HALF LIGHTLIKE SUBMANIFOLDS WITH TOTALLY UMBILICAL SCREEN DISTRIBUTIONS

DAE HO JIN

ABSTRACT. We study the geometry of half lightlike submanifold M of a semi-Riemannian space form $\bar{M}(c)$ subject to the conditions: (a) the screen distribution on M is totally umbilic in M and the coscreen distribution on M is conformal Killing on \bar{M} or (b) the screen distribution is totally geodesic in M and M is irrotational.

1. Introduction

It is well known that the radical distribution $Rad(TM) = TM \cap TM^{\perp}$ of the half lightlike submanifolds (M,g) of a semi-Riemannian manifold (\bar{M},\bar{g}) is a vector subbundle of the tangent bundle TM and the normal bundle TM^{\perp} , of rank 1. Then there exist two complementary non-degenerate distributions S(TM) and $S(TM^{\perp})$ of Rad(TM) in TM and TM^{\perp} respectively, which called the screen and coscreen distributions on M, such that

$$(1.1) TM = Rad(TM) \oplus_{orth} S(TM), TM^{\perp} = Rad(TM) \oplus_{orth} S(TM^{\perp}),$$

where the symbol \oplus_{orth} denotes the orthogonal direct sum. We denote such a half lightlike submanifold by (M, g, S(TM)). Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E over M. We use the same notation for any other vector bundle. Then there exist vector fields $\xi \in \Gamma(Rad(TM))$ and $u \in \Gamma(S(TM^{\perp}))$ such that

$$\bar{g}(\xi, v) = 0, \quad \bar{g}(u, u) = \epsilon = \pm 1,$$

for any $v \in \Gamma(TM^{\perp})$. Consider the orthogonal complementary distribution $S(TM)^{\perp}$ to S(TM) in $T\bar{M}$. Certainly ξ and u belong to $\Gamma(S(TM)^{\perp})$. Thus we have

$$S(TM)^{\perp} = S(TM^{\perp}) \oplus_{orth} S(TM^{\perp})^{\perp},$$

Received by the editors May 20, 2009. Accepted December 3, 2009. 2000 Mathematics Subject Classification. Primary 53C25, Secondary 53C40, 53C50. Key words and phrases. totally umbilical, conformal Killing distribution, irrotational.

3 -----, ----

© 2010 Korean Soc. Math. Educ.

where $S(TM^{\perp})^{\perp}$ is the orthogonal complementary to $S(TM^{\perp})$ in $S(TM)^{\perp}$. For any null section ξ of Rad(TM) on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a uniquely defined vector field $N \in \Gamma(ltr(TM))$ [1] satisfying

(1.2)
$$\bar{g}(\xi, N) = 1, \quad \bar{g}(N, N) = \bar{g}(N, X) = \bar{g}(N, u) = 0,$$

for any $X \in \Gamma(S(TM))$. We call ltr(TM), N and $tr(TM) = S(TM^{\perp}) \oplus_{orth} ltr(TM)$ the lightlike transversal vector bundle, lightlike transversal vector field and transversal vector bundle of M with respect to S(TM) respectively. Then the tangent space $T\bar{M}$ of the ambient manifold \bar{M} is decomposed as follows:

(1.3)
$$T\bar{M} = TM \oplus tr(TM) = \{Rad(TM) \oplus tr(TM)\} \oplus_{orth} S(TM)$$
$$= \{Rad(TM) \oplus ltr(TM)\} \oplus_{orth} S(TM^{\perp}) \oplus_{orth} S(TM).$$

The purpose of this paper is to study the geometry of half lightlike submanifolds M of semi-Riemannian space form $\bar{M}(c)$ with constant curvature c subject to the constraints (a) S(TM) is totally umbilic in M and $S(TM^{\perp})$ is conformal Killing on \bar{M} or (b) S(TM) is totally geodesic in M and M is irrotational. In next section 2, we have a classification theorem for half lightlike submanifolds M of a semi-Riemannian space form $(\bar{M}^{m+3}(c), \bar{g}), m > 2$, such that S(TM) is totally umbilic and $S(TM^{\perp})$ is conformal Killing. This theorem shows that the lightlike and radical second fundamental forms B and C of such a half lightlike submanifold satisfy B=0 or C=0. In section 3, we study the geometry of irrotational half lightlike submanifolds M of a semi-Riemannian space form $(\bar{M}^{m+3}(c), \bar{g}), m > 2, \epsilon c > 0$ such that S(TM) is totally geodesic. Recall the following structure equations:

Let $\tilde{\nabla}$ be the Levi-Civita connection of \bar{M} and let P be the projection morphism of $\Gamma(TM)$ on $\Gamma(S(TM))$ with respect to the decomposition (1.1). Then the local Gauss and Weingartan formulas are given by

$$(1.4) \qquad \bar{\nabla}_X Y = \nabla_X Y + B(X, Y) N + D(X, Y) u,$$

$$(1.5) \qquad \bar{\nabla}_X N = -A_N X + \tau(X) N + \rho(X) u,$$

$$(1.6) \bar{\nabla}_X u = -A_u X + \phi(X) N,$$

$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$$

(1.8)
$$\nabla_X \xi = -A_{\xi}^* X - \tau(X) \xi,$$

for any $X, Y \in \Gamma(TM)$, where ∇ and ∇^* are induced linear connections on TM and S(TM) respectively, the bilinear forms B and D on TM are called the *local* lightlike and screen second fundamental forms of M respectively, C is called the *local*

radical second fundamental form on S(TM). A_N , A_{ξ}^* and A_u are linear operators on $\Gamma(TM)$ and τ , ρ and ϕ are 1-forms on TM.

Since $\bar{\nabla}$ is torsion-free, so is ∇ and both B and D are symmetric. From the facts $B(X, Y) = \bar{g}(\bar{\nabla}_X Y, \xi)$ and $D(X, Y) = \epsilon \bar{g}(\bar{\nabla}_X Y, u)$ for any $X, Y \in \Gamma(TM)$, we show that B and D are independent of the choice of a screen distribution and

(1.9)
$$B(X, \xi) = 0, \qquad D(X, \xi) = -\epsilon \phi(X),$$

for any $X \in \Gamma(TM)$. The induced connection ∇ on M is not metric and satisfies

$$(1.10) \qquad (\nabla_X g)(Y, Z) = B(X, Y) \, \eta(Z) + B(X, Z) \, \eta(Y),$$

for all X, Y, $Z \in \Gamma(TM)$, where η is a 1-form on TM such that

(1.11)
$$\eta(X) = \bar{g}(X, N), \ \forall X \in \Gamma(TM).$$

But the connection ∇^* on M^* is metric. The above three local second fundamental forms of M and M^* are related to their shape operators by

(1.12)
$$B(X, Y) = g(A_{\epsilon}^* X, Y), \qquad \bar{g}(A_{\epsilon}^* X, N) = 0,$$

(1.13)
$$C(X, PY) = g(A_N X, PY), \quad \bar{g}(A_N X, N) = 0,$$

(1.14)
$$\epsilon D(X, PY) = g(A_u X, PY), \quad \bar{g}(A_u X, N) = \epsilon \rho(X),$$

(1.15)
$$\epsilon D(X, Y) = g(A_u X, Y) - \phi(X) \eta(Y).$$

From (1.12), A_{ξ}^{*} is S(TM)-valued and self-adjoint on $\Gamma(TM)$ such that

$$(1.16) A_{\xi}^* \xi = 0.$$

We denote by \bar{R} , R and R^* the curvature tensors of the Levi-Civita connection $\bar{\nabla}$ on \bar{M} , the induced connection ∇ on M and the induced connection ∇^* on S(TM) respectively. Using the Gauss-Weingarten equations for M and S(TM), for any $X, Y, Z, W \in \Gamma(TM)$, we obtain the Gauss-Codazzi equations for M and S(TM):

(1.17)
$$\bar{g}(\bar{R}(X,Y)Z,PW) = g(R(X,Y)Z,PW)$$

$$+ B(X,Z)C(Y,PW) - B(Y,Z)C(X,PW)$$

$$+ \epsilon \{D(X,Z)D(Y,PW) - D(Y,Z)D(X,PW)\},$$
(1.18)
$$\bar{g}(\bar{R}(X,Y)Z,\xi) = (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z)$$

$$+ B(Y,Z)\tau(X) - B(X,Z)\tau(Y)$$

$$+ D(Y,Z)\phi(X) - D(X,Z)\phi(Y),$$

(1.19)
$$\bar{g}(\bar{R}(X,Y)Z,N) = \bar{g}(R(X,Y)Z,N)$$

$$+ \epsilon \{D(X,Z)\rho(Y) - D(Y,Z)\rho(X)\},$$
(1.20)
$$\bar{g}(\bar{R}(X,Y)Z,u) = \epsilon \{(\nabla_X D)(Y,Z) - (\nabla_Y D)(X,Z)$$

$$+ B(Y,Z)\rho(X) - B(X,Z)\rho(Y)\},$$
(1.21)
$$\bar{g}(R(X,Y)PZ,PW) = g(R^*(X,Y)PZ,PW)$$

$$+ C(X,PZ)B(Y,PW) - C(Y,PZ)B(X,PW),$$
(1.22)
$$g(R(X,Y)PZ,N) = (\nabla_X C)(Y,PZ) - (\nabla_Y C)(X,PZ)$$

$$+ C(X,PZ)\tau(Y) - C(Y,PZ)\tau(X).$$

2. Conformal Killing Coscreen Distributions

Definition 1. We say that (each integral leaf of) S(TM) is totally umbilic [2] in M if, on any coordinate neighborhood $U \subset M$, there is a smooth function γ such that

(2.1)
$$C(X, PY) = \gamma g(X, Y), \ \forall X, Y \in \Gamma(TM).$$

In case $\gamma = 0$ on \mathcal{U} , we say that (each integral leaf of) S(TM) is totally geodesic.

In general, S(TM) is not necessarily integrable. The following result gives equivalent conditions for the integrability of S(TM):

Theorem 2.1 ([1]). Let (M, g, S(TM)) be a half lightlike submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}) . Then the following assertions are equivalent:

- (1) S(TM) is integrable.
- (2) C is symmetric on $\Gamma(S(TM))$.
- (3) A_N is self-adjoint on $\Gamma(S(TM))$ with respect to g.

Note 1. If S(TM) is totally umbilic in M, then C is symmetric on $\Gamma(S(TM))$. Thus, by Theorem 2.1, S(TM) is integrable and M is locally a product manifold $L \times M^*$, where L is a null curve and M^* is a leaf of S(TM) [2].

Let $\overline{M}(c)$ be a semi-Riemannian space form and let S(TM) be totally umbilic in M. Using (1.10), (1.19), (1.22) and (2.1), for any $X, Y, Z \in \Gamma(TM)$, we obtain

$$\gamma \{B(Y, PZ)\eta(X) - B(X, PZ)\eta(Y)\} + \epsilon \{D(Y, PZ)\rho(X) - D(X, PZ)\rho(Y)\}$$

$$= \{X[\gamma] - \gamma\tau(X) - c\eta(X)\}g(Y, PZ) - \{Y[\gamma] - \gamma\tau(Y) - c\eta(Y)\}g(X, PZ).$$

Replacing Y by ξ in this equation and using (1.9), for all $X, Y \in \Gamma(TM)$, we have

$$(2.2) \quad \gamma B(X,Y) + \epsilon D(X,PY)\rho(\xi) + \phi(PY)\rho(X) = \{\xi[\gamma] - \gamma \tau(\xi) - c\}g(X,Y).$$

Definition 2. A vector field X on (\bar{M}, \bar{g}) is said to be *conformal Killing* [8] if there exists a smooth function α such that $\bar{\mathcal{L}}_X \bar{g} = -2\alpha \bar{g}$, where $\bar{\mathcal{L}}_X$ denotes the Lie derivative with respect to X. In particular, if α is a constant, then X is called a homothetic Killing. A distribution \mathcal{G} on \bar{M} is said to be conformal (or homothetic) Killing if each vector field belonging to \mathcal{G} is a conformal (or homothetic) Killing.

Theorem 2.2. Let (M, g, S(TM)) be a half lightlike submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}) . If the coscreen distribution $S(TM^{\perp})$ is a conformal Killing on \bar{M} , then there exists a smooth function δ such that

(2.3)
$$D(X,Y) = \epsilon \delta g(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

Proof. By straightforward calculations and use (1.6) and (1.15), we have

$$(\bar{\mathcal{L}}_u \bar{g})(X,Y) = \bar{g}(\bar{\nabla}_X u, Y) + \bar{g}(X, \bar{\nabla}_Y u), \ u \in \Gamma(S(TM^{\perp})),$$
$$\bar{g}(\bar{\nabla}_X u, Y) = -g(A_u X, Y) + \phi(X)\eta(Y) = -\epsilon D(X, Y),$$

for any $X, Y \in \Gamma(TM)$. Thus $(\bar{\mathcal{L}}_u \bar{g})(X, Y) = -2\epsilon D(X, Y)$ for any $X, Y \in \Gamma(TM)$. Therefore we show that if $S(TM^{\perp})$ is a conformal Killing distribution, then there exists a smooth function δ such that $D(X, Y) = \epsilon \delta g(X, Y)$ for any $X, Y \in \Gamma(TM)$.

Let $\bar{M}(c)$ be a semi-Riemannian space form such that S(TM) is totally umbilic in M and $S(TM^{\perp})$ is conformal Killing on \bar{M} . Then, using (1.9) and (2.3), we show the 1-form ϕ vanishes identically, i.e., $\phi = 0$. Thus (1.18) and (1.20) reduce to

$$(2.4) (\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) = B(X, Z)\tau(Y) - B(Y, Z)\tau(X),$$

(2.5)
$$(\nabla_X D)(Y, Z) - (\nabla_Y D)(X, Z) = B(X, Z)\rho(Y) - B(Y, Z)\rho(X),$$

for any $X, Y, Z \in \Gamma(TM)$. Using (1.9), (2.2) and (2.3), we obtain

$$(2.6) \gamma B(X,Y) = \{\xi[\gamma] - \gamma \tau(\xi) - \delta \rho(\xi) - c\}g(X,Y), \ \forall X, Y \in \Gamma(TM).$$

For the rest of this paper, by a totally umbilical distribution and a conformal Killing distribution we shall mean a totally umbilical distribution in M and a conformal Killing distribution on \overline{M} unless otherwise specified.

Theorem 2.3. Let (M, g, S(TM)) be a half lightlike submanifold of a semi-Riemannian space form $(\bar{M}^{m+3}(c), \bar{g}), m > 2$, such that S(TM) is totally umbilic and $S(TM^{\perp})$ is conformal Killing. Then C = 0 or B = 0. Moreover we show that

- (1) C=0, on any $U\subset M$, implies S(TM) is a totally geodesical distribution,
- (2) B = 0, on any $U \subset M$, implies M is totally umbilical immersed in $\overline{M}(c)$ and the induced connection ∇ on M is a metric connection.

Proof. Assume that $C \neq 0$, that is, $\gamma \neq 0$. Then, from (2.6), we have

(2.7)
$$B(X,Y) = \beta g(X,Y), \ \forall X, Y \in \Gamma(TM),$$

where $\beta = \gamma^{-1}(\xi[\gamma] - \gamma \tau(\xi) - \delta \rho(\xi) - c)$. Since S(TM) is totally umbilic, by Note 1, M is locally a product manifold $L \times M^*$ where L is a null curve and M^* is a leaf of S(TM). From the equations (1.17), (1.21), (2.1), (2.3) and (2.7), we have

$$R^*(X,Y)Z = (c + 2\beta\gamma + \epsilon\delta^2)\{g(Y,Z)X - g(X,Z)Y\},\$$

for any $X, Y, Z \in \Gamma(S(TM))$, where R^* is the curvature tensor of M^* . Let Ric^* be the symmetric Ricci tensor of M^* . From the last equation, we have

$$Ric^*(X,Y) = (c + 2\beta\gamma + \epsilon\delta^2)(m-1)g(X,Y),$$

for any $X, Y \in \Gamma(S(TM))$. Thus the leaf M^* of S(TM) is an Einstein semi-Riemannian manifold of constant curvature $(c+2\beta\gamma+\epsilon\delta^2)$ due to m>2. From the equation (2.6), we have $\xi[\gamma]=\beta\gamma+\gamma\tau(\xi)+\delta\rho(\xi)+c$. Differentiating (2.7) and (2.3) and then, using (1.10), (2.4) and (2.5), we have

(2.8)
$$\{X[\beta] + \beta \tau(X) - \beta^2 \eta(X)\}g(Y, Z) = \{Y[\beta] + \beta \tau(Y) - \beta^2 \eta(Y)\}g(X, Z),$$

(2.9) $\{X[\delta] + \epsilon \beta \rho(X) - \beta \delta \eta(X)\}g(Y, Z) = \{Y[\delta] + \epsilon \beta \rho(Y) - \beta \delta \eta(Y)\}g(X, Z),$

for any $X, Y, Z \in \Gamma(S(TM))$. Replacing X by ξ in these two equations, we have $\xi[\beta] = \beta^2 - \beta \tau(\xi)$ and $\xi[\delta] = \beta \delta - \epsilon \beta \rho(\xi)$ respectively. Since $(c + 2\beta \gamma + \epsilon \delta^2)$ is a constant, we get $\xi[c + 2\beta \gamma + \epsilon \delta^2] = 2\beta(c + 2\beta \gamma + \epsilon \delta^2) = 0$. Therefore $\beta = 0$ or $c + 2\beta \gamma + \epsilon \delta^2 = 0$. If $c + 2\beta \gamma + \epsilon \delta^2 = 0$, then M^* is a semi-Euclidean space and the second fundamental form C of M^* satisfies C = 0. It is a contradiction to $C \neq 0$. Thus we have $\beta = 0$. Consequently, we get B = 0 by (2.7). In this case, from (2.3) and (2.7), we show that $h(X,Y) = \mathcal{H}g(X,Y)$ for all $X,Y \in \Gamma(TM)$, where h(X,Y) = B(X,Y)N + D(X,Y)u = D(X,Y)u is the second fundamental form of M and $\mathcal{H} = \beta N + \epsilon \delta u = \epsilon \delta u$ is the curvature vector field on M. Thus M is totally umbilic in M. Also, from (1.10), we see that $(\nabla_X g)(Y,Z) = 0$ for all $X,Y,Z \in \Gamma(TM)$, that is, the induced connection ∇ on M is a metric one.

The induced Ricci type tensor $\mathbb{R}^{(0,\,2)}$ of M is defined by

(2.10)
$$R^{(0,2)}(X,Y) = trace\{Z \to R(Z,X)Y\},$$

for any $X, Y \in \Gamma(TM)$. Consider the induced quasi-orthonormal frame field $\{\xi; W_a\}$ on M such that $Rad(TM) = Span\{\xi\}$ and $S(TM) = Span\{W_a\}$. Using this quasi-orthonormal frame field and the equation (2.10), we obtain

(2.11)
$$R^{(0,2)}(X,Y) = \sum_{a=1}^{m} \epsilon_a g(R(W_a, X)Y, W_a) + \bar{g}(R(\xi, X)Y, N),$$

for any $X, Y \in \Gamma(TM)$ and $\epsilon_a = g(W_a, W_a)$ is the sign of W_β . In general, the induced Ricci type tensor $R^{(0,2)}$ is not symmetric [3, 5]. Therefore $R^{(0,2)}$ has no geometric or physical meaning similar to the Ricci curvature of the non-degenerate submanifolds and it is just a tensor quantity. Hence we need the following definition: A tensor field $R^{(0,2)}$ of half lightlike submanifolds M is called its *induced Ricci tensor* of M if it is symmetric. A symmetric $R^{(0,2)}$ tensor will be denoted by Ric.

Theorem 2.4. Let (M, g, S(TM)) be a half lightlike submanifold of a semi-Riemannian space form $(\bar{M}^{m+3}(c), \bar{g}), m > 2$, such that S(TM) is totally umbilic and $S(TM^{\perp})$ is conformal Killing. Then M admits an induced symmetric Ricci tensor. Moreover, both M and the leaf M^* of S(TM) are Einstein manifolds and the coscreen $S(TM^{\perp})$ is a homothetic Killing distribution.

Proof. Using (1.17), (1.19), (2.11) and the fact $\beta \gamma = 0$ by Theorem 2.3, we have

(2.12)
$$R^{(0,2)}(X,Y) = \{c + \delta \rho(\xi) + (m-1)(c + \epsilon \delta^2)\}g(X,Y),$$

for any $X, Y \in \Gamma(TM)$. Thus $R^{(0,2)}$ is a symmetric Ricci tensor Ric and M is an Einstein manifold. Also, from (1.17) and (1.21), we have

(2.13)
$$R^*(X,Y)Z = (c + \epsilon \delta^2) \{ g(Y,Z)X - g(X,Z)Y \},$$

(2.14)
$$Ric^{*}(X,Y) = (m-1)(c + \epsilon \delta^{2})g(X,Y),$$

for any $X, Y, Z \in \Gamma(S(TM))$. From (2.14), we show that M^* is also an Einstein manifold. Since m > 2, the function $(c + \epsilon \delta^2)$ is a constant. Therefore, the conformal factor δ is a constant, i.e., $S(TM^{\perp})$ is a homothetic Killing distribution.

Combining Note 1 and Theorem 2.3 and 2.4, we have the following theorem:

Theorem 2.5. Let (M, g, S(TM)) be a half lightlike submanifold of a semi-Riemannian space form $(\bar{M}^{m+3}(c), \bar{g}), m > 2$, such that S(TM) is totally umbilic and $S(TM^{\perp})$ is conformal Killing with conformal factor δ . Then M is an Einstein manifold and locally a product manifold $L \times M^*$, where L is a null curve in M and M^* is an Einstein semi-Riemannian space form of constant curvature $(c + \epsilon \delta^2)$. Furthermore, the coscreen $S(TM^{\perp})$ is a homothetic Killing distribution.

Recall the following notion of null sectional curvature [2, 3, 4]. Let $x \in M$ and let ξ be a null vector of T_xM . A plane H of T_xM is called a null plane directed by ξ if it contains ξ , $g_x(\xi, W) = 0$ for any $W \in H$ and there exists $W_o \in H$ such that $g_x(W_o, W_o) \neq 0$. Then, the null sectional curvature of H, with respect to the null vector ξ and the induced connection ∇ of M, is defined as a real number

$$K_{\xi}(H) = \frac{g_x(R(W, \xi)\xi, W)}{g_x(W, W)},$$

where $W \neq 0$ is any vector in H independent with ξ . It is easy to see that $K_{\xi}(H)$ is independent of W but depends in a quadratic fashion on ξ .

Theorem 2.6. Let (M, g, S(TM)) be a half lightlike submanifold of a semi-Riemannian space form $(\bar{M}^{m+3}(c), \bar{g}), m > 2$, such that S(TM) is totally umbilic and $S(TM^{\perp})$ is conformal Killing. Then every null plane H of T_xM directed by ξ has everywhere zero null sectional curvatures.

Proof. From (1.17), (2.3) and the fact that $\beta \gamma = 0$ by Theorem 2.3, we show that

$$g(R(X,Y)Z,PW) = (c + \epsilon \delta^2) \{ g(Y,Z)g(X,PW) - g(X,Z)g(Y,PW) \},$$

for any $X, Y, Z, W \in \Gamma(TM)$. Thus $K_{\xi}(H) = \frac{g_x(R(W, \xi)\xi, W)}{g_x(W, W)} = 0$ for any null plane H of T_xM directed by ξ .

3. Totally Geodesic Screen Distributions

Definition 3. A half lightlike submanifold (M, g, S(TM)) of a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be *irrotational*[7] if $\bar{\nabla}_X \xi \in \Gamma(TM)$ for any $X \in \Gamma(TM)$.

Note 2. For an irrotational M, in general, since $B(X,\xi)=0$ due to the first equation of (1.9), we have $D(X,\xi)=0=\phi(X)$ for all $X\in\Gamma(TM)$.

Theorem 3.1. Let (M, g, S(TM)) be an irrotational half lightlike submanifold of a semi-Riemannian space form $(\bar{M}^{m+3}(c), \bar{g}), m > 2$; $\epsilon c > 0$, such that S(TM) is totally geodesic. Then M admits an induced symmetric Ricci tensor. Moreover, M is a totally umbilical Einstein manifold with B = 0 and the induced connection ∇ on M is a metric connection.

Proof. Since M is an irrotational submanifold of $\overline{M}(c)$ and S(TM) is totally geodesic, we have $\gamma = 0$ and $\phi = 0$. From (2.2), we have

(3.1)
$$D(X,Y)\rho(\xi) = -\epsilon cg(X,Y), \ \forall X, Y \in \Gamma(TM).$$

Since $c \neq 0$, we show that $\rho(\xi) \neq 0$ and $D \neq 0$. Thus (3.1) reduces to

(3.2)
$$D(X,Y) = \epsilon \delta g(X,Y), \ \forall X, Y \in \Gamma(TM).$$

where $\delta = -c\rho(\xi)^{-1} \neq 0$. Differentiating (3.2) and using (1.10) and (2.5), we have

$$X[\delta]g(Y,Z) - Y[\delta]g(X,Z) = \{\delta\eta(X) - \epsilon\rho(X)\}B(Y,Z)$$
$$- \{\delta\eta(Y) - \epsilon\rho(Y)\}B(X,Z), \quad \forall X, Y, Z \in \Gamma(TM).$$

Replacing X by ξ in this equation and using (1.9), we obtain

(3.3)
$$\xi[\delta]g(X,Y) = (\delta - \epsilon \rho(\xi))B(X,Y), \ \forall X, Y \in \Gamma(TM).$$

As S(TM) is totally geodesic, by Note 1, M is locally a product manifold $L \times M^*$ where L is a null curve and M^* is a leaf of S(TM). Using (1.17), (1.19), (2.11) and the fact that C = 0 and $c + \delta \rho(\xi) = 0$ by (3.1), we have

$$R^{(0,2)}(X,Y) = (c + \epsilon \delta^2)(m-1)g(X,Y),$$

for any $X, Y \in \Gamma(TM)$. Thus $R^{(0,2)}$ is a symmetric Ricci tensor Ric and M is an Einstein manifold. Also, from (1.17), (1.21), (2.1) and (3.2), we have

$$R^*(X,Y)Z = (c + \epsilon \delta^2) \{ g(Y,Z)X - g(X,Z)Y \},$$

for any $X, Y, Z \in \Gamma(S(TM))$. From this equation, we have

$$Ric^*(X,Y) = (c + \epsilon \delta^2)(m-1)g(X,Y),$$

for any $X, Y \in \Gamma(S(TM))$. Thus M^* is also an Einstein manifold of constant curvature $(c + \epsilon \delta^2)$ due to m > 2. Therefore δ is a constant. From (3.3), we have $(\delta - \epsilon \rho(\xi))B(X,Y) = 0$ for all $X, Y \in \Gamma(TM)$. Also, from (3.1), we have $c + \delta \rho(\xi) = 0$. Since $\delta \neq 0$, we get $(\epsilon c + \delta^2)B(X,Y) = 0$ for all $X, Y \in \Gamma(TM)$. Since $\epsilon c > 0$ and $\delta \neq 0$, we show that $(\epsilon c + \delta^2) > 0$. Therefore B = 0. In this case, from (3.2), we show that $h(X,Y) = \mathcal{H}g(X,Y)$ for all $X,Y \in \Gamma(TM)$, where h(X,Y) = D(X,Y)u and $\mathcal{H} = \epsilon \delta u$. Thus M is totally umbilic in M. Also, from the equation (1.10), we show that $(\nabla_X g)(Y,Z) = 0$ for all $X,Y,Z \in \Gamma(TM)$. Thus the induced connection ∇ on M is a metric one.

From Theorem 3.1, we have the following theorem:

Theorem 3.2. Let (M, g, S(TM)) be an irrotational half lightlike submanifold of a semi-Riemannian space form $(\overline{M}^{m+3}(c), \overline{g}), m > 2$; $\epsilon c > 0$, such that S(TM) is totally geodesic. Then M is a totally umbilical Einstein manifold and locally a

product manifold $L \times M^*$, where L is a null curve in M and M^* is an Einstein semi-Riemannian space form of constant curvature $(c + \epsilon \delta^2)$.

Theorem 3.3. Let (M, g, S(TM)) be an irrotational half lightlike submanifold of a semi-Riemannian space form $(\bar{M}^{m+3}(c), \bar{g}), m > 2$, such that S(TM) is totally geodesic. Then every null plane H of T_xM directed by ξ has everywhere zero null sectional curvatures.

Proof. From (1.9), (1.17), (1.19), (3.2) and the fact C = 0, we show that

$$g(R(\xi, X)Y, PW) = 0; \qquad g(R(\xi, X)Y, N) = (c + \delta \rho(\xi))g(X, Y) = 0.$$

Thus we have $R(\xi, X)Y = 0$. Therefore, $K_{\xi}(H) = \frac{g_x(R(\xi, W)W, \xi)}{g_x(W, W)} = 0$ for any null plane H of T_xM directed by ξ .

REFERENCES

- 1. Duggal, K.L. & Bejancu, A.: Lightlike submanifolds of codimension 2. Math. J. Toyama Univ. 15 (1992), 59-82.
- 2. _____: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Acad. Publishers, Dordrecht, 1996.
- 3. Duggal, K.L. & Jin, D.H.: Half-lightlike submanifolds of codimension 2. *Math. J. Toyama Univ.* 22 (1999), 121-161.
- Harris, S.G.: A triangle comparison theorem for Lorentz manifolds. *Indiana Math. J.* 31, (1982a), 289-308.
- 5. Jin, D.H.: Einstein half lightlike submanifolds with a Killing co-screen distribution. *Honam Math. J.* **30** (2008), no. 3, 487-504.
- 6. _____: A characterization of screen conformal half lightlike submanifolds. *Honam Math. J.* **31** (2009), no. 1, 17-23.
- Kupeli, D.N.: Singular Semi-Riemannian Geometry. Mathematics and Its Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- 8. Yano, K.: Differential Geometry on Complex and Almost Complex Spaces. The Macmillan Company, 1965.

DEPARTMENT OF MATHEMATICS, DONGGUK UNIVERSITY, GYEONGJU, GYEONGBUK 780-714, KOREA

Email address: jindh@dongguk.ac.kr