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TRAVELING WAVE GLOBAL PRICE DYNAMICS OF LOCAL
MARKETS WITH LOGISTIC SUPPLIES

Yong-In Kim

ABSTRACT. We employ the methods of Lattice Dynamical System to establish a
global model extending the Walrasian evolutionary cobweb model in an independent
single local market to the global market evolution over an infinite chain of many
local markets with interaction of each other through a diffusion of prices between
them.

For brevity of the model, we assume linear decreasing demands and logistic
supplies with naive predictors, and investigate the traveling wave behaviors of global
price dynamics and show that their dynamics are conjugate to those of Hénon maps
and hence can exhibit complicated behaviors such as period-doubling bifurcations,
chaos, and homoclic orbits ete.

1. INTRODUCTION

Over the last decade, a new class of infinite dimensional dynamical systems, so
called Lattice Dynamical Systems(LDS) have been introduced and studied by many
researchers (e.g., [1], [3], [7], [8]). These LDS’s have been proved to be one of the
most efficient tools to analyze space-time behaviors of the extended systems.

To begin with, we define the phase space (or state space) of the LDS. Suppose
that at each site j of a d-dimensional lattice Z¢, we have a finite dimensional local
dynamical system which is defined by some map f; : M; — M; , where M; is a
local phase space at the site 7. For simplicity and applicability to our model, we
will confine our attention to an infinite chain (d = 1) and the identical local map,
ie., fj = fyM; = R1Vj € Z, where R! is a 1-dimensional real Euclidean space with

ordinary inner product (-,-) and the norm |-| = /(-,-). Then we have an infinite
dimensional dynamical system on a space
(ty M =T] M;={p={p;}lp; € R,j € Z}
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where M is obviously a linear space with respect to componentwise addition and
scalar multiplication. A point (or, a state) p = {p;} € M can be thought of as a
bi-infinite sequence of real numbers. To make the linear space M to be a Hilbert
space, we equip M with the inner product defined by
(1.2) (p,q)p=zgﬁf? Vp,q € M,

JjeZ
where p > 1 is some fixed number depending on the particular problem. Then the
norm || - ||, is induced by

(R PERVACRP
and now we can define the phase space of our LDS by

(1.3) By, ={p € M||lpl, < co}.
Then it can be easily shown that B, is a Hilbert space (e.g., [1]). Next, we define

the evolution operator on B, in the following.
Definition 1.1. Define the evolution operator ® : B, — B, by

(1.4) (®p); = F({p;}°),Vi € Z,

where {p;}® = {pi||i — j| < s, s > 1 integer} for each j € Z, i.e., {p,;}° is the set of
values p; at the site ¢ which are within the distance of radius s from the site j, and
F:R?*! _, R is a differentiable map of class C? such that

oF oO*F
dp; OpiOpk
for any collection {p;}° and some constant K > 0.

—_— i) —_—

(1.5)

Then it is easy to verify that under the condition (1.5), ®(B,) C B, and @ is
Lipschitz continuous with the constant L = C(2s + 1)%;)% (e.g., [1]).

Definition 1.2. Given a state p(n) = {p;(n)}52_, € B, at the moment n, we can
obtain via (1.4) the next state p(n + 1), that is,
(1.6) p(n+1) = ®(p(n)), or,
pi(n +1) = (2(p(n))); = F({p;(n)}*).
The dynamical system (", B,),cz+ is called a Lattice Dynamical System(LDS).

Formula (1.6) implies that given a state p(n) € B,, we can calculate its next state

p(n+ 1), so we can obtain the forward orbit of the evolution operator ®, i.e.,

p(0), p(1) = 2(p(0)), p(2) = @(p(1)) = @*(p(0)), - .
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Before ending this section, let us consider several kinds of basic motions (or
solutions) in the LDS (1.6).

Definition 1.3. (i) A state (or solution) p(n) = {p;(n)} for the LDS (1.6) is spatially
homogeneous if p;(n) = Y(n)Vj € Z, i.e., a spatially homogeneous solution {¢(n)}
does not depend on the space coordinates j and so has the same value at each site
]

(ii) A solution p(n) = {p;(n)} is static (or stationary, steady state,standing wave) if
pj(n) = ¢;¥n € Z%, ie., a static solution {¢;} does not depend on time n, and is
standing there along the space coordinates j at all times n.

(ili) A solution p(n) = {p;(n)} is a traveling wave with wave velocity m/l if p;(n) =
£(lj+mn), where I > 0,m € Z and (I, m) = 1(i.e., relatively prime). Here, the ratio
m/l is called the wave velocity of the traveling wave.

For instance, suppose that the local system f : M; — M; has a fixed point p*.
Then the state p = {p;},p; = p*Vj € Z is a spatially homogeneous static solution,
i.e., a fixed point of the evolution map ® and also can be thought of as a traveling

wave with arbitrary velocity.

2. THE CoBWEB MODEL

The Cobweb model for the local market dynamics has been well introduced and
studied by many researchers (e.g., [4], (5], [6],-[9]). The Cobweb model describes
the dynamics of equilibrium prices in a single independent local market for a non-
storable good, that takes one time period to produce, so that producers must form
price expectations one period ahead using the past history of prices.

Let p& = H(P,_1), where p& is the expected price by the producers at time n
and Pp_1 = (Pn—1,Pn-2,** ,Pn-L) I8 a vector of past prices of lag-length L and
H(): Rl - R is a real-valued function, so called a predictor. Let py, be the actual
market price at time n by the consumers, and let D{p,) be the consumer demand
and S(p§,) be the producer supply for the goods. The supply S(p¢) is derived from

producer’s maximizing expected profit with a cost function ¢(q), i.e.,
(2.1) 5(py) = argmax{plgn — ¢{gn)}-

The demand function D(.) depends on the current market price p, and is assumed
to be strictly decreasing in the price p, to ensure that its inverse D! is well-defined.
The supply function S(-) depends on the expected price pf, and will be assumed to
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be quadratic in our paper. The intersection point p* of the demand and supply
curve such that D(p*) = S(p*) is called the steady state equilibrium price.

If the beliefs of producers are homogeneous, i.e., all producers use the same
predictor H, then the market equilibrium price dynamics in the cobweb model is
described by

(2.2) D(p,) = S(H(Pp-1)), or, pn=D7'(S(H(Pn-1))).

Thus, the actual equilibrium price dynamics in a local market depends on the
demand D, the supply S, and the predictor H used by the producers.
Now, as our LDS model for the global market dynamics, we will take the following

form:

(2.3)  pi(n+1) =(2(p(n));
= (1 — a)pj(n) + af (p;(n)) + e(pj-1(n) — 2pj(n) + pj+1(n)),

where a solution p;(n),j € Z,n € Z" represents the price of a good at the site (or
local market);j at the time n, and f : R — R is a Walrasian local market price
dynamics at each site j, and o € [0, 1] is a parameter denoting the weighted average
between p;(n) and f(p;(n)), and the parameter € is a diffusion coefficient measuring
the intensity of interaction between the neighboring local markets. Thus, in this
global market model, the price p;j(n+ 1) at site j and at time n+1 is determined by
several factors, i.e., the previous price p;(n), the local market dynamics f, the weight
a € [0,1] of the average between them, and the diffusion coefficient € > 0. Notice
that the parameter o plays a role of controlling each local market in such a way
that if & = 1 then p;(n + 1) is determined completely by the local market dynamics
f together with diffusion term and if @ = 0 then the local market dynamics is
suppressed completely and pj(n+ 1) depends only on the present price and diffusion

term.

Remark 2.1. For a solution p;(n) of our model (2.3) to have a meaning in economic
sense, we impose a boundary condition at infinity that p;(n) must be bounded, i.e.,
lpj(n)] < CVj € Z,n € Z* for some C > 0. Also, we require that a solution p;(n)
must have nonnegative value for all j € Z,n € Z*. If a solution of (2.3) does not
satisfy these conditions, then it would not be an admissible solution for our model.

Remark 2.2. Besides the solutions given in the Definition 1.3, there can also be

many other solutions, e.g., spatially and/or temporally periodic solutions, spatially
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and/or temporally chaotic bounded solutions, and so on. In this paper, we restrict
our attention only to those periodic solutions or bounded chaotic solutions which
are the basic solutions mentioned in the Definition 1.3, e.g., spatially periodic static
solutions, temporally periodic spatially homogeneous solutions, spatially and tem-

porally periodic traveling wave solutions, etc.

3. TRAVELING WAVE GLOBAL PRICE DYNAMICS

We assume that the predictor H is naive, the demand D is linear decreasing, and

the supply S is logistic, that is, they are given by

(3.1) P = HPn_1) =pn-1, D(pn) =1—pn,
S(pf,) - S(pn—l) = 4pn~1(1 - pn—l)-

respectively. Note that the price p, in (3.1) is a scaled price such that 0 < p, < 1,
and the quadratic supply function S(z) = 4z(1 — z) is the so called logistic map,
which is known to exhibit chaotic dynamics on the whole interval [0,1] (e.g., [11]).
This kind of non-monotonic supply curve can be justified in an actual market, e.g.,
by an income effect in an agricultural market (e.g., [15], pp 339). This income effect,
of course, may be applied to our fish market as well. In other words, as prices of fish
are getting higher, the income of fishermen is getting higher, and so the production
of fish might be getting less due to their taking more leisure time.

Now, with these choices of H, D, and S, the local market equilibrium price
dynamics, D(p,) = S(pt), is given by
(3.2) 1 —pp =4pn-1(1 = pn-1), or,

Pn=1-4ps_1(1 ~ Pn_1).

Hence, our local market dynamics f for the global market model (2.3) is given by
(3.3) flz)=1-4z(1 -z) = (1 - 2x)?,
where z may be assumed to be restricted to the interval 0 < z < 1, since for
z ¢ [0,1], the dynamics of f is very simple, i.e., f*(z) — 400 as n — +oo, and
so only for z € [0,1], f*(z) € [0,1] for all n € Z* and exhibits interesting chaotic
dynamics.

The map f has two fixed points, one at p* = % where f'(p*) = -2 < -1, and

the other at ¢* = 1 where f'(¢*) = 4 > 1, and so both fixed points are repellors.
Note that at p* = %, D(%) =9 (%) = %, and prices near p* diverges in an oscillatory
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way from p*, while at ¢* = 1, D(1) = S(1) = 0, and prices near and less than ¢*
decreases in a monotone way from ¢* and so prices fluctuates between these two
repellors p* and ¢* in a chaotic way.

Now, let us consider the traveling wave solutions with wave velocity 1 of the
global market dynamics (2.3), where the local market dynamics f is given by (3.3),

ie.,
(3.4) pj(n+1) = (1 — a)p;(n) + afl — 2p;(n)}? + e{pj-1(n) — 2p;(n) + pjs1(n)}.

Hereafter, we will slightly loosen our restriction 0 < p;(n) < 1 so that p;(n) > 0
because interesting dynamics can occur for p;j(n) > 1 in the global market dynamics.
To obtain the traveling wave solutions, we set p;j(n) = £(j + n) in (3.4), then we

have

(3.5) EG+n+1)=(1-a)(+n)+afl - 260 +n))?
+e{l(f+n—-1)—2£(G +n)+ &G +n+ 1)}

Letting & = j + n, (3.5) becomes
(36) &(k+1) = (1-a)(k) +afl - 2(k)}* +e{€(k — 1) — 2£(k) + £(k + 1)}

Note that in (3.6), when € = 1, £(k + 1) on both sides are canceled and &£(k) is not
well defined in terms of £(k — 1) and so we will assume that € # 1 hereafter. When
€ # 1, solving (3.6) for {(k + 1), we have

1
(3.7)  &k+1)= :{a +et(k — 1) + (1 — b — 26)€(k) + 4at?(k)}.
Equation (3.7) clearly has two fixed points (k) = % and (k) =1if0<a <1 and
£(k) = £(0) if @ = 0, for all € > 0 as before. Letting again z; = {(k — 1), yx = £(k),
(3.7) is reduced to a 2D discrete dynamical system:

(38) Te+1 = Yk,
Yes1 = 6 +wzy + (1 — 58 — w)yx + 48yZ,

where § = {2 and w = 75;.
Now, the system (3.8) is generated by a 2D map Ss,, : R? — R? given by

(3.9) Ssw(®,y) = (¥,6 + wz + (1 — 56 — w)y + 40y?).

We first show that this map is dynamically the same as the Hénon map defined

as follows:
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Definition 3.1. The Hénon map Hgy : R? — R? is defined by

(3.10) Hay(z,y) = (a+ by — 2°,z),

where a, b are real parameters.

Remark 3.1. The Hénon map was originally defined by Hénon himself in the form
(3.11) Top(2,y) = (1 +y — az?, bz),

which represents one of the canonical forms for general quadratic maps with constant
Jacobian determinant. But, this map T can be transformed into the form Hgp
given in (3.10) with the parameter values a and b unchanged, by the simple scaling
r — z/a,y — by/a for a # 0 and b # 0. Note that if a = 0, then T, becomes a

linear map, while in the map H,; given in (3.10), a = 0 has no special significance.

Now, we first show the dynamical equivalence between our map and the Hénon

map.

Lemma 3.1. Our map Ss., given in (3.9) is topologically conjugate to the Hénon
map defined by (3.10) with the parameters a = $(36 +w —1)(36 —w+1) and b = w,
via the affine transformation given by h(z,y) = (c1y + c2,c1Z + ¢2) with ¢ = —48
[

and w = T—¢-

and c; = —3(1 — 56 — w) where § = 1=
Remark 3.2. In fact, as Devaney and Nitecki ([12]) have already mentioned, we
don’t have to examine the dynamical behavior of H, 4 for the b values with [b] > 1,
since the dynamics of Hy,p for |b] > 1 does not exhibit any new behavior. This is

because the inverse Hénon map

H}@y) = (@ - a+y7)

with given parameter values a = A,b = B # 0 is conjugate to the forward map H,,
with @ = A/B?,b = 1/B by the linear change of variables z — —By,y — —Baz.
Therefore, without loss of generality, we may restrict ourselves to parameters a,b
satisfying [b] < 1. Thus, using Lemma 3.1, it is enough for us to consider only the
case |w| = [%| < 1. This means that we need only consider the case 0 < ¢ < 1,
ie, 0 < w < 1and § > 0. Note that the case ¢ = % or w = 1 is the orientation
reversing and area-preserving case.

Now, let us first consider the local bifurcation problem about the map Ss,,. Our
map Ss,, clearly has two fixed points Q1 = (1/4,1/4) and Q2 = (1,1) as before for
all 0 <w <1 and é§ > 0. Contrary to the case in Section 7.2, @2 = (1, 1) is always
unstable (saddle) for 0 < w < 1 and § > 0, while @; = (1/4,1/4) is stable (node)
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(a) w=0.3,0.42620.83 (b) w=0.5, 0.355<0.7

) 1

¥

0.4 0.§ 0.5 0.1 0.8 0.3 0.4 0.5 0.6 0:1

Figure 1. (a) Bifurcation diagram when w = 0.3; (b) Bifurcation diagram
when w = 0.5. After this successive bifurcation ends, orbits escape to
infinity. Note that chaotic motion is confined in a bounded region (black

region).

for0<w<land 0 <6 < %(1 — w), and unstable (saddle) for 0 < w < 1 and
§ > %2(1 — w). Note that at w = 1, Q1 = (1/4,1/4) is unstable for § > 0. In this
case, near the fixed point Q; = (1/4,1/4), we have a period-doubling bifurcation as

can be shown in the following lemma. See Figure 1.

Lemma 3.2. For each fized 0 < w < 1, S5, has an attracting fized point @, =
(1/4,1/4) for 0 < § < %(1 — w) and this fized point undergoes a period-doubling
bifurcation as § passes through the value § = 2(1 — w)/3.

Now, let us consider the global bifurcation problem about the map S;,.

Hénon([14]) investigated the dynamics of the map T, given in Remark 3.1 by
numerical experiments. Recall that T,; is conjugate to the H,; without changing
the values of the parameters a and b. He considered four crucial a-values, say,
Agp, A1, A2 and As. Here, Ay = —%(1 —b)? and 4; = %(1 — b)? are the values such
that two fixed points exist for a > Ag, and one is always unstable and the other
is unstable for a > Aj; while A3 = 1.06 and A3 = 1.55 are the numerical values
obtained when b = 0.3. To concentrate on investigating the existence of a strange
attractor, he fixed the contraction parameter b appropriately as b = 0.3 through
many experiments and showed that:
(i) for a < Ag or a > Az, the points in the plane always escape to infinity (by using
the Lemma 7.3.1, for our map S;., a < Ag implies 62 < 0 and so has no meaning,
and b = 0.3,a > A3 corresponds to w = 0.3, > 0.862168 or, in terms of the original
parameters, € = 0.230769, o > 0.663206).
(ii) for Ap < a < Aj, depending on the initial point {zg,yg), either the point
escape to infinity or converges to an attractor (i.e., w = 0.3,0 < § < 0.862168 or,



TRAVELING WAVE GLOBAL PRICE DYNAMICS OF LOCAL MARKETS

(a) Attractor of 54,4

(b) Attractor of Ha,p

0.2 0.4 6.6 0.8 1

{(c) A part of (a)

,
&'\:‘ ".'_ \\ \\ ' *
o.3af % s \ N
woORN R
YN ",
0.32 RN W

Figure 2. (a) Strange attractor of S5, for w = 0.3,0 = 0.822598; (b)
Strange attractor of H,p for b = 0.3,a = 1.4; (c) Fractal structure of
the strange attractor of Ss,. It is an example of 2D Cantor set, i.e., the
Cartesian product of 1D Cantor set and 1D manifold (curve); {(d) The stable
(horizontal one) and the unstable manifold (vertical one) of S5, at the fixed
point (%, ;11-) for w = 0.3, =~ 0.822598. It appears that the strange attractor
is a part of the unstable manifold. Note that the unstable manifold is
quadratically tangent to the stable manifold at the bottom part.

e = 0.230769,0 < a < 0.663206 for our map S5, ).
(iii) for Ap < a < Aj, the attractor is simply the stable fixed point. But, as a

101

is increased over Aj, the attractor consists of a periodic set of p points and the

value of p increases through successive bifurcations as a increases and p seems to

go to infinity as a approaches to A; = 1.06 (i.e.,, Ag < a < A; corresponds to
w =030 <6 < %(1-w) =~ 0466667 or, 0 < a < 0.358974 for our map and

Ay = 1.06 corresponds to § =~ 0.724952 or,a =~ 0.557655). See Figure 1(a)(b).

(iv) for A3 < a < As, the attractor is no more simple, and the behavior of the points

become erratic. He finally chose the parameter value a = 1.4,b = 0.3 (ie, w =
0.3,6 = 0.822598 or, € =~ 0.230769, o =~ 0.632767) and demonstrated the celebrated
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Hénon attractor. See Figure 2. In this figure, we can confirm again the conjugacy
between S5, and H,p.

Shortly later, Curry ([10]) has shown that for Hénon’s values of the parameters
(@ = 1.4,b = 0.3), one of the fixed points has a transversal homoclinic orbit and
hence there is a horseshoe embedded in the dynamics of the map H, ;. Feit ([13])
has shown that fora > 0,0 <b< 1 (ie,0<w<1,6 > %(1 — w) for our case), the
non-wandering set §(H, ) is contained in a compact set, and all points outside this
set escape to infinity.

Devaney and Nitecki’s results apparently cover the above results and so we again
convert their results to the case of our map S;,, in the following lemma. Note that

their results also include the case b =1, i.e., the case w = 1 for Ss,.

Lemma 3.3. For any fired 0 < w < 1, the map Ss.,, depending on the values of
4 > 0, shows the following global dynamics:

(i) For & > 0, the nonwandering set Q(Ss,,) is contained in a square
5 5 5 5
V= {(myy)lg_'rl <z< '8‘+7‘2,§—T1 <y< §+7-2},

where r = 2HV8C %& A gnd ry = ——7———2“”'“’895 o

(ii) For 6 > 6; = é\/m, A = Nnez Sy, (V) is a topological horse-
shoe, i.e., there exists a continuous semi-conjugacy of (S5, ) C A onto the
2-shift.

(ili) For 6 > 6 = %\/(1 +V5)2(1 +w)? — 4w, A = Q(S5,) has a hyperbolic
structure and is topologically conjugate to the 2-shift.

Note that the square V in Lemma 3.3 contains the fixed points (%, %) and (1,1)
and as § — +oo, the r; and r9 approaches to %, and so V shrinks to the square
{(z,y)|§ <2 < 1,1 <y < 1}. Hence, all the bifurcating periodic orbits and the
compact invariant set A are contained in V.

Kirchgraber and Stoffer({16]) also studied the 2-parameter family Hénon map
H,p and have proved that:
for [b] € (0,1] and a > 20 + g—éb - Zlo%bz, the Hénon map H,; admits a transversal
homoclinic point.

We restate this result in terms of our map Ss,, in the following.

Lemma 3.4. For 0 <w <1 and § > 3+ 0.3w, our map S;,, admits a transversal
homoclinic point to the hyperbolic fized point Q1 = ( %, %) Consequently, near the
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hyperbolic fized point Q1 = (%, %), there exists an tnvariant Cantor set on which the
dynamics of S5, is topologically conjugate to a 2-shift and so is chaotic.

Moreover, Arai and Mischaikow (]|2]) have shown by numerically aided proof
that for parameter values close to a = 1.4,b = 0.3 (§ =~ 0.822598,w = 0.3 for Ss,),
there exist homoclinic tangencies, which imply the existence of the abundant strange
attractors ([17]) and the occurrence of the Newhouse phenomena (i.e., the successive
bifurcation to infinitely many attracting periodic orbits) ([18]). See Figure 2(d).

Now, again combining the results of the above four Lemmas and the result of
Arai and Mischaikow, and converting the parameters 4, w to the original parameters
«, €, we can state the following Theorem for 0 < ¢ < % (For € > %, see Remark 3.1).

Theorem 3.5. The traveling waves p;(n) = £{(j + n) = £(k) with wave velocity 1,
satisfy the 2nd order nonlinear difference equation given by (3.9):

ekh+1) = l—i—;{a +eb(k — 1) + (1 — 5o — 26)E(k) + 4a€2(k)},

which has two spatially homogeneous static traveling wave £(k) = % and (k) =1 for
0<a<1landé(k) =& for a = 0. The traveling wave solutions show the following
dynamics:

(i) For each fized 0 < € < %, the spatially homogeneous static traveling wave
solution &(k) = i— is attracting for 0 < a < %(1 — 2¢) and undergoes a
period-doubling bifurcation as o passes through the value o = %(1 —2¢). At
e = 1/2, the fized point £(k) = % becomes hyperbolic and so there is no local
bifurcation.

(ii) For each fited 0 < £ < %, if @ > 0, then all the bifurcating spotially-periodic
traveling waves and the spatially-chaotic traveling waves are confined to the

infinite strip
=l s <em <oz,

where

s1 = 8—1&{5(1 —e)+v/9a? +4e(1 — )}
g = é-la{zs +V9Z ¥ a(1=9)}.

(iii) For values close to € = 0.230769, a = 0.632767, there erist abundant strange

attractors and successive bifurcation to infinitely many attracting periodic

and

orbits.
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(iv) If @ > aj, the motion of the spatially-chaotic traveling waves is semi-

conjugate to the shift on two symbols, where o; = %\/_9~_45(1_—E7 .

(v} If & > a3, the motion of the spatially-chaotic traveling waves is conjugate
to the 2-shift, where ag = %\/(1 +V5)2 — 4e(1 —¢).

(vi) If &« > 3 — 2.7¢, then there exist traveling wave solutions which converge to

the spatially homogeneous static solution £(k) = % as k — +oo and compact

invariant Cantor sets of real numbers on which the motions of traveling
wave solutions £(k) exhibit spatial chaos along the coordinates k and are

topologically conjugate to the 2-shift.

Therefore, according to Theorem 3.5, the bounded traveling wave solutions are
as follows:
(i) the static spatially homogeneous solutions, i.e., {£(k)} = {3} and {£(k)} = {1}
for 0 < @ <1, and {&(k)} = {£(0)} for a = 0.
(ii) the infinitely many spatially (and temporally)-periodic traveling wave solutions
created through the period-doubling bifurcation of the fixed point £(k) = % or the
successive bifurcation of periodic sinks due to the existence of homoclinic tangencies.
(iii) the homoclinic traveling wave solutions which converge to the spatially homo-
geneous solution (k) = % as k — too.
(iv) the bounded spatially-chaotic traveling wave solutions created right after the
period-doubling bifurcation of the fixed point £(k) = % or the successive bifurcation
of the periodic sinks, or created by the points in the strange attractors.
(v) the bounded spatially-chaotic traveling wave solutions created due to the trans-

versal homoclinic orbits to the fixed point £(k) = %.

APPENDIX

Proof of Lemma 3.1. By using the parameter relationships, we can immediately check
that the commutativity relation h o Ss,(z,y) = Hyp © h(z,y) holds. O

Proof of Lemma 3.2. For fixed 0 < w < 1, if § = 2(1 —w)/3, @1 = (1/4,1/4)
has eigenvalues —1 and w. So, by using the standard procedure of applying the
center manifold reduction and normal form theory ([22]), we can easily show that
Q1 = (1/4,1/4) undergoes a period-doubling bifurcation as § passes through the
value § = 2(1 — w)/3. O

Proof of Lemma 3.3. By using the parameter relationships a = %{ 962 — (w—1)%} and
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b = w and the change of coordinates as in Lemma 3.3, we can get the results. [

Proof of Lemma 3.4. The parameter relationships a = £{96% — (w — 1)*} and b=w

give the results. (W

10.

11.
12.

13.

14.

15.

16.

17.

REFERENCES

Afraimovich, V.S. & Bunimovich, L. A.: Simplest structures in coupled map lattices
and their stability. preprint in GIT (1992).

Arai, Z. & Mischaikow, K.: Rigorous Computations of Homoclinic Tangencies. Preprint.
Kyoto University (2006).

Aranson, 1.S., Afraimovich, V.S. & Rabinovich, M.1.: Stablhty of spatially homogeneous
chaotic regimes in unidirectional chains. Nonlinearity 3 (1990), 639-651.

Brock, W.A. & Hommes, C.H.: A Rational Route to Randomness. Fconometrica 65
(1997), no. 5, 1059-1095.

: Heterogeneous Beliefs and Routes to Chaos in a Simple Asset Pricing Model.
Journal of Economic Dynamics and Control 22 (1998), 1235-1274.

Brock, W. A., Hommes, C. H. & Wagner, F.0.0.: Evolutionary dynamics in markets
with many trader types. Journal of Mathematical Economics 41 (2005), 7-42.
Bunimovich, L. A. et al: Trivial Maps. Chaos 2 (1992).

Bunimovich, L. A. & Sinai, Y. G.: 1988. Spacetime Chaos in Coupled Map Lattices.
Nonlinearity 1 (1998), 491-516.

Choudhary, M. A. & Orszag, J.M.: A cobweb model with local externalities. Journal
of Economic Dynamics & Control (2007).

Curry, J.: On the structure of the Hénon attracter. Preprint. National center for atmo-

spheric research (1997).

Devaney, R.L.: An introduction to Chaotic Dynamical Systems. Addison-Wesley, 1989.
Devaney, R. L. & Nitecki, Z.: Shift Automorphisms in the Hénon Mapping. Communi-
cations in Mathematical Physics 67, 137-146.

Feit, S.: Characteristic exponents and strange attracters. Communications in Mathe-
matical Physics 61 (1978), 249-260.

Hénon, M.: A Two-dimensional Mapping with a Strange Attracter. Communications
in Mathematical Physics 50 (1976), 69-77.

Hommes, C. H.: On the consistency of backward-looking expectations: The case of the
cobweb. Journal of Economic Behavior & Organization 33 (1998), 333-362.
Kirchgraber, U. & Stoffer, D.: Transversal homoclinic points of the Hénon map. Annali
di Mathematica 185 (2006), 187-204.

Mora, L. & Viana, M.: Abundance of Strange Attractors. Acta Mathematica 171 (1993),
1-71.



106 Yong-IN KiM

18. Robinson, C.: Bifurcation to Infinitely many sinks. Communications in Mathematical
Physics 90 (1983), 433-459.

19. : Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press

20. Sterling, D., Dullin, H.R. & Meiss, J.D.: Homoclinic bifurcations for the Hénon map.
Physica D 134 (1999), 153-184.

21. Wiggins S.: Global Bifurcations and Chaos. Springer-Verlag, New York, 1988.

22. : Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-
Verlag, New York, 1990

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ULSAN, ULSAN 689-749, KOREA
Email address: yikim@mail.ulsan.ac.kr



