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ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE
METHOD OF ORDER THREE

IoANNIS K. ARGYROS?® AND SAip HirLoutP?

ABSTRACT. Wu and Zhao [17] provided a semilocal convergence analysis for a
Newton-type method on a Banach space setting following the ideas of Frontini
and Sormani [9]-[11]. In this study first: we point out inconsistencies between the
hypotheses of Theorem 1 and the two examples given in [17], and then, we provide
the proof in affine invariant form for this result. Then, we also establish new conver-
gence results with the following advantages over the ones in [17): weaker hypotheses,
and finer error estimates on the distances involved.

A numerical example is also provided to show that our results apply in cases
other fail {17].

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution z* of equation

(1.1) F(x) =0,

where F is a twice Fréchet—differentiable operator defined on a convex subset D of
a Banach space X with values in a Banach space Y.

A large number of problems in applied mathematics and also in engineering are
solved by finding the solutions of certain equations. For example, dynamic systems
are mathematically modeled by difference or differential equations, and their solu-
tions usually represent the states of the systems. For the sake of simplicity, assume
that a time-invariant system is driven by the equation & = Q(z), for some suitable
operator (), where z is the state. Then the equilibrium states are determined by
solving equation (1.1). Similar equations are used in the case of discrete systems.
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The unknowns of engineering equations can be functions (difference, differential,
and integral equations), vectors (systems of linear or nonlinear algebraic equations),
or real or complex numbers (single algebraic equations with single unknowns). Ex-
cept in special cases, the most commonly used solution methods are iterative-when
starting from one or several initial approximations a sequence is constructed that
converges to a solution of the equation. Iteration methods are also applied for solv-
ing optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the same
recursive structure, they can be introduced and discussed in a general framework.

Frontini and Sormani [9)-[11] introduced a modified Newton method (MNM)
with:

/ CE) dt ~ m—‘iﬁ (G'(zn) ~ G'(z))
as follows: " :
Tptl =T — 2 (Gl(xn) +G'(xn — Gl(xn)_l G(x_n))‘l G(zn),

where G is a real or complex function [9]-[11].

The cubical convergence of (MNM) was also established in [9]-[11] under various
assumptions.

Recently, the cubical convergence of Newton-type method (NTM) related to
(MNM), and given for initial iterate o € D, by:

Yn =2n — F'(zn) ' F(zn) (n2>0),

Tny1 = Tn — 2 (F'(zn) + F'(yn))_l F(zy,)
was established by Wu and Zhao in [17].
There are some inconsistencies between the main Theorem 1, and two numerical
examples in [17].
Indeed, [17, Theorem 1] used the set of sufficient convergence conditions:

Conditions 1.1.
| F'(zo) ! I< o,
I F'(z0)™" F(zo) < m,
| F'(z) I< M,
| F'(z) = F'"(y) IS N llz -yl
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forallx, y € D,
5N
—— ) <K,
M (1-|_3M2 a) -
h=K <1
- aﬂ_2>
and
Ulzo,t*")={z € X :||z -z | '} C D,

where, t* is a uniquely determined point.

If one now looks at Example 1 in [17] (similar observations for [17, Example 2]),
where they consider X = Y, D = [1, 3], g = 2, and function F' given by

Fz)y=23-22-5.

Using the above conditions, we obtain a = .1, = .1, as they do but M = 18,
N = 6, K = 23.555, and h = .23555, where as they get: M = .18, N = .6,
K = 1.85556, and h = .185556, which were to be the correct values if the results
were given in affine invariant form (instead of non-affine invariant form), & = 1, and
F"(zx), F"(y) are replaced above by F'(zg)~! F”(z), and F'(z0)~! F"(y) (z,y € D).

That is why, we first show in Section 2, that the results in [17, Theorem 1] hold
indeed in affine invariant form. The advantages of this approach have been explained
in [3], [8]. Then, we show that under the same or weaker hypotheses, but the same
condition on h, we can improve the estimates on the upper bounds of the distances
Znii—zn il —zn fl, 2 —2* |, lyn — 2 |}, (n 2 0).

Then, in Section 3, we provide sufficient convergence conditions which can be
weaker that the ones given in Section 2.

Finally, numerical examples are provided to show that the results of Section 3
can apply, but the ones in Section 2 (or in {17]) do not.

Note that the set of Conditions 1.1 has been used by us in [3]-[7]. Other fast
iterative methods have been studied in [1]-[4], {8]-[16].

2. SEMILOCAL CONVERGENCE ANALYSIS I FOR (NTM)

We show the main seimlocal convergence result for (NTM):

Theorem 2.1. Let F : D C X — Y be a twice Fréchet-differentiable operator.

Assume:
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there exist g € D, constantsn >0, M >0, N > 0, and K > 0, such that for all

z,y € D:
(2.1)

(2.2)
(2.3)

(2.4)

(2.5)

(2.6)

and

(2.7)
Then,

Fl(zo) Y e L(Y, X),
| F'(zo)™" F(=o) I< m,

| F'(z0) ™" F"(2) IS M,

I F'(@o)™! (F"(z) = F"W) IS N |z -y,

Ulyo,t*—n) C D

sequences {zn}, {yn}, (n = 0) generated by (NTM) are well defined, remain
in U(zg, t*) for all n > 0, and converge to a solution z* € U(zg,t*) of equation
F(z) = 0, which is the unique solution of equation F(z) = 0 in U(zo, t**).

Moreover the following estimates hold for alln > 0:

and

where,

and

: (1-6%)7n y3n_
len~w*llﬁt*—tn=-'1'jggTos g
27 1
Hl'n‘"-’r*“St*—tnS‘ég forh=§,

to=0, sp=1t,— fl(tn)—l f(tn)a

tn+l =1ip— 2 (fl(tn) + f,(sn))—l f(tn),

, 1-V1I=2h W 1+vIi—2nh
V=" =
0—-t*

P :

1
for h < -,
or 3

h#0,
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Proof. We shall show using induction on k:

i, € Ulzo, ti),
| F'(z) ™! F'(zo) IS —F'(tk) 7Y,
| v — =& |< sk — tks

(2.8)
| 2 (F'(zk) + F'(y)) ™! F'(mo) 1< =2 (F/(t) + f'(se)) ™1,

| Zks1 — vk (1< thgr — sk,
and

| kg1 — Tk 1< tegr — k- |

Estimates (2.8) hold for £ = 0 by the initial conditions. Assume (2.8) hold for
all m < k.
Then, we have by the induction hypotheses:

lzes1 — zo [|<I zr41 — 2k (| + || 26 — 2o (| € tet1 — bk + Lk = k41,

and
| F'(zo)™! (F'(zx41) — F'(o)) | < M | z41 — 2o ||
(2.9) S Mitey
< Kp=Kn£;%f£ﬁSL

In view of (2.9), and the Banach lemma on invertible operators [7], {15],

F'(ze41) 7,
and
(2.10)
I F'(ze1)™! Flo) | < 12 [ F'(z0)-! (F'l(xkﬂ) — F'(z0)) |
. 1

L—M || zps1 = 2o |
1 | 1

< < =__’t —l'
S TR Tom—mo | ST Kooy~ W)
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Using (2.4), and the induction hypotheses, we obtain:
1

1) P ([ Pt e-o) a-9d
0

1
[ Par ey @)

1
<|| F'(z0)~! ( /0 F(ax + ¢ (v — ox) — F"(xk)) (11 dt |
1
#13 Feo) ([ P+t o) - P de |

<Y mma Y wem e =2 e
_6 ykv k 4 Yk k I|— 12 Yk k .

Using the Ostrowski-type approximation [1]-[8], [15], [17]:

1
F(zier) = /0 F(gi 4+t (kg1 — 00)) (L= 1) dt (2hsr — vi)?
1
+% /o F" (zr + t(ye — 2x)) dt (yx — k) (Th1 — Yk)

(2.12)

1
+/ F" (zp + tlye — zx)) (1—1t) dt (yx — zx)°
0

1o
—3 / F" (zg + t(ye — z1)) dt (yx — k)%,
0
the estimate [17]‘:
(sk — te)? _ (e be)? (a2 + b + ak b) (ak + bi)
tk+1 — Sk (ak + bg)? ai b}

(2.13)

2
< b < t* t** = —
S o tOop St A I7d
and (2.11), where
(2.14) ap = t* — tg, by = t** — ty,

we obtain in turn:
(2.15)
_ M M
|| F'(z0)~! Flzps) | < £ [T to vk — 2k || Tes1 — gk |l



ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE METHOD 7

5N ,
HETY | ye — zx ||

M M 5N
S <5 (the1 — k)2 + - (sk — tg) (tks1 — sk) + T (s~ ti)®
M 9 1 5N 2 (s — tk)2
< = - hd - -
S 5 Mei—se) +3 (M LTI — (sk = tk) (tre1 — k)
M 1 5N
S 3 (thy1 — sk)2 + 3 (M + —1—2—> (s — tk) (tks1 = sk)
K K
< 5 (tke1 — sk)? + o> (sk = tg) (tke1 — sk) = f(tes1)-

In view of (NTM), (2.10), and (2.15), we get:

(2.16)

| var1 = zhrr | = || =F'(zre1)" F@rs1)

I F'(zk41) ! F'(zo) I I| F'(z0) ™" F(zks) |l

IN

< = f(tr+1) ™t f(Er1) = Sk41 — trar-

As in (2.10), we need similar estimate for || 2 (F'(zg1) + F'(yrs1)) " F'(zo) || -
We have using (2.3), and the induction hypotheses:
(2.17)

I P ( :

<

IA
DO =

<

In view of (2.17), and the lemma on invertible operators (F'(zg+1) + F'(yk+1))~

1

2

Fl(zpe1) + F'(yes1) F'(:Co)) I

( | F'2o)™ (F'(@rer) — F'(20)) |+ | F'(20)" (F'(gesr) — F'(zo)) | )

M (l|mk+1—mo I+ 1l g = 20 u)

M (t}c+1 + Sk+1) <Kt <1

1

exists, and

(2.18)

1

12 (F'(@ks1) + F'(yk41)) ™" F'lzo) || <

K
1- 5 (tkt1 + Sk+1)
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2
<
T 1-Kitgp1+1— K skq1

= =2 (f'(tk+1) + f'(sk41)) 7"
Using (NTM), (2.16), and (2.18), we obtain in turn:

(2.19)
Il k2 — Yes |l
F'(zp41) + F' -1
= || F'(zqr)" F(a:k+1)—( (Tk+1) : (yk+1)) F(zea) |

< (F'(xk+1)-2i-F’(yk+1)>_l F'(z) |

Pyt (FZE W) _ ooy ) ) Faki) ! Flonn) |

<=2 (/) + £ k)™ - (oo = i)’

< =K (f'(tks1) + F/(sk41)) 7" (Ske1 — tra1)?

=2 (7ons) + Fopea)™ (LEBLELE) ) ) )

= f'(tke1) ™ (tkr1) = 2 (f'(tes) + f/(sk4)) 70 fEa41)

= tky2 — Sk+1-

Moreover, using (2.16), and (2.19), we get

| et —zks1 | < N Zev2 — Yrrr | + 1 Ukt1 — it |l
(2.20)

< fgt2 — et
The induction for estimates (2.8) is now complete.
It follows that sequence {z,} is Cauchy in a Banach space X, and as such it
converges to some z* € U(zo, t*) (since U(zo,t*) is a closed set).
By letting k — oo in (2.15), we get F(z*) = 0.
To show uniqueness, let y* € U(zg,t*), with F(y*) = 0.
Using (2.3), we get in turn
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1 |
| F'(a0)-! ( | Pari-a- F’(wo)) dt |
0

1
SM/ 2%+t (" —a*) -0 || dt
(2.21) 0

1
<o [ (@0 1t ool 4t Ny - a0l ) at
0

1
<z E+t) <L

It view of (2.21), and the Banach lemma on invertible operators that:

1 -1
M= (/ F'(z* +t (y* — z*)) dt)
0
exists.
In view of the identity:
(2.22) F(z*) - F(y") = M (y* — z%),

we deduce z* = y*.
The rest of the proof as identical to the one in [17] is omitted.
That completes the proof of Theorem 2.1.

Remark 2.2. In view of (2.3), there exists My, such that

(2.23) | F'(zo)™" (F'(z) — F'(zo)) IS Mo |z — o], forallzeD.
Note that
(2.24) My<M<K

K
holds in general, and 2. can be arbitrarily large [2], [3], [7].
0
Let us define function g by:

1
(2.25) g(t) = 5 Mo t2 —t+n,

and sequences {3,}, {f,} by:

(2'26) lo=0, 35,= tn — gl(zn)_l f(zn)7

(2.27) tnt1 =1t — 2 (9'(En) + 9'(5n)) ™! f(En).
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Note that in estimates (2.9), (2.10), (2.17), (2.18), and (2.21), My can replace
M, and K.

Then, by comparing sequences {s5}, {t»} to {Sn}, {fn}, using (2.24), and induc-
tion, we get:

A simple induction argument, shows that if My < K, then,

(2.28) Sn < $p,

(2.29) th < tn,

(2.30) Sn+1 = Sn < Sny1 — Sn,
and

(2'31) zn-}—l - Zn Stnt1 — tn

Note also that if My < M, then strict inequality holds in estimates (2.28)—(2.31) for
n > 1.

Hence, under the same hypotheses, and computational cost as in Theorem 2.1,
we showed more precise sequences {3,}, {f»} can be used. Note also that the
computation of M requires that of Mp.

2
Ift** < R < T t*, then the uniqueness ball is extended from U(xg,t**) to

0
U(zo, R), since My can replace M in (2.21).
Note that estimates of the form (2.5) have been used on the cubically convergent

midpoint method, and other Newton-type methods [1}-[7].

We provide three examples where My < M, so the advantages can take place.

Example 2.3. Returning back to numerical example of Section 1, and using (2.23),

we get:
(2.32) 13 =My < M =16.
In view of (2.32), the improvements stated in Remark 2.2 follow.

Example 2.4. Let X = Y = C[0, 1] be the space of real-valued continuous functions

defined on the interval [0, 1] with norm

T = S)i.
|z || Orggsxllw( )l
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Let 6 € [0,1] be a given parameter. Consider the ”Cubic” integral equation

(2.33) u(s) = u®(s) + Au(s) /1 q(s,t) u(t) dt + y(s) — 6.
0

Here the kernel g(s, t) is a continuous function of two variables defined on [0, 1] x
[0, 1]; the parameter A is a real number called the ”albedo” for scattering; y(s) is a
given continuous function defined on [0, 1] and z(s) is the unknown function sought
in C[0, 1]. Equations of the form (2.33) arise in the kinetic theory of gasses [3]. For
simplicity, we choose ug(s) = y(s) = 1, and ¢(s,t) = pyrre for all s € [0,1], and
t € [0,1], with s + ¢ # 0. If we let D = U(ug,1 — 6), and define the operator F' on
D by

) .
(2.34) F(z)(s) = z3(s) — z(s) + Az(s) /0 q(s,t) z(t) dt + y(s) — 0,

for all s € [0, 1], then every zero of F satisfies equation (2.33). We have the estimates

S
max I/——dtl =In2.
0<s<1 s+t

Therefore, if we set £ =|| F'(up)! ||, then it follows from hypotheses of Theorem
2.1 that:
n=£&(A| In2+1-6),
M=2¢(A\In2+3(2-0)) and My=&(2|A\|In2+3(3-29)).
Note also that My < M for all 6 € [0,1].

Example 2.5. Consider the following nonlinear boundary value problem [3]

u’ = —ud—yu?
{ u(0) =0, wu(l)=1.

It is well known that this problem can be formulated as the integral equation
1
(2.35) u(s)=s +/ Q(s, 1) (u3(t) + v u2(t)) dt
0

where, @ is the Green function:

- t(l_ ), tS
Q(S’t)——{ s(l—ts), s<ts.

We observe that

1
1
Jfax /0 Qs ) = ¢
Let X =) = C|[0, 1], with norm
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lz (= Zax lz(s)].

Then problem (2.35) is in the form (1.1), where, F : D — Y is defined as
1
F@)e) =)~ [ Qo) 00) + 7 (1)
It is easy to verify that the Fréchet derivative of F is defined in the form
1
@)l (5) = v(s)— [ Qlsvt) (32%(0) +2 7 (0) o(0) .
0

If we set ug(s) = s, and D = U(ug, R), then since || ug ||= 1, it is easy to verify
that U(uo, R) C U(0, R+ 1). It follows that 2 4 < 5, then

3 242 2
||I—F’(u0)|| < ”uOII +2 ”u0“=3+ 7’

8 8
1 8
/ -1 —
”F(UO) “ < 1_3‘*‘2’}’—5——27,
8
luo P +7 lluo > _ 14+
F < =
| Fluo) | < ' )
1+

| F(uo)™ F(up) || <

5—27y
On the other hand, for z,y € D, we have:

1
[(F'(z) — F'(y)v] () = —/0 Qs,1) (3 2%(t) = 3 y%(t) + 2 7 (a(¢) ~ y(t))) v(t) dt.

Consequently,
lz—yll Cy+3U=zl+lyl)

| Fi@) - P < :
_ le-vl 2y +6R+6 fu )
- 8
y+6 R+3
= PR oy,
T —u 29+3 (x|l + fu
” F’(JI)—FI(U()) “ < ” 0” ( 2 : (” ” “ 0”))
< lz-uol 27+3R+6 |uoll)
- 8
2y+3R+6
= —— lz-w].

8
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Therefore, conditions of Theorem 2.1 hold with
1 3 2
n= +7, M:l"_'ﬁ_}ii_, MO:J_M_
5—27 4 8
Note also that My < M.

In the next section, we provide sufficient convergence conditions, which can hold
where as (2.6) does not. This way the applicability of (NTM) can be extended even
further.

3. SEMILOCAL CONVERGENCE ANALYSIS II oF (NTM)

We need to define some constants and sequences:
Let My >0, M >0, M; 20, Ny >0, N >0, and n > 0 be given constants.
Define constants &g, &1, d2, and wy by:

M
(3.1) 5 = 11\/177 <2, Mon#2,
1- 209
2
2 M
(3.2) & = <1, My#0orM#0,
Mo+ M+ /(Mg+ M)2+12 Mg M :
(3.3)
5 2 (6 M+5N n) y
2T ENn+12 Mo+ VBNt 12 Mo)2 124 (M 12 My) 6 M+5N 1)
1-Mpn
3.4 =
(34) Woo 1+ Mo 7
and, scalar sequences {t,}, {sp} (n > 0) by:
to=0, so=m,
M ~tn)?
(35) tn+1 = 8p + 2 (sn TL) ,

2 (1 - —]\;& (sn +tn))

(3.6)
6 M (tn41— 80)%+6 M (sn— ty) (tne1 — Sn) + 5 N1 (sn — tn)?
12 (1 — Mo tny1) ~ o

Sn+l = tne1 +

where

| M if n=0 _J No if n=0
Mz_{M if n>0" Nl'{N if n>0"
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Define constant ng by:

__1_mm{1—<s2 1-6, 2-60 2 M, }
YA 1+6;" 146, 24065 Mo+ M)

Then, if n < ng, we have &y € [0,2), and the set:

I = [max {2 &1, 2 82, o}, 2 weo] # 0.
Choose
(3.7) del.
In view of (3.6), for n = 0, there exists n; > 0, such that:
Mot <1

and
)
si—ti <5 (so — to)

for all 7 € [0, my].
Define constant o by:

(3.8) a = min {ng, m}.
We can show the following result on majorizing sequences for (NTM):

Lemma 3.1. Assume:

— 1
where,

Then, sequences {tn}, {sn} (n > 0) given by (3.5) and (3.6), are non-decreasing,
bounded by:

_ 27
T2-¢

and converge to their unique least upper bound t* satisfying:

(3.11) t*

(3.12) t* € [0,¢™].
Moreover the following estimates hold for all n > 0:

(3.13) tn < 8p S tagl < Sny,
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and
(5 6 n+1
(3.14) 0<sp41—th41 < 3 (sn—tn) < (‘2‘) n.
Proof. We shall show using induction on &:
)
(3.15) 0<tir1—sk <y (sk — t&),
(3.16) My (tg + si) < 2,
)
(3.17) 0< k1 —thp1 < 5 (Sk — tk),
and
(3.18) Mty < 1.

Estimates (3.15)-(3.18) hold by the initial conditions, and the choice of 7.

Assume (3.15)-(3.18) hold for all m < k.
By the induction hypotheses, we have:

é
Sm < tmt 5 (sm-—l - tm——l)

é é
< Sm—1+ 5 (sm—l - tm—l) + ‘é‘ (sm—l - tm—l)

2 m
(3.19) < neafl J o8
< n+ 277+ 2 n+ + 5 n
m
- (3)
2
= 77+————‘5—577,
1 —
2
and

)
tmi1 < Smt (8m — tm)

3.20 §\™
( ) 1_<§> 5 m+1
< T)+——5-—"6'T]+<§) .
1— =
2

15
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Estimates (3.15), and (3.16) will certainly hold if

M
M (3m+1 - tm+l) < ) (1 - —2—0 (tm+1 + 5m+1)>

or
(3.21)

2

5)"‘
Py m+1
2 + (é> }17——5§ 0.

5 +9 5 5
1- 1-2
2

6m+1
1-1{ - 1-—
(\™ s M, (2) (
M() n+ 0{2+5 ;
2

)
Estimate (3.21) motivates us to set w > 2 define functions fp,:

fm(w) = Mw™n+ My (2+2w(1+w+...+wm)
(3.22)
+2w(1+W+---+w’"‘1)+me)n—2, m> 1.

We need a relationship between two consecutive fi,:

frmri(w) = Mw™lg+ My 2+2w (1+w+ - +uw™)+
+2uw™2 42w (L+w+ - -+ wm L) 42 ]
(3.23) Fwm™H L ymt2) 2 M ow™ - M w™ g
= fm(w)+ (3 Mo w® + (Mo + M) w— M) w™ g

= fm(w)+g1(w) w™ 7

where,
(3.24) g1(w) =3 My w*+ (Mo + M) w— M.
Note that §; given by (3.2) is the unique positive zero of quadratic polynomial
g1-
We have:
(3.25). fm(0) =2 (Mon—1) <0
and
(3.26) fm(w) >0

for sufficiently large w > 0.



ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE METHOD 17

It then follows from (3.25), and (3.26), and the intermediate value theorem that
there exists a positive zero wy, for each function fn, (m > 1). The zero’s s,, are
unique in [0, 00), since: f; (w) >0 (w > 0), (m > 1).

Estimate (3.21) certainly holds if:

(3.27) fm(w) <0 for all w € [0, wy], (m >1).
If there exists m > 0, such that wn41 > 61, then using (3.23), we get:

frt1(Wmt1) = fm(Wms1) + g1(Wms1) Wit M,
or
(3.28) fm(Wm41) £0,
since fm41(Wm+1) =0, and g1(wmy1) wii,; 7 > 0, which imply:
(3.29) Wil < Wiy

We can certainly choose the last of the wp,’s denoted by we (obtained from
(3.21) by letting m — oo, and given by (3.4)), to be wm41.

It then follows, sequence {w,,} is non-increasing, bounded below by zero, and as
such it converges to its unique maximum lowest bound w* satisfying w* > wee.

Then, estimate (3.27) certainly holds, if

(3.30) 01 < Weo,

which holds by the choice of é.
That completes the induction for (3.15), and (3.16).
Instead of showing (3.17), and (3.18) for m > 1, it suffices (by (3.15), and (3.16)):
0 < sm+1—tmt1
5\* 2 g 2 3
- 12 (1 — My tm-{—vl)

(B3M 32 +6MSE+10N (sm—tm)) (Sm — tm)?
24 (1 - Mo tm+1)

IA

g (8m — tm),

IN
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or
s\"™ s\™
<3M62+6M5+10N (-2-) n) (5) n
(3.31) s\™
1-15 s ™
+12 My 6 1+_—-5_—6+(§) }7]—12(5S0.
'3
As in (3.22), we define recurrent functions p,, on [0, +00) (m > 1) by:
pm(w) = BMw™l4+6Muw™+5Nw™n)n
(3.32)
+12 My (142w (L4+w+- - +w™ ) +w™) - 12
from which, we get as in (3.23):
(3.33) Pm+1(w) = pm(w) + g2(w) w™ n,
where,

(3.34)  go(w)=6 (M +2 M) w?+ (12 My+5 N n)w— (5 Nn+6 M).

Note that §; given by (3.3) is the unique positive zero of function go. We also
have from (3.31) that:

—

(3.35) Wop = Woo-

Note that:
pm(0) =12 (Myn-1)<0  (m2=1),

and
Pm(w) >0 » (w>0), (m>1)

for sufficiently large w > 0.

Hence, each p,, (m > 1) has a unique zero w}, in [0, 00), since:

(3.36) P (w) >0 (w>0), (m=>1).
Estimate (3.31) certainly hold if:
(3.37) pm(w) <0 forallwe [0,wl], (m>1).
If there exists m > 0, such that w,lnH > 69, then using (3.33), we obtain:

pm+1(w11n+1) = Pm(wrln+1)+92(w71n+1) wrln+lm m
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or

(3.38) Pm(Wpy1) S0,

since pm+1(w,1n+1) =0, and 92(w11n+1) w,lnHm n > 0, which imply:
(3.39) whi Swh o (m>0).

We can certainly choose the last of the w?,’s denoted by wl, (obtained by letting
k — o), to be sk, ;.

It then follows, sequence {w,} is non-increasing, bounded below by zero, and as
such it converges to its unique maximum lowest bound w*! satisfying w*! > wl, =
Woo -

Then, estimate (3.37) holds, if (3.30) does. The induction is now completed.

Finally, sequences {t}, {sn} are non—decresing, bounded above by t**, and as
such they converge to their unique, common least upper bound t*, satisfying (3.12).

That completes the proof of Lemma, 3.1. a

Note that according to Theorem 2.1, {t,}, {sn} given by (3.5) and (3.6) are
majorizing sequences for {z,}, {yn}. Therefore, in view of Lemma 3.1, we arrived

at the analog of Theorem 2.1:

Theorem 3.2. Let F : D C X — Y be a twice Fréchet-differentiable operator.
Assume:
there exist xop € D, nonnegative constants My > 0, M > 0, M; > 0, Ny > 0,
N >0, and n > 0, such that for all z,y € D:

F'(zo)™ € L(Y, ),
| F'(zo)™" F(zo) || <,
I F'(zo)™" F"(z) | < M, || F'(z0)™" F"(=0) || < M,
| F'(20)™! (F'(z) — F'(0)) | < Mo || & — o |l
I F'(zo) ™ (F"(@) = F"@) | <N lla—vyl,
| F'(20)™! (F"(z) = F"(z0)) | < No |l 2 — =0 |,
ha=Kn < %,

where K is given in (3.10),
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and

U(yo, t* - 77) - D’

Then sequences {xn}, {yn} generated by (NTM) are well defined, remain in
Uz, t*) for alln > 0, and converge to a solution * in U(x,t*) of equation F(z) = 0,
which is unique in U(zo, R), provided

2
t** - * .
Re ( Mo t } #0

Moreover, the following estimates hold:
| Znt1 = yn [l < tnt1 = $n,

| Zn — yn | < 80 ~tn,
| zn —2* || <t* —tn,

g — 2" || < 8" = sn.

Remark 3.3. Note that majorizing sequences {t,}, {sn} given by (3.5) and (3.6)
simply replace the corresponding ones in the proof of Theorem 2.1.

Moreover, in view of the estimates My < M, My < M, and N; < Ny, majorizing
sequences given by (3.5) and (3.6) are finer than the ones used in Section 2 (see also
estimates (2.28)~(2.31) with {#,}, {S,} replaced by the corresponding ones given by
(3.5) and (3.6), respectively).

In practice, if hypotheses of Theorems 2.1 and 3.2 hold, we will use the majorizing
sequences (3.5), (3.6) to compute estimates for || zp+1 — zn ||, | Zn — z* ||, (n > 0).

A direct comparison sufficient convergence conditions (2.6), and (3.9) is not pos-
sible, since they use different information. So it is possible for (3.9) to but not (2.6)

or vice versa.

We provide a numerical example to show that condition (2.6) does not hold, but
(3.9) does.

: 1
Example 3.4. Let Y =Y =R, 20=1,D={z :||z—z0 |<1- 8}, B €0, 5),
and define function F on D by:
(3.40) F(z) =z - 3.
Using (2.1)-(2.6), we get:

(1_5)7 My =3-5, M=2(2-—,3), N =2,

W

n=
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and
1 1
(3.41) h > 3 for all g8 € [0, 5)
Therefore, there is no guarantee under our Theorem 2.1 or Theorem 1 in [17],

that sequences {x,}, {ys} converge to z* = ¥/B.
However, using (3.1)-(3.6), we have for g = .49:

My=2  n=.17 My=251, M =302
o = 542426746, 6, = .391048897, & = .364851779,
Weo = 401836406, I = [.782097794, .803672812],

1 1-6& 1 2 — &g '
—_— = .185402623, — = .22840 ,
My <1+51) My (2+(50) 6375
and 5
1 1—46;
j\To (1 T 62) = .174407961.

Set § = 2 &9, and for 1 = ng = .18, we have:
t; = .206738066, t; — s1 = .036738066,
Mp t; = .518912546 < 1,

and
51 — t1 = .032349323 < .066478312 = g (so — to),
respectively.
Hence, Hypotheses of Thoerem 3.2 are satisfied for all n € [0, 7], and in partic-
ular for n = .17 € [0, no|, we can set:

a=r1n9 =.18.
We also have by (3.10), and (3.9):

K = 2777,

and
hg = 472222 < .5

respectively.
Hence, the conclusions of Theorem 3.2 hold, for equation (3.40).
Finally, note that the hypotheses in [9], [10], [14], given by
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hgyg = M n <.300637,

hey = M n <.292246,
hG’ =M n _<_ 300637,

respectively, are viloated, since
M n = .5134.

Hence, the convergence of (NTM) cannot be guarantee under their conditions.
‘We can finally show the cubical convergence of sequences {sn}, {tn}.

Proposition 3.5. Under the hypotheses of Lemma 3.1, for ¢ > 0, define parameters

a, b, c dby:
My
a_M25+M2+5N(1_T”)
-8 4 12 ’
b=Y2,
q

1
and function f on [O, E) by:

RO - Y (0 C ) S
f(s)—3+q+ (1—(qs)2+8>'

7
Assume:
Van<l,
and fiz
g € (Va, %) n#0;

(3.42) min{t;, f(m)} <ec
Then, the following estimates hold for all k > 0:

d 3k+1
3
lgg1 — 8k < q_2 ((q 77)2> )
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and
1
sk—tn < = (@
q
Proof. Under the hypotheses of Lemma 3.1, we have in turn by (3.5), and (3.6):

M M 5
> (tmt1 — tm)? + > (8m — tm) (tme1 — Sm) + BV

M (Mo t) VM (MGt Y

(8m — tm)3

2 2——M0(Sm+tm 2 2— My (Sm+tm)
5N
+“1_2_ (Sm - tm)3
S o W A M
0
(1——29 (sm+tm)> 1—7 (8m + tm)
5N
+13 (sm — tm)®

M? (sm—tm) (sm—tm)®  M®  (sm —tm)®

8 M M,
8 1—-—2—9(Sm+tm) 4 1—70(Sm+tm)

IN

We shall show:

a (S —tm)? 2 3
s -1 <—————"5< —t
m+1 ~Im4+1 S (1= Mo tme)? = q° (8m — tm)
or ‘
a 2
2 < (1= Mo tm+1)
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or
tm+1 S C.

By hypothesis (3.42), we have: t; < ¢. Then t4+1 < ¢ holds for m = 0.

Assume:
(3.43) tn <c.

We have:

3 3m+1
q (Sm+1 — tm+1) < (g (5m — tm))” < (g M)

or

m+1
Sm+1 —tm41 £ = (q 71)3 .

We also have:
M (s — tm)2
t — <

d 3m+l
3
d(om—tn < 5 ((q n)z) .

IA

Moreover, we get in turn:
tmir < (Sm—tm)+ (tm — Sm-1) + -+ (t1 — 50) + s0 + d (sm — tm)?

l am d 3m 2% 3m-l 2% 2
s ntolamm +og (e +{(gn) +oEn
1 gm d ) L 3m+l . 1 3m
= nt+ am” + g (g3 + | ((gm))3
3l
1
+oot (((q 77)2)3) +n2)
< D@4 5 (@O @ @ )
< fm<e
That completes the induction for (3.43), and the proof of Proposition 3.5. a
Remark 3.6. (a) Condition (3.42) can be replaced by a stronger, but easier to
check:
(3.44) LA/ P

2—-6 7
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for 6 € I (see, (3.7), and (3.11)).
Set
d3 = min{2 61, 2 &, &}
The most appropriate choice for § seems to be 6 = 43.
Condition (3.44) can then be re-written as:
<(2-0)c
- 2
(b) The ratio of convergence “q n” given in Proposition 3.5 can be smaller than
0 given in Theorem 2.1 for q sufficiently close to \/a. Assume M, N are
not both zero, and n > 0.

Set . .
1 4 K%\ 14 2
m=rz (- [(5) )

By comparing a = \/a 1 to 8, we get:

Case 1. If
4a< K?
or
% <K’<4aq
and
n > ho,
then, we have:
a<é.
Case 2. If
K!<4a
and
1 < ho,
then, we have:
0 <a.
Case 3. If
n = ho,

then, we have:
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CONCLUSION

We provided a semilocal convergence analysis for Newton-type method in order
to approximate a locally unique solution of a nonlinear equation in a Banach space,
involving a twice differentiable operator. We also established that the order of
convergence is three.

Using our new idea of recurrent functions, we provided a semilocal convergence
analysis with the following advantages over the work in [17]: larger convergence
domain, and weaker sufficient convergence conditions. Note that these advantages
are obtained under the same computational cost as in [17].

A numerical examples, and some favorable comparisons with the previous works

are also provided.
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