J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 16, Number 4 (November 2009), Pages 327-344

POSITIVE SOLUTION FOR SYSTEMS OF NONLINEAR
SINGULAR BOUNDARY VALUE PROBLEMS ON TIME SCALES

CHUNMEI MI1AO >%*, DEHONG J1®, JUNFANG ZHAO®, WEIGAO GE® AND
JIANI ZHANG °

ABSTRACT. In this paper, we deal with the following system of nonlinear singular
boundary value problems(BVPs) on time scale T

xAA(t) + f(tz y(t)) =0, te (a’ b]'r,

yAA(t) + g(ta :L‘(t)) =0, te (a:bh')

arz{a) - Srz®(a) = yiz(o (b)) + 125 {e(h) = 0,

azy(a) — Bay® (a) = 12y(o (b)) + 8292 (0 () = 0,
where ai, Bi, i, i > 0 and pi = aivi(o(h) ~ @) + b + wifi > 0(i = 1,2), f(t.y)
may be singular at ¢ = a, y = 0, and g(t, z) may be singular at t = a. The arguments
are based upon a fixed-point theorem for mappings that are decreasing with respect
to a cone. We also obtain the analogous existence results for the related nonlinear
systems 277 (1) + £(t,w(t) = 0, y7 () + g(t,2()) = 0, 2>V () + f(t,y(t)) =
0, y2V(8) + g(t,2(t) = 0, and s¥A(2) + f(ty()) = 0, y72() + g(tz(t) = 0
satisfying similar boundary conditions.

1. INTRODUCTION

The singular boundary value problem (BVP) arises in a variety of differential
applied mathematics and physics such as gas dynamics, nuclear physics, chemical
reactions, studies of atomic structures, and atomic calculations (21]. It also arises in
the study of positive radial solutions of a nonlinear elliptic equations. Theréfore, it
has been studied extensively in recent years, see, for instance, [3-6, 9, 12-14, 16,22, 24-
25] and the references therein. More recently, several authors begin to pay attention
to boundary value problems for dynamic equations on time scale and many excellent
results have been obtained, see [11,17-18, 23, 26, 27].
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In [18], Hao, Xiao and Liang researched the following singular boundary value

problems
Wy 288 (t) + m(t) (6, 2(0(6))) = 0, ¢ € [a, 8]
' az(a) — fz2(a) = 0, ya(o (b)) + 622 (a (b)) =0
and
(1.2) { zB2(t) + m(t) f(t,z(0(t)),2%(0(t) = 0, t € [a,b)],
) az(a) — Bz (a) = 0, yz(c(b)) + 622 (c (b)) = 0,

where f is continuous, m(-) : (a,0(b)) — [0, 00) is rd-continuous and may be singular
att=aq and/or t = o(b), @, G, v, § > 0 such that d:= 6+ ad+ ay(o(b)—a) >0
and § > 4[o?(b) — o(b)]. Applying the Krasnosel’skii fixed point theorem, they
proved the existence of positive solutions to the problems. But, the nonlinear term
f being nonsingular in its dependent variable.

In [26], Su, Li and Sun researched the following singular boundary value problem

(@Y +q(t)f(t,u(t)) =0, t € (0,T)r,

m—2
(1.3) u(0) =0, w(T)~ Y  Wi(u(&)) =0

i=1
where @p(u) = |ufP~2u, p > 1, ¢ : R — R is continuous and nondecreasing,
0< & <€ < - <&n-2 < p(T). The nonlinearity f is allowed to change sign and
may be singular at u = 0. In addition, 1; may be nonlinear. By using the Schauder
fixed point theorem and upper and lower solutions method, existence criteria for
positive solutions of the boundary value problem are presented.

Naturally, we hope there are the same excellent results on systems of nonlinear
singular boundary value problems on time scale. To the best of our knowledge,
systems of nonlinear singular boundary value problems on time scale are seldom
investigatéd. Therefore, in this paper we consider the following system of nonlinear
singular boundary value problem on time scale T

B8 () + f(t,y(t)) =0, t€ (a,br,

y22 () + g(t,z(t)) =0, t€ (a,blr,

a1z(a) — 1z (a) = nz(o (b)) + 6122 (a(b)) = 0,

azy(a) — B2y™(a) = 12y(a (b)) + Say?(0 (b)) = 0,

where o, Bi, ¥, 6 > 0 and p; = a;0(b) + @b +%B: > 0(2 = 1,2), f(t,y) and
g(t,z) may be singular at ¢t = a, and f(¢,y) may be singular at y = 0.

(1.4)
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2. A Fixep PoiNnT THEOREM

We begin by giving definitions and some properties of cones in a Banach space.
For references, see Krasnosel’skii [20] and Amann [1].

Let B be a real Banach space. A nonempty set K C B is called a cone if the
following conditions are satisfied:

(a) the set K is closed;

(b) if u, v € K then au+ fv € K for all real o, 8 > 0;

(c) v, —u € K imply u = 0.

Forz,yc K aconeof B, recall that t <y ify—z € K. If 2,y € B with z < y,
let < z,y >= {2z € Blz < z < y}. A cone K is normal in B provided there exists
§ > 0 such that ||e; + eg|] > 6, for all e1, ez € K with {lei}] = |le2]] = 1.

Remark 2.1. If K is a normal cone in B, then closed order intervals are norm
bounded (see [20]).
Next we state the fixed point theorem due to Gatica, Oliker, and Waltman [12]

which is instrumental in proving our existence results.

Theorem 2.1. Let B be a Banach space, K C B be a normal cone, and D C K be
such that ifz,y € D withz <y, then< z,y >C D. LetT : D — K be a continuous,
decreasing mapping which is compact on any closed order interval contained in D,
and suppose there ezists an Tg € D such that T2z is defined (where T2xo = T(T'z0))
and Txg, T?zy are order comparable to zg. Then T has a fized point in D provided
that either:

(i) Tzo < zo and T?zg £ zg or Txg > 2 and Tz > zo; or

(ii) The complete sequence of iterates {T"zo}or is defined and there exists yo €
D such that Tyg € D and yo < T"zg for all n.

3. THE DELTA-DELTA PROBLEM
Consider the following Banach space B = Cla, o?(b)]r, with the norm
flull = sup ju(?)l.
tela,02(b)]r
Define the normal cone, K C B, as
K :={u € B|u(t) >0, t€ [a,c’d)r}.

Moreover, define the function A; : [a,0?(b)]r — R (R* = [0, 0)) by
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2
t—a, iftE[a,M] ,
- 2 T
2(py : 2
o(b) —t, ifte [a( 5 ), o (b)]T.
Finally, for 8 > 0, let
(3.1) hg =0 - h;.

Let RY = (0,0), R* = [0, 00). We make the following assumptions:

(H1) aiy Biy 71 0 2 0, pi = ivi(o(d) — a) + Bivi + aid; > 0, a,b € T with a
right dense;

(H2) f € C((a,a(b)]r x RF,RY) and f(t,-) is decreasing for every t € (a,o(b)]T,
g € C((a,o(b))t x R*,RY) and g¢(t,-) is increasing for every t € (a, o (b)]r;

(H3) lim f(t’y) = oo, lim f(tay) = 0, lim g(t,IL‘) = 0, lim g(t,(L‘) = o0

y—0t y—00 z—0+ T—00
uniformly on compact subsets of (a, o(b)]T;
o(b) o(b)

(Hy) 0 < / f(t, hg(t))At < oo for all 8 > 0 and 0 < / g(t,z)At < oo for
all r € R*. : ¢
Lemma 3.1. Suppose that (Hy) holds and e € B, then linear boundary value prob-

lems

(3.2), { Wb (t) 4 e(t) =0, t€ (abln

a;u(a) — Biu?(a) = 0, yu(o(d) + Gul(a(b)) =0, i =1,2

has a unique solution

a(b)
(33) w)= [ Gilts)e(s)s
where Gi(t,s) : [a,o(b)]T X [a, bl — [0,00) is defined by
(3.4)

Gilt:s) 1 { (B; + ais — aa)(yio(b) + 6; — 1it), a < s < o(s) <t < a(b),
i\, 8) = —
pi U (Bi + it — aa)(vio(b) + &; — vis), a <t < s < a(s) < a(b).

Remark 3.1. If (H;) holds, then G;(t,s) > 0 for (¢,s) € (a,0(b))r % (a,b)T.
Lemma 3.2. Suppose that (H;) holds and e € B, e(t) > 0 on t € (a,blr. If
ui(i = 1,2) is a solution of BVP(3.2);, then

(i) u; is concave;

(i) there exists some 6 > 0 such that ui(t) > he(t) for all t € [a, o (b)]r.

As we know, (z,y) € C(a,02(b))r x C%(a,o%(b))r is a solution of BVP(1.4) if
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and only if (z,y) € Cla, 0?(b)]r x Cla, 02(b)]r is a solution of the following nonlinear
integral equation system

a(b)
z(t) = Gi(t,5)f(s,y(s))As,
(3.5) b
y(t) = Ga(t, s)g(s,z(s))As, t € [a,0(b)]T,

a
where G;(t,s)(i = 1,2) are as defined in Lemma 3.1. Obviously, the above nonlin-
ear system of integral equation can be regarded as the following nonlinear integral
equation

a(b) a(b)
(36) (I)(t) = Gl (t, S)f(S, / G2(51 T)g(T1 :L‘(T))AT)AS

a

Define D C K by
D := {z € K| there exists 6(z) > 0 such that z(t) > hg(t), t € [a,0(b)]r},

and the operator T : K — K by

a(b) a(b)
(3.7 (Tz)(t) := G1(t,s)f(s, Ga(s,m)g(r, z(1))AT)As.

a a
In the following, we will prove T is well-defined. Note that for x € K, there exists
6(z) > 0 such that y(t) = f: Ga(t,s)g(r,z(7))AT > hg(t) for all t € [a,b]r. Since
f(t,y) is decreasing with respect to y, we see f(t,y) < f(t, hg(t)) for ¢ € [a, b]T. We
obtain
o(b) a(b)
0< Gi(t,s)f(s, Ga(s,7)g(T,2(T))AT)As

a a
o(b)
< / Gi(t,s)f(s, hg(s))As < oo.
a
It can be easily verified that, T is decreasing with respecttox € K and T : K —
D.

Remark 3.2. It is easy to prove that the existence of solutions to system (3.5)
is equivalent to the existence of solutions to integral equation (3.6). So, we have
(z,y) € D x D is a solution of system (1.4) if and only if Tz = z.

We now present the main result of this part.

Theorem 3.3. Suppose f,g satisfy (Hi)-(Hy), then system (1.4) has at least one
positive solution.
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o(b) 1
Proof. For each n € N, let ¢, (t) = / G’z(t,s)g(s, E)AS' Since g is increasing

in its second component, then

(3.8) Ynt1(t) < ¥nlt), ¥n(t) >0, t € [a,0(b)r.
By (Hs), nh_’rrolo ¥n(t) = 0 uniformly on [a,o(b)]T. Define

fn(tay) = f(t’ma‘x{ya wn(t)})

Note that f, has effectively “removed the singularity” in f at y = 0. Moreover, for
(t,y) € (a,a(b)] x (0,00), we see

falt,y) < f(t,9),
and
fa(t,y) = f(t, max{y, Yn(t)}) < f(t,¥n(t)).

Next, define a sequence of operators T, : K — K by
o(b) o(b)

o)) = [ Galt,5)fa (

a

Gz(s,T)g(T,x(T)> AT)As, t € fa,o(b)r.

a

Arzela-Ascoli Theorem guarantees that 7;, is a compact mapping on K. Further-
more, T,,(0) > 0, T2(0) > 0. By Theorem 2.1, for each n € N, there exists z, € K
such that

Trnzn(t) = zn(t), for t € [a,o(b)]T.

Hence, for each n € N, z, satisfies the boundary conditions of problem (1.4).

First we claim that there exists R > 0 such that ||z,|| < R for all n. If this were
not true we would find, by going to a subsequence if necessary, that there exists a

sequence of functions {z,}32 ; from [a, b] into [0, co] such that z,(t) > 0 for t € (a,b),

Tnxn = Tn,
znll < |lTnt1ils

and lim ||z,|| = 0.
n—oo
a(b)
Let yn(t) = Ga(t, 8)g(s, zn(s))As, by Lemma 3.2, for any n, y,(t) have their

graph concave a;d possess exactly one point of maximum in the interval [a, o(b)]r.
For each n, let ¢, be the unique point of maximum of y,(t) on [a,o(b)]r. The fact
that the graph of y,(¢) is concave down implies

a(b)—a o(b)+3a 30(b)+a

T4 1 4

(39) yn(t) > yn(tn)a te [
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Let M; = sup {Gi(t,s)| (t,s) € [a,0(b)]r X [a,b]r}, © = 1,2. Our assumptions
(H3), coupled with the inequality (3.9) imply there exists ng such that if n > ny,
then

a(b) 2 o(b)+3a 30(b)+a
< —) 1 .
16 [ cateonto.anionas) < o, e [LE5 L]
The fact that ||zn|] < ||zn+1]| implies {lynl] < Hynt1|| since g is increasing in its
second component, then for n > ng,
o(b) + 3a ob)—a
y"( 4 ) Z
3o(b)+a a(b)—a
w( 4 )2 4

o(b) —a
4
a(b) —a
4

yn (tn) Z y’n,g (t'no ) I

yno(tne),
ab)—a

yn(tn) 2

Yno (tno ),

g(b—)g—:ig,ﬂ) and (9,9—(’%—“—) with
(o(b),0) must lie under the graph of y, for n > ng, that is,

[a, J(b)4+ Ba]T U [30(2 + a’ a(b)]

since the graph of each solution is concave down, if we let 6 =

then the line segments joining (a,0) with (

yn(t) 2 ho(t), t€

Thus, for n > ng one has

, 2 1ng.

o(b)
onlt) = (Tuan)(®) = [ Gl<t,s>fn(s,
o(b) ofb

< Gl(t,S)f(S,

a

a(b)

b
G2(3) T)Q(T$ wn(T))A7'> As

a
)

Galo, ol aa(r)T ) As
d!b4§+3a @ 3ail;t+u 2
< —_—
< /; G (¢, s)f(s, hg(s))As + . b4+3a M,y 7 As

o(b)
+ /3 s Galt,8)f (5, ha(s))As

o(b)
< G1(t,s)f (s, hg(s))As + a(b) — a < o0,

a

which contradicts the fact that lim ||z,]] = co. Thus there exists R > 0 such that
Tor OO
lzn]l < R for all n.
Then we claim that there exists 7 > 0 such that

lznll = v and |ynl| =,

o(b)

where y,(t) = / Galt, s)g(s,zn(s))As.
Again the argument is by contradiction. If this were not true, then, by going to
a subsequence if necessary, we may assume that z,(t) — 0 uniformly on [a, o(b)}t
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as n — oo, by (Hs), then y,(t) — 0 uniformly on [a,o(b)}T as n — oo. Let
m; = inf{G;(t, )| (¢,3) € [a,0(b)]T X [a,bl7} >0, i=1,2.

From (Hjs), lir(l;x+ f(t,y) = oo uniformly on compact subsets of (a,o(b)]y. Hence,
y—*

there exists some § > 0 such that for t € w, S9(b)+a 1and 0 < y < §, we obtain
3 !

2
ty) > —.
ft.y) —
By assumption, there exists ng such that n > ng implies that 0 < z,(t) < %,
o(b) 1
t € (a,0(b))r. Furthermore, ¥n(t) = Gz(t,s)g(s, R)AS’ hence there exists

a
ny > ng such that if n > n, then

"/Jn(t)<g": te[

3a+o(b) 3o(b) + a]
4 7 4 T
3a+o(b) 30(b)+a
4 ’ 4

The conclusion is that if n > ny and t € [ ]T’ then

Zn(t) = (Tozn)(t) = /:(b) Gi(t,8) fn (3,/:@) Ga(s,m)g(r, :En(T))AT) As

3a(b)+a
4

> G1(t, 8)fa| 8 " Gals, 7)g(7, zn(7))AT | As
fusan G095

3o(b)ta

>m / ) f(s,max{wn(s), /0 " as ol xn(T))A'r})As

1 3ata(b)
4
3o(b}+a
4

1
4

oty f(s, g—)As

>1

o ?

and
a{b)

Yn(t) 2 Ga(t, s)g(s, 1)As.
But this contradicts the assumptiox: that
nlgrgo zp(t) > 0
uniformly on {a, o(b)]r. Hence, there exists r > 0 such that ||z]| > r and [y > r.
Let 0 = o(b) - ar, the concavity of y,(t) = /a(b) Ga(t,s)g(s, zn(s))As and z,(t)
for t € [a,0(b)}r yields ‘

wn(t) > he(t),

(3.10) Yn(t) 2 he(t), t€ [a,a(b)lr-
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Therefore, the sequence {z,}52; is contained in the order interval < hg, R >; that
is, {zn}he; C D. Since T : K — D is a compact mapping, Tz, — z* as n — oo for
some z* € D.

To conclude the proof of this theorem, we need to show that

Tim (Ta(t) - a()) = 0 uniformly on [z, o(b)r.
Fix g = 20 =@
permits us to choose § € (a, o (b))t such that
/:f(t,hg(t))At < “2'1'%4'}
By (3.8) and (3.10), there exists no € N such that for n > ng,
Yn(t) < hg(t) < min{za(t), yn()}, t € [6,0(D)]r.
Thus, for ¢ € [5, 0 (b)]r,
faltyn(t)) = f(t, max{yn(t), ¥n(t)}) = f(t, yn(t)),
and for ¢ € [a,o(b)]r,
(Tza)(t) — zu(t) = (Tzn)(t) — (Tnzn)(t)

a(b) o(b)
- / G1(t, 5)f(5, yn(s))As — / G (b, 5) fa 5, yn(5)) A

r, and let € > 0 be given. The latter part of assumption (H;)

& )
- / G(t,5) (5, 1n(sDAs = [ G1(6,5)uls,m(s)) s
a(b) a(b)
+ f G1(t, 8)£(5, ya(s))As — / Gi(t, 5) (s, ya(s))As
) ]

5 s
=/ Gl(t,s)f(s,yn(s))zls~—/ G1(t, 8) fu(s,yn(s))As.

Therefore, for t € [a, o (b)]T,

'] §
(Ton)(t) - 2a(t)] < Mi [ [ swmienas+ [ fn<s,yn<s>>As]
v} )
- M [ [ 1Ganenas+ [ f(s,max{ynw),wn(s)}ms}
)
SZMl/ F(s,yn(s)HAs

6
< 2M1/ f(s, ho(s))As < e.
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Since t € [a,o(b)]r is arbitrary, we conclude that ||Tz, — z,|| < € for all n > ny.
Hence, z* €< hg, R > and for t € [a,o(b)]T,
Ta*(t) = T( lim Txn(t)) - T( lim wn(t)) = lim Taa(t) = 2*(¢).
n—oo =00 n—00

The proof is completed. ]
4. THE NABLA-NABLA PROBLEM

We now extend the existence results of the previous section to the following
system of nonlinear singular boundary value problems on time scale
gVV(8) + f(t,y(t) =0, te[ab)r,
yVV () +9(t,2(t)) =0, te€labr,
a1z(p(a)) = Brz¥ (p(a)) = 1z(b) + 612 (b) = 0,
azy(p(a)) — B2y" (p(a)) = 712y(b) + 23 (b) = 0,
where o, B, v, 6 2 0 and p; = 0o;%i(b— p(a)) + ;é; + viBi > 0(i = 1,2), f(t,y)
may be singular at t = b, y = 0, and g(¢,z) may be singular at ¢t = b.
Consider the following Banach space B = C[p%(a), b]t, with the norm ||u| =

sup  |u(t)|.
t€[p?(a),bly
Define the normal cone, K ¢ B, as

(4.1)

K :={ue Bl u(t) 20, t € [p*(a), blr}.

Moreover, define the function h; : [p?(a), b]r — RT(R* = [0,00)) by

| P el 2O
b—t, ifte [a(-"—w),blr.
Finally, for 8 > 0, let
(4.2) ho=0h.

We make the following assumptions:

(H1) @i, Biy, v, 6 20, pi = aidi + Biyi + aivi(b— p(a)) > 0, a,b € T with b left
dense;

(H2) f € C([p(a),b) x RF,RY) and f(t,-) is decreasing for every t € [p(a), b)T,
g € C([p(a), b)T x RT,RY) and g(t, ) is increasing for every t € [p(a), b)r;

(Hs) yl_i}g+ flty) = oo, ylgr{gof(t,y) =0, lim g(t,z) = 0, lim gt,z) = oo

uniformly on compact subsets of [p(a), b)T;
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b b
(Ha) 0 < / f{t, hg(t))Vt < oo for all @ > 0 and 0 < / g(t,z)Vit < oo for all
pla) pla)
x € RT.
Lemma 4.1. Suppose that (Hy) holds and e € B, then linear boundary value prob-
lems

(4.3)i

uwV(t) +e(t) =0, te (ablr,
aiu(p(a)) — B (p(a)) = 0, vu(b) + 6;u¥(h) =0, i =1,2

has a unique solution

b
(4.4) ui(t) = /( )Gi(t,s)e(s)Vs,

where Gi(t, s) : [p(a), bl X [a, bl — [0,00) is defined by
(B; + a;s — ap(a))(yib + &; — it), pla) < s < o(s) <t < b,

1
(45) Gilt,s) = —/-): { (B; + ait — ap(a))(vib+ §; — vis), pla) Kt <s<o(s) <b.

Remark 4.1. If (H;) holds, then G;(t,s) > 0 for (¢,s) € (p(a), b)T x (a,b)r.

Lemma 4.2. Suppose that (Hy) holds and e € B, e(t) > 0 on t € [p(a),b)r. If
ui(t = 1,2) is a solution of BVP(4.3);, then

(i) u; is concave;

(ii) there exists some 6 > 0 such that u;(t) > he(t) for allt € [p(a), blT.

As we know, (z,y) € C?(p*(a),b)r x C*(p?(a),b)T is a solution of system (4.1) if
and only if (z,y) € C[p*(a), bt x C[p?(a), b]r is a solution of the following nonlinear

integral equation systems

b

2®)= [ Git:9)f(s,3(s)Vs,
pl()a)

y(t) = ( )Gz(t,s)g(s,:c(s))Vs,' t € [p(a), b]T,
pla

where G;(t,s)(i = 1,2) are as defined in Lemma 4.1. Obviously, the above nonlin-

(4.6)

ear system of integral equation can be regarded as the following nonlinear integral
equation

b b
(4.7) z(t) = / Gh (t,s)f(s,/ GQ(S,T)Q(’I‘,.Q;'(T))VT) Vs.
pla) pla)
Define D C K by
D := {z € K| there exists §(x) > 0 such that z(t) > hy(t), t € [o(a), b1},
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and the operator T : K — K by

b b
(4.8) (Tz)(t) :=/ G’ﬂt,s)f(s,/ Gz(S,T)g(T,:L‘(T))VT) Vs.
pla) pla)
Using arguments very similar to the previous section, we obtain an existence
theorem.
Theorem 4.3. Suppose that (Hy)-(Ha) hold, then system (4.1) has at least one

positive solution.
5. THE MIXED DELTA-NABLA PROBLEM

Finally, we extend these existence results to the following system of nonlinear

singular boundary value problems on time scale

( z2V(t) + f(t,y(t) =0, te (a,b)r,
(5.1) ) yAV(t) + g(t,z(t)) =0, t€ (a,b)r,
a1z(a) — f1x2(a) = na(b) + 8122(b) = 0,
\ a2y(a) — Bay®(a) = 12y(b) + S2y°(b) = 0,
and
(zVA(t) + f(t,y(t) =0, te (a,b)r,
(5.2) < yVA(t) + g(t,z(t)) =0, te (ab)r,
a1z(a) — 12V (a) = na(b) + f1zV (b) = 0,
( a2y(a) — Fay” (a) = may(b) + 623V (b) = 0,

where a;, B, v, 6 > 0 and p; = oy + s + vif > 0(i = 1,2), f(t,y) may be
singular at t = @, b and y = 0, and g(¢,z) may be singular at t = a, b.
Consider the following Banach space B = Cla, b, with the norm
ull = sup |u()l.
tE[a,b]T

Define the normal cone, K C B, as
K :={ue B|u(t) >0, t€[ablr}.

Moreover, define the function A : [a, by — Rt (R = [0,00)) by

a+b
—a, ift [—}
t—a, ifte|a 2 Ip

a+b

o= b—t, ifte[a( . ),b]T.

Finally, for 8 > 0, let
(5‘3) he =0. h,l.
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We make the following assumptions:
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(H1) @i, Bi, Yy 6 20, pi = 8 + Bivi + aivi(b—a) > 0, a,b € T with a right

dense and b left dense;

(Hz) f € C((a,b)T x R, RY) and f(¢,-) is decreasing for every t € (a,b)T, g €

C((a,b)r x RT,RY) and g(t,-) is increasing for every ¢ € (a, b)r;

(Hs) lim f(t,y) = oo, lim f(t,y) =0, lim g(t,2) =0, lim g(t,z) = oo

uniformly on compact subsets of (a, b)r;

b b
(Hge) 0 < / f(t, hg(t))Vt < oo for all § > 0 and 0 < / g(t,z)Vt < oo for all
a a

z € RY.

b b
(Hgp) 0 < / f(t, hg(t))At < oo for all @ > 0 and 0 < / g(t,z)At < oo for all
a a

z € Rt.

Lemma 5.1. Suppose that (H;) holds and e € B, then linear boundary value prob-

lems
(5.4); uAV(t) +e(t) =0, te€ (a,b)r,
e aiu(a) - BruP(a) = 0, viu(b) + &ul(b) =0, i =1,2
and
(55); uVA(t) +e(t) =0, t€ (ab)r,
o aiu(a) — Biu¥(a) = 0, vu(d) + 6uv(b) =0, i =1,2

has a unique solution
b
ui(t) =/ Gi(t, s)e(s)Vs,
a
and
b
w(t) = [ Gt 9)e(s)as,
a
respectively, where G;(t, s) : [a, bl X [a,bly — [0,00) is defined by

i + ;s — aia)(vib+ 6 — vit), a <s < <t<b
60 Gl = L{ Brrmema0h o0 o< sy
pi | (Bi + ait — cia)(yb+ 6 —vis), a<t<s<o(s) < b

Remark 5.1. If (H;) holds, then G;(¢t,s) > 0 for (¢,s) € (a,b)r % (a,b)r.

Lemma 5.2. Suppose that (H;) holds and e € B, e(t) > 0 ont € (a,b)y.

ui(i = 1,2) is a solution of BVP(5.4);(or (5.5):), then
(i) u; is concave;
(ii) there exists some 6 > 0 such that ui(t) > he(t) for all t € [a,b]T.

If
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As we know, (z,y) € C%(a,b)t x C%(a,b)t is a solutions of system (5.1), system
(5.2) if and only if (z,y) € Cla, b]T x C|a, b]r is a solution of the following nonlinear

integral equation systems

b
J 2(t) = / Gilt, )£ (s,y(s))Vs,

(5.7) :
\ y(t) ::/ Ga(t, s)g(s,z(s))Vs, t € [a, b]r,
and
( b
20 = [ Grt9)f(s,u()as,
(5.8) 4 %
| 50 = [ Gatt,)ats,a(s)s, ¢ € Lo,

respectively, where G;(t,s)(i = 1,2) are as defined in Lemma 4.1. Obviously, the
above nonlinear system of integral equation can be regarded as the following non-

linear integral equation

b b
(5.9) o(0)= [ Gr(t,5)1G, [ Galoir)atr, (7)) s
and

b b
(5.10) 2(t) = / Cr(t, 8)f (s, / Ga(s, 7)g(r,2(r))AT)As,
respectively.

Define D € K by
D := {z € K| there exists 6(z) > 0 such that z(t) > hg(t), t € [a, b]1},
and the operator T: K — K by

b b
G.11)  (Tz)(t) = / Gult, 9) (s, / Ga(s, 7)g(r, 2())VT)Vs, for (5.1),

and

b b
(5.12) (Tz)(t) := / G1(t, s)f(s,/ Ga(s, T)g(7,z(1))AT)As, for (5.2).
a a
Using arguments very similar to section 3, we obtain an existence theorem,

Theorem 5.3. Suppose that (Hi)-(Hye) hold, then system (5.1) has at least one
positive solution.

Theorem 5.4. Suppose that (Hy)-(Hyp) hold, then system (5.2) has at least one

positive solution.
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6. APPENDIX

Let T be a time scale, which is a closed subset of R, the set of real numbers, with
the subspace topology inherited from the Euclidean topology on R. An alternative
terminology for time scale is measure chain.

The theory of time scale was introduced and developed by Aulbach and Hilger
[2] to unify continuous and discrete analysis. Now, there have been many publica-
tions (see [7, 8, 14, 18]) relating difference equations with differential equations. A
result for a dynamic equation contains simultaneously a corresponding result for a
differential equation, one for a difference equation, as well as results for other dy-
namic equations in arbitrary time scales. Time scales theory present us with the
tools necessary to understand and explain the mathematical structure underpinning
the theories of discrete and continuous dynamical systems and allows us to connect
them. That is certainly the goal with this work. The following definitions on time
scales can be found in papers [7, 8].

Definition 6.1. Define the interval in T
[a,b]T := {t € T such that a <t < b}.

Open intervals and half-open intervals etc. are defined accordingly.

Definition 6.2, A time scale may or may not be connected, so we define the forward
jump operator and backward jump operator o, p by

ot):=inf{r >¢t; reT}eT, p(t):=sup{r<t; re€T}eT,
forallt € T witht <supT.

An element ¢t € T is left-dense, right-dense, left-scattered, right-scattered if p(t) =
t, o(t) =1t, p(t) < t, o(t) > t, respectively. Also, inf@ =:= sup T and sup @ := inf T.
If T has a right scattered minimum m, then Ty = T — {m}, otherwise Ty = T. If T
has a left-scattered maximum M, then T* = T — {M}, otherwise T* = T.

Definition 6.3. Assume z : T — R and fix t € T*. Then we define z2(t) to be
the number (provided it exists) with the property that given any £ > 0, there is a
neighborhood U of ¢ such that

lle(a(t)) — 2(s)] = &2 ()0 (t) - 5]l < elo(t) - s,

for all s € U. We call z2(t) the delta derivative of z(t) at ¢ € T*. The second
derivative of z(t) is defined by z24(t) = (®)%(t).
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Definition 6.4. Assume z : T — R and fix t € Tx. Then we define zV(t) to be
the number (provided it exists) with the property that given any € > 0, there is a
neighborhood U of ¢ such that

lle(p(t) — 2(s)] = ¥ (B)lp(t) - s]| < elo(t) - s,

for all s € U. We call zV(¢) the nabla derivative of z(t) at t € Ty. The second
derivative of z(t) is defined by zVV (t) = (zV)V(2).
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