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CHARACTERIZATIONS OF AN INNER PRODUCT SPACE
BY GRAPHS

C.-S. LIn

ABSTRACT. The graph of the parallelogram law is well known, which gives rise to the
characterization of an inner product space among normed linear spaces [6]. In this
paper we will sketch graphs of its deformations according to our previous paper (7,
Theorem 3.1 and 3.2]; each one of which characterizes an inner product space among
normed linear spaces. Consequently, the graphs of some classical characterizations
of an inner product space follow easily.

1. INTRODUCTION

Throughout this paper (X, || - ||) denotes a complex (or real) normed linear
space. The most well-known characterization of a complex (or real) inner product
space among complex (or real) normed linear spaces in terms of two vectors is the
parallelogram law (2], which is the classical Jordan-Neumann condition [6], {2, p.
175]. In other words, X is an inner product space if and only if

(A) lz+ylP+lz-ylP=2lzl*+2y|?

holds for every z,y € X. As is well-known, the parallelogram law (A) can be easily
given the geometrical interpretations in the unitary space from which its name is
drawn. In fact, a vector z is represented by an arrow definning the direction, and
its norm || z || is the length of z. For vectors z and y, = + y represents the resolvent
of the arrows x and y, and (A) may be sketched as follows:

Conversely, from Fig. (A) we obtain the condition (A) by the law of cosines
(cf. the next section). More precisely, the sum of the squares of the lengths of the
diagonals in a parallelogram equals the sum of the squares of the lengths of the four
sides.
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a+fB=m

Fig. (A)

For a generalization of the condition (A) we have

Lemma 1 ([7, Theorem 3.1 and 3.2]). X is an inner product space if and only if
B) rlsz+tyl®+sltz—ryl?=(rs+ ) (s z|?+r |y |?)

holds for every z,y € X, and for any nonzero real numbers r, s, and t such that
rs+ 12 # 0.

The proof of Lemma 1 was a direct approach. A direct computation for necessity,
and for sufficiency we proved that all conditions for the inner product are satisfied.
Remark that many classical necessary and sufficient conditions are special cases of
(B) [7, Remarks]; such as conditions (1.1), (2.7), (4.24), (11.10), (11.12), (11.13),
(4.23), and (11.11) in the book [1]. Nevertheless, the condition (B) may also be
derived from other more general characterization with different assumptions, and
this will be proved in the section three.

Naturally one might ask a question: For any two vectors in X, is the graph of
a parallelogram in the unitary space the only characterization for an inner product
space? We show that the answer is negative. The aim of this paper is in fact to
sketch the graphs of (B) which contain exactly four deformations of a parallelogram,
and each one characterizes an inner product space. Finally, it is shown consequently
that the graphs of some classical conditions follow easily.

2. GRAPHS OF CONDITION (B)

Theorem 1. In the space (X, || - ||) the graphs of the condition (B) contain ezactly
four deformations of a parallelogram in the unitary space, and each graph charac-

terizes an inner product space X.

Proof. We are going to sketch all possible graphs of the condition (B), and conversely
from each graph we obtain an equation which is a special case of the condition (B).
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Depending on the coefficients of the condition (B) we have to consider the fol-
lowing eight cases: (1) r,s >0,and ¢ > 0; (2) r,s >0,and t < 0; (3) r >0, s <0,
andt>0;(4)r>0,8<0,andt<0;(6) r<0,s>0,and t>0; (6) r <0, s >0,
and t < 0; (7) r,s < 0, and t > 0; and (8) r,s < 0, and t < 0. To this end, we let
r,8,t > 0 and rewrite (B) into eight different equalities as follows.

1) rllsz+tyl? +s [tz —ry [I>= (rs + ) (s [ 2 |1 +r [y 7).
Equivalently,
I Vrsz + /7ty || + || stz ~ Vory |I?
= (Il Vrsz |12 + | Vrty I1P) + (Il Vot |2 + 1| Vory [I).
(2) rllsz—ty > +s |l ~tz —ry [P= (rs + ) (s [ 2 | +r [l y [1P).
Equivalently,
| Vrsz — v/rty [|2 + || Vste + Vsry |2
= (Il Vrsz 1> + 1| Vrty I1?) + (Il Vste | + || Vary ).
3) rll =sz+ty |2 —s |l tr —ry |P= (=rs+ ) (~s | z [|> +r [ y |?).
Equivalently,
| Vrsz — v/rty |12 - || stz — Vary |12
= (I Vrsa || + || Vrty I°) = (Il Vsta |? + || Vory |1%).
(4) rll—sz—ty | —s || —tz —ry |’= (=rs + ) (=s | z || +r || y |1?).
Equivalently,
| Vrsz +Vrty |I? — || stz + sy |I?
= (I Vrsz II> + || Vrty %) = (Il Vst |2 + || Vsry [P).
(5) —r || sz +ty > +s |tz +ry |P= (~rs +)(s [ 2 |* = || y |1?).
Equivalently,
I Vrsz + Vrty |1 = || Vstz + Vsry |I?
= (I Vrsz I + | Vrty I?) = (Il Vsta |? + || Vary [1?).
(6) ~rllsz—ty > +sl ~tz+ry|P=(~rs+ ) (s 2 |2 —r [y |?)
Equivalently,
I Vrsz — Vrty |12 = || —Vstz + Very |I?
= (I Vrsz |12 + || Vrty I?) = (Il Vstz |12 + || Vory |1%).
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(7) —r || —sz+ty |2 —s [tz +ry |>= (rs + ) (=s | = |2 —r || ¥ ).
Equivalently,
| Vrsz — Vrty |? + || stz + sy |2
= (I vVrsz |12+ || Vrty 1) + (I stz I + || Vory 1)
(8) —r || —sz—ty|> —s || ~tz+ry |*=(rs + ) (=s [z |> = | ¥ |?).

Equivalently,

I Vrsz +Vrty 17 + || vste — Vory ||?
= (Il Vrsz 1> + | Vrty I12) + (Il Vstz |P + || Vory |12).

We see that the equalities (1), (2), (3) and (4) are exactly the same as the
equalities (8), (7), (6) and (5), respectively; and so we need only to sketch graphs
of (1), (2), (3) and (4). Note that in the graphs below we assume that \/rs > /st
and /Tt # /sr for r,s,t > 0.
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Conversely, we next show that every equality (1) through (8) can be obtained
by its graph and the law of cosines. Recall the law of cosines: In any triangle,
with angles o, 8, and v and corresponding opposite sides a, b, and ¢, the relation
a? = b? + c? — 2bc cos a holds (the other two relations can be formed similarly). Let
us consider Fig. (1) and (4) only.

By Fig. (1), a+ 8 = 7 and cos = —cos a. Also,

I Vrsz + Vrty \*=| Vrsz I + || Vrty |* =2 || Vrsz ||| Vrty || cos o
=l Vrsz | + || Vrty |* —2rst || z |||l y || cos e;
and
I Vstz — sty |*=|l Vst > + || Vsry |> +2rst | z |||l y || cosa.

By Fig. (4), a = 3, Also,

I Vrse + Vrty IP=)| Vrse | + || Vrty I =2rst || z [|[| y || cos s
and

I Vste + Very [P=|| stz |* + || Vory |* —2rst || @ ||} y || cos o

Whence equalities (1) and (4) follow easily. All others can be similarly obtained,
and the proof of the theorem is now completed.
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Remark that a graph of deformation of a parallelogram appeared in [7, p. 131],
which is merely a special case of Fig. (2).

3. A DIFFERENT PROOF OF CONDITION (B)

In this section we prove that the condition (B) in Lemma 1 may be derived from

the carlsson’s condition [3] in Lemma 2 below for m = 3, and conversely.

Lemma 2 ([3], or (1.16) in (1, p.13]). X is an inner product space if and only if
form>1,k=0,1,...,m, there are ar # 0 and pair-wise linearly independent set
{(bk, ck)}iro such that, for all z,y € X, the equality Y ¢.gax || bxx + cky I1>= 0
holds.

For our purposes we shall consider in particular only four terms in Lemma 2 for
Theorem 2 below, and prove that it is equivalent to the condition (B). Thus, the
condition (B) characterizes an inner product space as expected.

Theorem 2. Given z,y € X and consider the condition
(©) a0 |l boz + coy || +a1 || b1z + 1y IP= —az || bz + cay ||* —a3 || bz + cay ||,

with a # 0, k =0, 1,2, 3, and pair-wise linearly independent set {(bg, ck)}%:O.
Then the condition (C) is equivalent to the condition (B).

Proof. Due to both conditions (C) and (B) we may write correspondingly ag = r,
a; = s, ag = —(rs + t?)s, and a3 = —(rs + t*)r. Also, (bo,co) = (s,t), (b1,c1) =
(t,—7), (b2, c2) = (1,0), and (b3, c3) = (0,1). Now,

(C)=>(B). It is clear that r, s and rs+t* are nonzero. If t = 0, then (bp, co) = (s, 0)
and (by,¢;) = (0, —7). It follows that (bg, co) and (bo, c2), (b1, c1) and (b3, c3) as well,
are linearly dependent. This contradicts the condition (C), and so t # 0.

(B)=(C). By (B) ag, a1, a2 and a3 are clearly nonzero. Next, suppose that
(bo, co) and (by,c1) were linearly dependent, then s = pt and t = —pr for some
constant p, and so rs + t* = 0 a cotradiction to a condition in (B). All other
are obviously pair-wise linearly independent. Therefore, {(b,ck)}3_, is a pair-wise
linearly independent set, and the proof is completed. 1

. Notice that the advantage of the condition (B) over (C) is clear. Since the
combined 12 coeficients of  and y in the condition (C) (i.e., a4, b; and ¢; for i =
0,1,2,3) has been significantly reduced to only 3 in (B) (i.e., r, s and t); and the
pair-wise linearly independent set is not assumed in (B). Therefore, it is relatively
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easy to sketch graphs of (B).

4. GrRAPHS OF SOME CLASSICAL CONDITIONS

In this final section we will consider graphs of some classical characterizations of
an inner product space in terms of two vectors. The following list of eight conditions
with condition number is from the book [1]. Each one is a special case of the
condition (B) as is described in the bracket {-- -} and hence we may omit sketching.

(1.1) The Jordan-Neumann condition [6]: For any z,y € X,
le+ylP+lz—ylP=20z>+20y|?.
{Let r =s =1t =1>0in (B); a special case of (1)}.
Its graph is precisely Fig. (A).
(2.7) The Ficken’s condition [5]: For any unit vectors z,y € X and any real
number X # 0,
Iz+xyl=lly+rz|.
{Let r=1>0,s=-1<0,and t = —_A—I in (B); a special case of (4) if
A > 0, and of (3) if A < 0}.
Its graph is similar in shape to Fig. (4) if A > 0, and to Fig. (3) if A < 0.
(4.23) The Oman’s condition [9]: For any z,y € X there exists a real number
A € (0,1) such that

Ida+ @ =Ny 2+ =Nz =y [P= Al P +1 -2 [y |-
{Letr=t=1>0,and s = l—f—x > 0 in (B); a special case of (1)}.
Its graph is similar to Fig. (1).
(11.10) For any unit vectors z,y € X,
I3z -y |P=4+3z~y|?.
{Let r =t=1>0, and s = —3 < 0 in (B); a special case of (3)}.
Its graph is similar to Fig. (3).
(11.12) For any unit vectors z, € X and any real number XA # 0 such that ||z ~y|| =
1
ly— Az |?=1-Xx+ )2
{Let r =1>0,s=—A and t =1 in (B); a special case of (3) if A > 0,
and of (1) if A < 0}.
Its graph is similar to Fig. (3) if A > 0, and to Fig. (1) if A < 0.
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(11.13) For any unit vectors z,y € X,
lz+2y =2z +y|* +1.

{Let r = -2 <0, and s =t =1> 0 in (B); a special case of (5)}.
Its graph is similar to Fig. (4).
(4.24) The Day’s and Oman’s condition [4,9]: For any z,y € X there exist real
numbers A, ¢ # 1 and A, 4 # 0 such that

w1 = p) [ Az + (1= Ny 12 +A1 =) || pz ~ (1~ p)y |I°
= +p=22)Pull 2 2 +H1 -2~ p) |y 7).

{Letr=1—;~‘i,s=TL\—A,andt=1>0in(B)}.‘

Now, we have to consider the following cases.

(a) Both r = 1—;"1 and s = T’i\'X > 0, a special case of (1), i.e., 0 < u, A < 1; then
its graph is similar to Fig. (1).

(b) Both r = L;-E and s = l—i‘—x < 0, a special case of (7), i.e., u,A < 0, or
i, A > 1; then its graph is similar to Fig. (2).

(¢) r= l—‘_;‘ﬁ>0ands= ﬁ < 0, a special case of (3),ie,0< u<1,A<0
or A > 1; then its graph is similar to Fig. (3).

(d) r= 1—;E < 0and s = l—i\x>0,aspecialca.seof(5), ie,u<0orpu>1,
and 0 < A < 1; then its graph is similar to Fig. (4).

(11.11) For any unit vectors z,y € X such that z # y,

2
¥

Ty
Iz -yl
{Let r=t=1>0,and s=—(|| z —y || +1) < 0 in (B); a special case of (3)}.
Its graph is similar to Fig. (3).

T+ =24+ |lz—-vyl|.

In conclusion, we remark that conversely, as was mentioned in the section two,
each condition above can be obtained by its graph and the law of cosines. Also notice
that the (a,b,c,d)-orthogonality characterization in a normed linear space could be
found in our article [8].
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