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A NOTE ON THE RANK 2 SYMMETRIC HYPERBOLIC
KAC-MOODY ALGEBRAS

YEONOK KiM

ABSTRACT. In this paper, we study the root system of rank 2 symmetric hyperbolic
Kac-Moody algebras. We give the sufficient conditions for existence of imaginary
roots of square length —2k (k € Z5o). We also give several relations between the
roots on g(A).

1. INTRODUCTION

Let A be a symmetric Cartan matrix A = (_20 '2") with @ > 3 and g = g(A4)
denote the associated symmetric rank 2 hyperbolic Kac-Moody Lie algebra over the
field of complex numbers. Let II = {ag, a1} denote the set of simple roots. Let
A be its root system, and W be its Weyl group. A root o € A is called a real
root if there exists w € W such that w(a) is a simple root, and a root which is
not real is called an imaginary root. We denote by A", A”¢, A" and Aﬂ:" the
set of all real, positive real, imaginary and positive imaginary roots, respectively.
Then A = A™ U Aim, ATt = AT U (=A%), A" = AU U (—A), all of which
are disjoint. Let Q = Zog + Zay denote the root lattice. We also denote by T,lk
the set of all positive imaginary roots of the algebra g(A) with square length —2k.
In [2], A.J.Feingold show that the Fibonacci numbers are intimately related to the
rank 2 hyperbolic GCM Lie algebras. In [5], S.J.Kang and D.J.Melville show that
all the roots of a given length are Weyl conjugate to roots in a small region. These
information help in determining the sufficient conditions for the existence of integral
points on the hyperbola by, : 22 — azy + y? = —k(k € Zso).

In this paper, we prove the following theorem which determines the sufficient

conditions for the existence of integral points on the hyperbola by.
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Main Theorem. Let z2 — azy + y?> = —k be the hyperbola and let k£ = tm? be
any positive integer where ¢ is a square free integer and m € Z. For some positive
integer n, we have :

1.If(mn)€Q,thena—-2<t< “2;4.

2. (myn) € Q ifand only if t = j(a—j)—1, withj=1,...,[F], where [z]
denotes the smallest integer > xz. Furthermore, n = jm foreach 7 =
L...,[5)

In the following two sections, we prove Theorem 2.3 to express a sequence {Ap}

as a partial sum of some sequence. We prove our main Theorem in Theorem 2.5
and Theorem 2.6. The paper closes with several interesting relations between the

integral points on the hyperbolas h.

2. THE ROOT SYSTEM OF THE ALGEBRA g(A)

In this section, we give the sufficient conditions for the existence of imaginary
roots of square length —2k (k € Z > 0). We recall that some properties of the root
system of symmetric hyperbolic Lie algebra g(A). We identify an element

(1) a = rpap + 101 € Q with an ordered pair (zg,z1) € Z x Z.
We call root a € Z x Z a positive integral point if z,y € Z>g. Define a symmetric
bilinear form (:|-) on h* by the following equation:
(2) (a0 | o) = (1] 1) = 2, (a0lo1) = —a.
We define the sequence of integers { A, }»>0 by the recurrence relations
(3) Ag=0,A1 =1, Apyo =aAny1 — Ay for n > 0.
If a = 3, then A, = Fp, for n > 1, where {F,} is a Fibonacci sequence defined
by:
(4) Fo=0,F1 =1, Fpig = Fn + Fpya.
Following Proposition is well known.
Proposition 2.1 ([3]). A% = {(An, An+1), (Ant1,4s) | n >0}
Furthermore, A% = {(Fay, Faji2), (Fajra, F25) | € Zxo} fora=3.
Proposition 2.2 ([5]). Let {An}>o be the sequence defined in (3). Then
1 20

Ap=—— T
(1Y)

(n > 0),
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a++va? -4
2
Using Proposition 2.2, we obtain the following Theorem.

where vy = is a zero of 1 — az + z2.

Theorem 2.3. Let {A,} be the sequence as above. Then for alln > 1,

| =4
Ap = —Qn—l Z nC'Zk—-la-n_.(Zk—l)(a‘2 - 4)k_lv
k=1

where (2] denotes the smallest integer > x.

Proof. Proposition 2.2 shows that

1 - 2n
A= )
= 72-1 (3 - vnl_l)
= i %(7" - 7%)
= ﬁ((“ 24" - (a— V@ —4)")
Thus we have
Agn = W_—EE_—TZ{(” Va2 = 1) — (a — Va2 — 4)™}
- 55% zn:%czk_lan—(zk-n(az —4)k1,

k=1
Similarly,
1
= — Va2 — 4)27+ _ (g — Va2 — 4)2nH]
A1 = 22”+1m{(a+ a’ — 4) (a a® —4) }
1 n+1

= 5o D 2n+1C2k-10" 2 (a® —4)FL,
k=1

Combing above two equations, we get the desired result.
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The following Proposition gives a nice description of the set of positive imaginary

roots of square length —2k.
Proposition 2.4 ([5]).
AT = {(m,n), (n,m), (MAj11 — nAj,mAjy2 — nAji),

(mAjy2 — nAjr1, mAj1 — nA;j), (RAjp1 — mAj,nAjre — mAjp),
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(nAj+2 - mAj+1,nAj+1 - mAj) I (m,n) (S Qk}.

where

2k k am — /(a? — 4)m? — 4k
\Qk = {(m n) EZ>OXZ>0|\/__—“ s=m< a_2’n= \/( 2 ) }

We know any positive integer k can be represented as a product of two integers ¢

and m? (m € Z), where t is a square free integer. We have the following theorems.

Theorem 2.5. Let 22 — azy + y? = —k be the hyperbola and let k = tm? be any
positive integer where t is a square free integer and m € Zsg. If (m,n) € Qi for

some positive integer n, thena—2 <t < 24 fora > 3.
g 4

Proof. If (m,n) € ;. for some positive integer n, then 2‘/_ <m< ,/ . Since

VaZ-4 =
k =tm?, we get % <1 and ,/ 5 > 1, we have the desired result.

Theorem 2.6. Let k = tm? be any positive integer, where t is any square free
integer. Then (m,n) € Qi for some positive integer n if and only if t = j(a — j) —
1, with j=1,...,[5], where [z] denotes the smallest integer > x. Furthermore,

n=jm for each j = 1,...,[%].
Proof. Theorem 2.5 shows that a? —4 — 4t > 0 and a — 2 < t. Hence
V(a? — 4)m? — 4k = \/(a? — 4)m? ~ 4tm?
=Va?2—4—4tm
< V(a?~4)—4(a—2)m
=(a—2)m.

On the other hand, for a > 3,
\/(aT——Aﬁ—_teZlfandonlylf\/T——a—Zj

for j=1,...,[§]. Thus
t=j(a—j)—1, where j=1,...,[=]

Therefore,

e (a—\/M)m: (a—(a—Zj))m:jm’

2

we are done. O
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Example 2.7. Let 2% — 7xy + y? = —25t be the hyperbola where ¢ is a square free
integer. In case of t = 5,10 and 11, we have (5,5), (5,10), and (5,15) are in $os,
respectively. In this case, There are infinitely many integral point on the hyperbola
z? —Tzy+y? = —25t. In particular, {w(5,5) |w € W} is the set of all integral points
on the hyperbola z? — 7xy + y? = —75.

Theorem 2.8. If a—fg (k € Z > 0) is a positive integer, then there are infinitely
many integral points on the hyperbola z? — axy + y* = —k. Equivalently, there are
infinitely many imaginary roots of square length —2k.

Proof. Let ,/% =n € Zsp. Clearly, the hyperbola z2 — azy +y? = —k meets with

the line y = & at only one point (n,n). If n is a positive integer, then k = (a — 2)n?

and hence (n,n) is an integral point on the hyperbola z% — azy + y*> = —k. This
implies that o = nag + nay is an imaginary root with square length —2k. Since
Aﬁ',‘k is W-invariant, {wa | w € W} C AT’L,C and hence Af,f’fk is infinite. O

Example 2.9. There are infinitely many integral points on the hyperbola 2 —4zy+
y? = —8. Clearly, {w(2,2) |w € W} is a set of integral points on that hyperbola.

Example 2.10. There is no integral point on the hyperbola 2 — 3zy + y? = —2.

3. RELATIONS BETWEEN THE INTEGRAL POINTS ON g(A)

In this section, we study the relation among the integral points on the hyperbolas

2

z? —azy +y? = 1 and 22 — axy + y* = —k. We give several relations between the

integral points on g(4).
Theorem 3.1. Let {Ap} be a sequence defined in (3). Then

(a) Aj.,_k = Aj+1Ak — A]'Ak_.l for j, k—1€ Zxo.
(b) ((Aj, Ajr1) | (Ajrks Ajir1)) = A1 — Ap—1 for j, k—1 € Zxo.

Proof. (a) Proceeding by induction on n, suppose that we have
Ajpk = Aj1Ar — AjAr 1 for j, k — 1 € Zxp:

Since,

Ar? — alj_1Ap + Ap_12 =1 for k € Z>,,

we have
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Ajtk+1 = aAjrk — Ajk—1
= a(ArAj+1 — Ap-14;) — (Ag-14;54+1 — Ak—24;)
= (aAk — Ak—1)Aj+1 — (aAp-14k-2)A;
= Apr14j11 — ALA;.

For (b),

((Aj, Aje1) | (Ajrks Ajritr))
= (A}, + AD)adr + (24541 — aAjAj41) Akys + (aAjAj1 — 242 Ay
= (A} + A (Ars1 + Aro1) + (24541 — adjA 1) Acr + (@A Aj1 — 243) Ay
= (A?_,,1 —aAjAj + A?)Ak+1 - (AJZ-+1 —adjAji1 + A?)Ak_l
= Ags1 — Ak-1.

Corollary 3.2. Let {A,} be a sequence defined in (4). Then we have:
((An, An+1) | (Ant1, Any2)) = a for all j € Zxo.
Since Fy, = Ay, and Fopyo = Fop + Foiy1, we have the following Corollary.

Corollary 3.3. Let {F,} be a Fibonacci sequence defined in (4). Then
(a) Fojyk = FojFp1 + Foj1Fy.
(b) ((F2j, Faj+2) | (Fajsok, Fajiort2)) = Fagg1 + For_1.
(c) ((F2j, Faja2) | (Foja2, Fajea)) = 3 for all j € Zyy,
(d) ((F2j41, Foj43) | (F2j43, Fojus)) = =3 for all j € Zxo.
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