectively. Also using the parameter relation § = %m, these values correspond
to By =0,0;=2,0, = %(1 +4/5) and R(B) = 1+ %ﬂ respectively. Moreover, using
the change of coordinates (X,Y) = h(z,y), the X-side of the rectangle |X| < R(a)
is transformed to —1 — %ﬂ < 4By — %(5ﬂ+ 2) <1+ -g—ﬁ. This gives % <y<l1l+ %
Similarly for the |Y| < R(a). 0O
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