J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 17, Number 1 (February 2010), Pages 29-38

HALF LIGHTLIKE SUBMANIFOLDS WITH TOTALLY
UMBILICAL SCREEN DISTRIBUTIONS

DAE Ho JIN

ABSTRACT. We study the geometry of half lightlike submanifold M of a semi-
Riemannian space form M(c) subject to the conditions : (a) the screen distribution
on M is totally umbilic in M and the coscreen distribution on M is conformal Killing
on M or (b) the screen distribution is totally geodesic in M and M is irrotational.

1. INTRODUCTION

It is well known that the radical distribution Rad(TM) = TM N TM* of the
half lightlike submanifolds (M, g) of a semi-Riemannian manifold (M, §) is a vector
subbundle of the tangent bundle TM and the normal bundle TM<, of rank 1. Then
there exist two complementary non-degenerate distributions S(T'M) and S(TM*)
of Rad(TM) in TM and TM* respectively, which called the screen and coscreen
distributions on M, such that

(1.1)  TM = Rad(TM) @oren S(TM), TM* = Rad(TM) oren S(TM 1),

where the symbol ®,~p denotes the orthogonal direct sum. We denote such a half
lightlike submanifold by (M, g, S(TM)). Denocte by F(M) the algebra of smooth
functions on M and by T'(E) the F(M) module of smooth sections of a vector
bundle E over M. We use the same notation for any other vector bundle. Then
there exist vector fields £ € I'(Rad(TM)) and u € T'(S(TM1)) such that

&, v) =0,  Gu,u) = e==l,

for any v € T(T'M*1). Consider the orthogonal complementary distribution S(T'M)+
to S(TM) in TM. Certainly £ and u belong to I'(S(TM)~). Thus we have

S(TM)* = S(TM*) @oran S(TM)L,
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where S(TM-)1 is the orthogonal complementary to S(TM+) in S(TM)*t. For
any null section £ of Rad(TM) on a coordinate neighborhood U C M, there exists
a uniquely defined vector field N € T'(itr(TM)) [1] satisfying

(1.2) GE,N)=1, §N,N)=g(N,X)=g(N,u) =0,

for any X € ['(S(TM)). We call itr(TM), N and tr(TM) = S(TMY)@opnltr(TM)
the lightlike transversal vector bundle, lightlike transversal vector field and transver-
sal vector bundle of M with respect to S{T M) respectively. Then the tangent space
TM of the ambient manifold M is decomposed as follows:

(1.3) TM =TM & tr(TM) = {Rad(TM) & tr(TM)} ®opren S(TM)
= {Rad(TM) & ltr(TM)} ®orer, S(TM™) ®oren, S(TM).

The purpose of this paper is to study the geometry of half lightlike submanifolds
M of semi-Riemannian space form M (c) with constant curvature ¢ subject to the
constraints (a) S(T'M) is totally umbilic in M and S(TM*) is conformal Killing on
M or (b) S(TM) is totally geodesic in M and M is irrotational. In next section
2, we have a classification theorem for half lightlike submanifolds M of a semi-
Riemannian space form (M™+3(c),§), m > 2, such that S(T'M) is totally umbilic
and S(TM*') is conformal Killing. This theorem shows that the lightlike and radical
second fundamental forms B and C of such a half lightlike submanifold satisfy
B =0or C = 0. In section 3, we study the geometry of irrotational half lightlike
submanifolds M of a semi-Riemannian space form (M™*3(c), g), m > 2, ec > 0 such
that S(T'M) is totally geodesic. Recall the following structure equations:

Let V be the Levi-Civita connection of M and let P be the projection morphism
of N (TM) on I'(S(TM)) with respect to the decomposition (1.1). Then the local
Gauss and Weingartan formulas are given by

(1.4) VxY = VxY +B(X,Y)N + D(X, Y)u,
(1.5) VXN = —AxX +1(X)N + p(X)u,
(1.6) Vxu = —A X + ¢(X)N,

(1.7) VxPY = V4PY +C(X, PY),

(18) V€ = ~AX - n(X)E,

for any X, Y € I'(TM), where V and V* are induced linear connections on TM
and S(T'M) respectively, the bilinear forms B and D on TM are called the local
lightlike and screen second fundamental forms of M respectively, C is called the local
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radical second fundamental form on S(TM). An, AE and A, are linear operators
on I'(TM) and 7, p and ¢ are 1-forms on TM.

Since V is torsion-free, so is V and both B and D are symmetric. From the
facts B(X,Y) = §(VxY, €) and D(X,Y) = §(VxY, u) for any X, Y € ['(TM),
we show that B and D are independent of the choice of a screen distribution and

(1.9) B(X, ¢ =0, D(X,¢§) = —ep(X),

for any X € I'(TM). The induced connection V on M is not metric and satisfies
(1.10) (Vxg)(Y; Z) = B(X, Y)n(Z) + B(X, Z)n(Y),

for all X, Y, Z € T(TM), where 7 is a 1-form on TM such that

(L.11) n(X)=g(X, N), VX e (TM).

But the connection V* on M* is metric. The above three local second fundamental
forms of M and M* are related to their shape operators by

(1.12) B(X,Y) = g(AIX,Y), G(ALX, N) =0,
(1.13) C(X, PY) = g(ANX, PY), §(ANX, N)=0,
(1.14) eD(X, PY) = g(AuX, PY), §(AuX, N) = ep(X),
(1.15) eD(X,Y) = g(AuX, Y) — ¢(X)n(Y).

From (1.12), A¢ is S(T'M)-valued and self-adjoint on I'(T'M) such that
(1.16) AzE =0,

We denote by R, R and R* the curvature tensors of the Levi-Civita connection V
on M, the induced connection V on M and the induced connection V* on S(TM)
respectively. Using the Gauss-Weingarten equations for M and S(T'M), for any
X,Y,Z, W e I'(TM), we obtain the Gauss-Codazzi equations for M and S(TM):
(1.17) §(R(X,Y)Z,PW) = g(R(X,Y)Z, PW)

+ B(X, Z)C(Y,PW) — B(Y, Z)C(X, PW)

+e{D(X,Z)D(Y,PW) ~ D(Y,Z)D(X, PW)},
(118) G(R(X,Y)Z,€) = (VxB)(Y, Z) - (Vy B)(X, Z)

+ B(Y,Z)r(X) - B(X, Z)7(Y)

+D(Y, Z)¢(X) — D(X, 2)¢(Y),
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(1.19) §(R(X,Y)Z,N) = g(R(X,Y)Z,N)
+e{D(X, Z)p(Y) — D(Y, Z)p(X)},

(1.20) g(R(X,Y)Z,u) = {(VxD)(Y, Z) - (VyD)(X, Z)
+B(Y, Z)p(X) - B(X, Z)p(Y)},

(1.21) g(R(X,Y)PZ,PW) = g(R*(X,Y)PZ, PW)
+C(X,PZ)B(Y,PW) - C(Y,PZ)B(X, PW),

(1.22) g(R(X,Y)PZ,N) = (VxC)(Y,PZ) - (VyC)(X,PZ)

+C(X,PZ)r(Y) - C(Y, PZ)r(X).

2. CONFORMAL KILLING COSCREEN DISTRIBUTIONS

Definition 1. We say that (each integral leaf of) S(TM) is totally umbilic[2] in M
if, on any coordinate neighborhood U C M, there is a smooth function - such that

(2.1) C(X,PY)=vg(X,Y), VX, Y € T(TM).

In case v = 0 on U, we say that (each integral leaf of) S(TM) is totally geodesic.

In general, S(T'M) is not necessarily integrable. The following result gives equiv-
alent conditions for the integrability of S(T'M):

Theorem 2.1 ([1]). Let (M,g,S(TM)) be a half lightlike submanifold of a semi-
Riemannian manifold (M, g). Then the following assertions are equivalent:

(1) S(TM) is integrable.

(2) C is symmetric on T'(S(TM)).

(3) An is self-adjoint on T'(S(TM)) with respect to g.
Note 1. If S(TM) is totally umbilic in M, then C is symmetric on I'(S(TM)).

Thus, by Theorem 2.1, S(TM) is integrable and M is locally a product manifold
L x M*, where L is a null curve and M* is a leaf of S(TM) [2].

Let M(c) be a semi-Riemannian space form and let S(T'M) be totally umbilic in
M. Using (1.10), (1.19), (1.22) and (2.1), for any X, Y, Z € I'(TM), we obtain

UB(Y, PZ)n(X) - B(X,PZ)n(Y)} + e{D(Y, PZ)p(X) — D(X, PZ)p(Y)}
= {X[] = 7(X) = en(X)}g(Y, PZ) = {Y[7] = v7(Y) = en(Y)}g(X, PZ).
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Replacing Y by ¢ in this equation and using (1.9), for all X, Y € I'(T M), we have
(22) B(X,Y) +eD(X, PY)p(€) + ¢(PY)p(X) = {£[v] — v7(€) — c}g(X,Y).
Definition 2. A vector field X on (M,§) is said to be conformal Killing[8] if

there exists a smooth function « such that £x§ = —2a§, where £x denotes the Lie
derivative with respect to X. In particular, if @ is a constant, then X is called a
homothetic Killing. A distribution G on M is said to be conformal (or homothetic)
Killing if each vector field belonging to G is a conformal (or homothetic) Killing.

Theorem 2.2. Let (M, g,S(TM)) be a half lightlike submanifold of a semi-Rieman-
nian manifold (M, ). If the coscreen distribution S(TM<L) is a conformal Killing
on M, then there exists a smooth function § such that

(2.3) D(X,Y)=e€dg(X,)Y), VX, Y e(TM).

Proof. By straightforward calculations and use (1.6) and (1.15), we have
(L.9)(X,Y) = §(Vxu,Y) +§(X, Vyu), u € T(S(TM™)),
3(Vxu,Y) = —g(AuX,Y) + ¢(X)n(Y) = —eD(X,Y),

for any X, Y € I(TM). Thus (£,5)(X,Y) = ~2¢D(X,Y) for any X, Y € [(TM).

Therefore we show that if S(T'M*) is a conformal Killing distribution, then there

exists a smooth function 4 such that D(X,Y) = edg(X,Y) for any X, Y € I'(TM).

g
Let M(c) be a semi-Riemannian space form such that S(TM) is totally umbilic

in M and S(TM+) is conformal Killing on M. Then, using (1.9) and (2.3), we show
the 1-form ¢ vanishes identically, i.e., ¢ = 0. Thus (1.18) and (1.20) reduce to

(2.4) (VxB)(Y, Z) - (Vy B)(X, Z) = B(X, Z)r(Y) - B(Y, Z)7(X),
(2.5) (VxD)Y, Z) - (VyD)(X, Z) = B(X, Z)p(Y) — B(Y, Z)p(X),
for any X, Y, Z € I(TM). Using (1.9), (2.2) and (2.3), we obtain

(2.6) vB(X,Y) = {{[v] = v7(§) — 6p(§) — c}9(X,Y), VX, Y e T(TM).

For the rest of this paper, by a totally umbilical distribution and a conformal
Killing distribution we shall mean a totally umbilical distribution in M and a con-

formal Killing distribution on M unless otherwise specified.

Theorem 2.3. Let (M, g, S(TM)) be a half lightlike submanifold of a semi-Rieman-
nian space form (M™%3(c), §), m > 2, such that S(TM) is totally umbilic and
S(TM?1) is conformal Killing. Then C =0 or B = 0. Moreover we show that
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(1) C =0, on anyU C M, implies S(TM) is a totally geodesical distribution,
(2) B=0, on any U C M, implies M is totally umbilical immersed in M(c)
and the induced connection V on M is a metric connection.

Proof. Assume that C # 0, that is, ¥ # 0. Then, from (2.6), we have
27) B(X,Y) = Bg(X,Y), VX, Y € I(TM),

where 8 = v~ 1(€[y] ~ y7(€) — 6p(€) — ¢). Since S(TM) is totally umbilic, by Note
1, M is locally a product manifold L x M* where L is a null curve and M* is a leaf
of S(TM). From the equations (1.17), (1.21), (2.1), (2.3) and (2.7), we have

RYX,Y)Z = (c + 207 +e*){g(Y, 2)X — g(X, Z)Y},

for any X, Y, Z € I'(S(TM)), where R* is the curvature tensor of M*. Let Ric* be
the symmetric Ricci tensor of M*. From the last equation, we have

Ric*(X,Y) = (c+ 287 + e8?)(m — 1)g(X,Y),

for any X, Y € I'(S(TM)). Thus the leaf M* of S(TM) is an Einstein semi-
Riemannian manifold of constant curvature (c+ 267 + ¢6%) due to m > 2. From the
equation (2.6), we have £[y] = By +~7(£) + 6p(£) + c. Differentiating (2.7) and (2.3)
and then, using (1.10}, (2.4} and (2.5), we have

(2.8) {X[8] + Br(X) — BPn(X)}g(Y, Z) = {Y[B] + B7(Y) - B*n(Y)}9(X, ),
(2.9) {X[8] + eB8p(X) — Bon(X)}9(Y, Z) = {Y 6] + eBp(Y) — Bon(Y ) }g(X, 2),

for any X, Y, Z € I'(S(TM)). Replacing X by £ in these two equations, we have
€8] = B% — Br(€) and €[6] = B — €Bp(€) respectively. Since (c + 287 + €6?) is
a constant, we get £[c + 287 + €8%] = 26(c + 20y + €5%) = 0. Therefore 3 = 0
or ¢+ 20y + €6 = 0. If ¢+ 20y + €6 = 0, then M* is a semi-Fuclidean space
and the second fundamental form C of M* satisfies C' = 0. It is a contradiction to
C # 0. Thus we have 8 = 0. Consequently, we get B = 0 by (2.7). In this case,
from (2.3) and (2.7), we show that A(X,Y) = Hg(X,Y) for all X,Y € I'(TM),
where h(X,Y) = B(X,Y)N + D(X,Y)u = D(X,Y)u is the second fundamental
form of M and H = OGN + eéu = €du is the curvature vector field on M. Thus
M is totally umbilic in M. Also, from (1.10), we see that (Vxg)(Y,Z) = 0 for all
X,Y,Z € T(TM), that is, the induced connection V on M is a metric one. 0

The induced Ricci type tensor R(®:2) of M is defined by
(2.10) ROD(X,Y) = trace{Z — R(Z,X)Y},
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for any X, Y € I'(TM). Consider the induced quasi-orthonormal frame field {§; W, }
on M such that Rad(TM) = Span{¢} and S(TM) = Span{W,}. Using this quasi-
orthonormal frame field and the equation (2.10), we obtain

m
(211)  RODXY) =3 cag(R(Wa, X)Y, Wa) + §(R(,, X)Y, N),

a=1
for any X, Y € I'(TM) and ¢, = g(W,,W,) is the sign of Wg. In general, the
induced Ricci type tensor R(®2) is not symmetric [3, 5]. Therefore R(>:?) has no
geometric or physical meaning similar to the Ricci curvature of the non-degenerate
submanifolds and it is just a tensor quantity. Hence we need the following definition:
A tensor field R(®?) of half lightlike submanifolds M is called its induced Ricci tensor
of M if it is symmetric. A symmetric R(®? tensor will be denoted by Ric.

Theorem 2.4. Let (M, g,S(TM)) be a half lightlike submanifold of a semi-Rieman-
nian space form (M™%3(c), §), m > 2, such that S(TM) is totally umbilic and
S(TM*1) is conformal Killing. Then M admits an induced symmetric Ricci tensor.
Moreover, both M and the leaf M™ of S(T M) are Einstein manifolds and the coscreen
S(TM*) is a homothetic Killing distribution.

Proof. Using (1.17), (1.19), (2.11) and the fact 8y = 0 by Theorem 2.3, we have
(2.12) ROD(X|Y) = {c+6p(€) + (m — 1)(c + 6 }g(X,Y),

for any X, Y € I'(TM). Thus R(>? is a symmetric Ricci tensor Ric and M is an
Einstein manifold. Also, from (1.17) and (1.21), we have

(2.13) R*(X,Y)Z = (c+ e6®){g(Y, Z)X — g(X, Z)Y},

(2.14) Ric*(X,Y) = (m — 1)(c + e6%)g(X,Y),

for any X, Y, Z € T'(S(T'M)). From (2.14), we show that M* is also an Einstein

manifold. Since m > 2, the function (c+e€6?) is a constant. Therefore, the conformal
factor 4 is a constant, i.e., S(TM*) is a homothetic Killing distribution. O

Combining Note 1 and Theorem 2.3 and 2.4, we have the following theorem:

Theorem 2.5. Let (M, g, S(TM)) be a half lightlike submanifold of a semi-Rieman-
nian space form (M™F3(c), §), m > 2, such that S(TM) is totally umbilic and
S(TM*L) is conformal Killing with conformal factor §. Then M is an Einstein
manifold and locally a product manifold L x M*, where L is a null curve in M and
M* is an Finstein semi-Riemannian space form of constant curvature (c + €52).
Furthermore, the coscreen S(TM™*) is a homothetic Killing distribution.
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Recall the following notion of null sectional curvature [2, 3, 4]. Let x € M and
let £ be a null vector of T, M. A plane H of T; M is called a null plane directed by
¢ if it contains £, gz(&, W) = 0 for any W € H and there exists W, € H such that
9z(Wo, W) # 0. Then, the null sectional curvature of H, with respect to the null
vector € and the induced connection V of M, is defined as a real number
_ 9:(RWW, £)¢, W)

g=(W, W)~
where W # 0 is any vector in H independent with £. It is easy to see that K¢(H)
is independent of W but depends in a quadratic fashion on £.

K¢(H)

Theorem 2.6. Let (M, g,S(TM)) be a half lightlike submanifold of a semi-Rieman-
nian space form (M™*3(c), §), m > 2, such that S(TM) is totally umbilic and
S(TM™1) is conformal Killing. Then every null plane H of T,M directed by & has

everywhere zero null sectional curvatures.

Proof. From (1.17), (2.3) and the fact that 8y = 0 by Theorem 2.3, we show that
9(R(X,Y)Z, PW) = (c +ed*){g(Y, 2)g(X, PW) — g(X, Z)g(Y, PW)},

for any X, Y, Z, W € T(TM). Thus K¢(H) = % = 0 for any null plane
H of T, M directed by ¢£. 0

3. ToTALLY GEODESIC SCREEN DISTRIBUTIONS

Definition 3. A half lightlike submanifold (M, g, S(TM)) of a semi-Riemannian
manifold (M, §) is said to be irrotational[7] if Vx¢ € I(TM) for any X € I'(TM).

Note 2. For an irrotational M, in general, since B(X,£) = 0 due to the first
equation of (1.9), we have D(X,£) =0 = ¢(X) for all X € ['(TM).

Theorem 3.1. Let (M,g,S(TM)) be an wrrotational half lightlike submanifold of
a semi-Riemannian space form (M™%3(c), §), m > 2; ec > 0, such that S(TM) is
totally geodesic. Then M admits an induced symmetric Ricci tensor. Moreover, M
is a totally umbilical Einstein manifold with B = 0 and the induced connection V

on M is a metric connection.

Proof. Since M is an irrotational submanifold of M (c) and S(T'M) is totally geo-

desic, we have v = 0 and ¢ = 0. From (2.2), we have

(3.1) D(X,Y)p(€) = —ecg(X,Y), VX, Y e (T M).
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Since ¢ # 0, we show that p(£) # 0 and D # 0. Thus (3.1) reduces to
(3.2) D(X,Y) = ebg(X,Y), VX, Y € I(TM).
where § = —cp(€)~! # 0. Differentiating (3.2) and using (1.10) and (2.5), we have

X[0]9(Y, 2) = Y8lg(X, Z) = {n(X) — ep(X)}B(Y, Z)
—{(Y)—-ep(Y)}B(X,Z), VX,Y,ZeI'(TM).

Replacing X by £ in this equation and using (1.9), we obtain
(33) €619(X,Y) = (5 — ep(€))B(X,Y), VX, Y € I(TM).

As S(TM) is totally geodesic, by Note 1, M is locally a product manifold L x M*
where L is a null curve and M* is a leaf of S(T'M). Using (1.17), (1.19), (2.11) and
the fact that C = 0 and ¢+ §p(€) = 0 by (3.1), we have

ROD(XY) = (c+ ed?)(m — 1)g(X,Y),

for any X, Y € I'(TM). Thus R(®?) is a symmetric Ricci tensor Ric and M is an
Einstein manifold. Also, from (1.17), (1.21), (2.1) and (3.2), we have

R*(X,Y)Z = (c+e6*){g(Y, 2)X — g(X, Z)Y},
for any X, Y, Z € I'(S(T'M)). From this equation, we have
Ric*(X,Y) = (c+ €6°)(m — 1)g(X,Y),

for any X,Y € I'(S(TM)). Thus M* is also an Einstein manifold of constant
curvature (c + €§2) due to m > 2. Therefore § is a constant. From (3.3), we
have (6§ — ep(€))B(X,Y) = 0 for all X,Y € I'(TM). Also, from (3.1), we have
c+ dp(€) = 0. Since § # 0, we get (ec +02)B(X,Y) = 0 for all X,Y € I'(TM).
Since ec > 0 and § # 0, we show that (ec + 62) > 0. Therefore B = 0. In this
case, from (3.2), we show that A(X,Y) = Hg(X,Y) for all X,Y € I'(TM), where
R(X,Y) = D(X,Y)u and H = edu. Thus M is totally umbilic in M. Also, from the
equation (1.10), we show that (Vxg)(Y,Z)=0for all X, Y, Z € I'(TM). Thus the

induced connection V on M is a metric one. J
From Theorem 3.1, we have the following theorem:

Theorem 3.2. Let (M,g,S(TM)) be an irrotational half lightlike submanifold of
a semi-Riemannian space form (M™%3(c), §), m > 2; ec > 0, such that S(TM)
is totally geodesic. Then M is a totally umbilical Finstein manifold and locally a
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product manifold L x M*, where L is ¢ null curve in M and M* is an FEinstein

semi-Riemannian space form of constant curvature (c + €52).

Theorem 3.3. Let (M,g,S(TM)) be an irrotational half lightlike submanifold of
a semi-Riemannian space form (M™*3(c), §), m > 2, such that S(TM) is totally
geodesic. Then every null plane H of T, M directed by £ has everywhere zero null

sectional curvatures.
Proof. From (1.9), (1.17), (1.19), (3.2) and the fact C = 0, we show that
g(R(&, X)Y,PW)=0;  g(R(§X)Y,N) = (c+dp(£))g(X,Y)=0.

Thus we have R(¢, X)Y = 0. Therefore, K¢(H) = %@ = 0 for any null
plane H of T, M directed by &. il
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