A NOTE ON THE RANK 2 SYMMETRIC HYPERBOLIC KAC-MOODY ALGEBRAS

YEONOK KIM

ABSTRACT. In this paper, we study the root system of rank 2 symmetric hyperbolic Kac-Moody algebras. We give the sufficient conditions for existence of imaginary roots of square length -2k ($k \in \mathbb{Z}_{>0}$). We also give several relations between the roots on $\mathfrak{g}(A)$.

1. Introduction

Let A be a symmetric Cartan matrix $A = \binom{2-a}{a-2}^{-a}$ with $a \geq 3$ and $\mathfrak{g} = \mathfrak{g}(A)$ denote the associated symmetric rank 2 hyperbolic Kac-Moody Lie algebra over the field of complex numbers. Let $\Pi = \{\alpha_0, \alpha_1\}$ denote the set of simple roots. Let Δ be its root system, and W be its Weyl group. A root $\alpha \in \Delta$ is called a real root if there exists $w \in W$ such that $w(\alpha)$ is a simple root, and a root which is not real is called an imaginary root. We denote by Δ^{re} , Δ^{re} , Δ^{im} , and Δ^{im} the set of all real, positive real, imaginary and positive imaginary roots, respectively. Then $\Delta = \Delta^{re} \cup \Delta^{im}$, $\Delta^{re} = \Delta^{re}_+ \cup (-\Delta^{re}_+)$, $\Delta^{im} = \Delta^{im}_+ \cup (-\Delta^{im}_+)$, all of which are disjoint. Let $Q = \mathbb{Z}\alpha_0 + \mathbb{Z}\alpha_1$ denote the root lattice. We also denote by $\Delta^{im}_{+,k}$ the set of all positive imaginary roots of the algebra $\mathfrak{g}(A)$ with square length -2k. In [2], A.J.Feingold show that the Fibonacci numbers are intimately related to the rank 2 hyperbolic GCM Lie algebras. In [5], S.J.Kang and D.J.Melville show that all the roots of a given length are Weyl conjugate to roots in a small region. These information help in determining the sufficient conditions for the existence of integral points on the hyperbola $\mathfrak{h}_k: x^2 - axy + y^2 = -k(k \in \mathbb{Z}_{>0})$.

In this paper, we prove the following theorem which determines the sufficient conditions for the existence of integral points on the hyperbola \mathfrak{h}_k .

Received by the editors January 7, 2010. Revised January 15, 2010. Accepted January 22, 2010. 2000 Mathematics Subject Classification. 17B67.

Key words and phrases. generalized Cartan matrix, Kac-Moody algebra, hyperbolic type.

108

Main Theorem. Let $x^2 - axy + y^2 = -k$ be the hyperbola and let $k = tm^2$ be any positive integer where t is a square free integer and $m \in \mathbb{Z}$. For some positive integer n, we have :

- 1. If $(m,n) \in \Omega_k$, then $a-2 \le t \le \frac{a^2-4}{4}$.
- 2. $(m,n) \in \Omega_k$ if and only if t = j(a-j)-1, with $j=1,\ldots, [\frac{a}{2}]$, where [x] denotes the smallest integer $\geq x$. Furthermore, n=jm for each $j=1,\ldots, [\frac{a}{2}]$.

In the following two sections, we prove Theorem 2.3 to express a sequence $\{A_n\}$ as a partial sum of some sequence. We prove our main Theorem in Theorem 2.5 and Theorem 2.6. The paper closes with several interesting relations between the integral points on the hyperbolas \mathfrak{h}_k .

2. The Root System of the Algebra g(A)

In this section, we give the sufficient conditions for the existence of imaginary roots of square length -2k ($k \in \mathbb{Z} > 0$). We recall that some properties of the root system of symmetric hyperbolic Lie algebra $\mathfrak{g}(A)$. We identify an element

(1)
$$\alpha = x_0 \alpha_0 + x_1 \alpha_1 \in Q$$
 with an ordered pair $(x_0, x_1) \in \mathbb{Z} \times \mathbb{Z}$.

We call root $\alpha \in \mathbb{Z} \times \mathbb{Z}$ a positive integral point if $x, y \in \mathbb{Z}_{\geq 0}$. Define a symmetric bilinear form $(\cdot|\cdot)$ on \mathfrak{h}^* by the following equation:

(2)
$$(\alpha_0 \mid \alpha_0) = (\alpha_1 \mid \alpha_1) = 2, (\alpha_0 \mid \alpha_1) = -a.$$

We define the sequence of integers $\{A_n\}_{n\geq 0}$ by the recurrence relations

(3)
$$A_0 = 0, A_1 = 1, A_{n+2} = aA_{n+1} - A_n \text{ for } n \ge 0.$$

If a=3, then $A_n=F_{2n}$ for $n\geq 1$, where $\{F_n\}$ is a Fibonacci sequence defined by:

(4)
$$F_0 = 0, F_1 = 1, F_{n+2} = F_n + F_{n+1}.$$

Following Proposition is well known.

Proposition 2.1 ([3]).
$$\Delta_{+}^{re} = \{(A_n, A_{n+1}), (A_{n+1}, A_n) \mid n \geq 0\}.$$

Furthermore, $\Delta_{+}^{re} = \{(F_{2j}, F_{2j+2}), (F_{2j+2}, F_{2j}) \mid j \in \mathbb{Z}_{\geq 0}\}$ for $a = 3$.

Proposition 2.2 ([5]). Let $\{A_n\}_{\geq 0}$ be the sequence defined in (3). Then

$$A_n = \frac{1 - \gamma^{2n}}{\gamma^{n-1}(1 - \gamma^2)} \ (n \ge 0),$$

where
$$\gamma = \frac{a + \sqrt{a^2 - 4}}{2}$$
 is a zero of $1 - ax + x^2$.

Using Proposition 2.2, we obtain the following Theorem.

Theorem 2.3. Let $\{A_n\}$ be the sequence as above. Then for all $n \geq 1$,

$$A_n = \frac{1}{2^{n-1}} \sum_{k=1}^{\left[\frac{n+1}{2}\right]} {}_{n}C_{2k-1}a^{n-(2k-1)}(a^2-4)^{k-1},$$

where [x] denotes the smallest integer $\geq x$.

Proof. Proposition 2.2 shows that

$$A_n = \frac{1 - \gamma^{2n}}{\gamma^{n-1}(1 - \gamma^2)}$$

$$= \frac{1}{\gamma^2 - 1} (\gamma^{n+1} - \frac{1}{\gamma^{n-1}})$$

$$= \frac{1}{\gamma - \frac{1}{\gamma}} (\gamma^n - \frac{1}{\gamma^n})$$

$$= \frac{1}{2^n \sqrt{a^2 - 4}} ((a + \sqrt{a^2 - 4})^n - (a - \sqrt{a^2 - 4})^n).$$

Thus we have

$$A_{2n} = \frac{1}{2^{2n}\sqrt{a^2 - 4}} \{ (a + \sqrt{a^2 - 4})^{2n} - (a - \sqrt{a^2 - 4})^{2n} \}$$
$$= \frac{1}{2^{2n-1}} \sum_{k=1}^{n} {2n C_{2k-1} a^{n-(2k-1)} (a^2 - 4)^{k-1}}.$$

Similarly,

$$A_{2n+1} = \frac{1}{2^{2n+1}\sqrt{a^2 - 4}} \{ (a + \sqrt{a^2 - 4})^{2n+1} - (a - \sqrt{a^2 - 4})^{2n+1} \}$$
$$= \frac{1}{2^{2n}} \sum_{k=1}^{n+1} {2n+1 \choose 2k-1} a^{n-(2k-1)} (a^2 - 4)^{k-1}.$$

Combing above two equations, we get the desired result.

The following Proposition gives a nice description of the set of positive imaginary roots of square length -2k.

Proposition 2.4 ([5]).

$$\Delta_{+,k}^{im} = \{(m,n), (n,m), (mA_{j+1} - nA_j, mA_{j+2} - nA_{j+1}), (mA_{j+2} - nA_{j+1}, mA_{j+1} - nA_j), (nA_{j+1} - mA_j, nA_{j+2} - mA_{j+1}), (nA_{j+1} - mA_j, nA_{j+2} - mA_j, nA_{j+2} - mA_j, nA_{j+2} - mA_j, nA_{j+2} - mA_j, (nA_{j+2} - mA_j, nA_j), (nA_{j+2} - mA_j,$$

$$(nA_{j+2} - mA_{j+1}, nA_{j+1} - mA_j) \mid (m, n) \in \Omega_k$$
.

where

$$\Omega_k = \left\{\!(m,n) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} | \frac{2\sqrt{k}}{\sqrt{a^2-4}} \leq m \leq \sqrt{\frac{k}{a-2}}, n = \frac{am-\sqrt{(a^2-4)m^2-4k}}{2}\right\}.$$

We know any positive integer k can be represented as a product of two integers t and m^2 ($m \in \mathbb{Z}$), where t is a square free integer. We have the following theorems.

Theorem 2.5. Let $x^2 - axy + y^2 = -k$ be the hyperbola and let $k = tm^2$ be any positive integer where t is a square free integer and $m \in \mathbb{Z}_{>0}$. If $(m,n) \in \Omega_k$ for some positive integer n, then $a - 2 \le t \le \frac{a^2 - 4}{4}$ for $a \ge 3$.

Proof. If $(m,n) \in \Omega_k$ for some positive integer n, then $\frac{2\sqrt{k}}{\sqrt{a^2-4}} \le m \le \sqrt{\frac{k}{a-2}}$. Since $k = tm^2$, we get $\frac{2\sqrt{t}}{\sqrt{a^2-4}} \le 1$ and $\sqrt{\frac{t}{a-2}} \ge 1$, we have the desired result.

Theorem 2.6. Let $k = tm^2$ be any positive integer, where t is any square free integer. Then $(m,n) \in \Omega_k$ for some positive integer n if and only if t = j(a-j) - 1, with $j = 1, \ldots, \left[\frac{a}{2}\right]$, where [x] denotes the smallest integer $\geq x$. Furthermore,

$$n = jm$$
 for each $j = 1, \ldots, \left[\frac{a}{2}\right]$.

Proof. Theorem 2.5 shows that $a^2 - 4 - 4t \ge 0$ and $a - 2 \le t$. Hence

$$\sqrt{(a^2 - 4)m^2 - 4k} = \sqrt{(a^2 - 4)m^2 - 4tm^2}$$

$$= \sqrt{a^2 - 4 - 4t} m$$

$$\leq \sqrt{(a^2 - 4) - 4(a - 2)} m$$

$$= (a - 2)m.$$

On the other hand, for $a \geq 3$,

$$\sqrt{(a^2-4)-4t} \in \mathbb{Z}$$
 if and only if $\sqrt{(a^2-4)-4t}=a-2j$

for $j = 1, \ldots, \left[\frac{a}{2}\right]$. Thus

$$t = j(a - j) - 1$$
, where $j = 1, \dots, \left[\frac{a}{2}\right]$.

Therefore,

$$n = \left(\frac{a - \sqrt{a^2 - 4 - 4t}}{2}\right)m = \left(\frac{a - (a - 2j)}{2}\right)m = jm,$$

we are done.

Example 2.7. Let $x^2 - 7xy + y^2 = -25t$ be the hyperbola where t is a square free integer. In case of t = 5, 10 and 11, we have (5,5), (5,10), and (5,15) are in Ω_{25t} , respectively. In this case, There are infinitely many integral point on the hyperbola $x^2 - 7xy + y^2 = -25t$. In particular, $\{w(5,5) \mid w \in W\}$ is the set of all integral points on the hyperbola $x^2 - 7xy + y^2 = -75$.

Theorem 2.8. If $\sqrt{\frac{k}{a-2}}$ $(k \in \mathbb{Z} \ge 0)$ is a positive integer, then there are infinitely many integral points on the hyperbola $x^2 - axy + y^2 = -k$. Equivalently, there are infinitely many imaginary roots of square length -2k.

Proof. Let $\sqrt{\frac{k}{a-2}} = n \in \mathbb{Z}_{>0}$. Clearly, the hyperbola $x^2 - axy + y^2 = -k$ meets with the line y = x at only one point (n, n). If n is a positive integer, then $k = (a-2)n^2$ and hence (n, n) is an integral point on the hyperbola $x^2 - axy + y^2 = -k$. This implies that $\alpha = n\alpha_0 + n\alpha_1$ is an imaginary root with square length -2k. Since $\Delta_{+,k}^{im}$ is W-invariant, $\{w\alpha \mid w \in W\} \subset \Delta_{+,k}^{im}$ and hence $\Delta_{+,k}^{im}$ is infinite. \square

Example 2.9. There are infinitely many integral points on the hyperbola $x^2 - 4xy + y^2 = -8$. Clearly, $\{w(2,2) \mid w \in W\}$ is a set of integral points on that hyperbola.

Example 2.10. There is no integral point on the hyperbola $x^2 - 3xy + y^2 = -2$.

3. Relations between the Integral Points on $\mathfrak{g}(A)$

In this section, we study the relation among the integral points on the hyperbolas $x^2 - axy + y^2 = 1$ and $x^2 - axy + y^2 = -k$. We give several relations between the integral points on $\mathfrak{g}(A)$.

Theorem 3.1. Let $\{A_n\}$ be a sequence defined in (3). Then

- (a) $A_{j+k} = A_{j+1}A_k A_jA_{k-1}$ for $j, k-1 \in \mathbb{Z}_{\geq 0}$.
- (b) $((A_j, A_{j+1}) | (A_{j+k}, A_{j+k+1})) = A_{k+1} A_{k-1}$ for $j, k-1 \in \mathbb{Z}_{\geq 0}$.

Proof. (a) Proceeding by induction on n, suppose that we have

$$A_{j+k} = A_{j+1}A_k - A_jA_{k-1}$$
 for $j, k-1 \in \mathbb{Z}_{\geq 0}$.

Since,

$$A_k^2 - aA_{k-1}A_k + A_{k-1}^2 = 1$$
 for $k \in \mathbb{Z}_{\geq 1}$,

we have

$$A_{j+k+1} = aA_{j+k} - A_{j+k-1}$$

$$= a(A_k A_{j+1} - A_{k-1} A_j) - (A_{k-1} A_{j+1} - A_{k-2} A_j)$$

$$= (aA_k - A_{k-1})A_{j+1} - (aA_{k-1} A_{k-2})A_j$$

$$= A_{k+1} A_{j+1} - A_k A_j.$$

For (b),

$$((A_{j}, A_{j+1}) | (A_{j+k}, A_{j+k+1}))$$

$$= (-A_{j+1}^{2} + A_{j}^{2}) a A_{k} + (2A_{j+1} - a A_{j} A_{j+1}) A_{k+1} + (a A_{j} A_{j+1} - 2A_{j}^{2}) A_{k-1}$$

$$= (-A_{j+1}^{2} + A_{j}^{2}) (A_{k+1} + A_{k-1}) + (2A_{j+1} - a A_{j} A_{j+1}) A_{k+1} + (a A_{j} A_{j+1} - 2A_{j}^{2}) A_{k-1}$$

$$= (A_{j+1}^{2} - a A_{j} A_{j+1} + A_{j}^{2}) A_{k+1} - (A_{j+1}^{2} - a A_{j} A_{j+1} + A_{j}^{2}) A_{k-1}$$

$$= A_{k+1} - A_{k-1}.$$

Corollary 3.2. Let $\{A_n\}$ be a sequence defined in (4). Then we have:

$$((A_n, A_{n+1}) | (A_{n+1}, A_{n+2})) = a \text{ for all } j \in \mathbb{Z}_{>0}.$$

Since $F_{2n} = A_n$, and $F_{2k+2} = F_{2k} + F_{2k+1}$, we have the following Corollary.

Corollary 3.3. Let $\{F_n\}$ be a Fibonacci sequence defined in (4). Then

- (a) $F_{2j+k} = F_{2j}F_{k-1} + F_{2j+1}F_k$.
- (b) $((F_{2i}, F_{2i+2}) | (F_{2i+2k}, F_{2i+2k+2})) = F_{2k+1} + F_{2k-1}$.
- (c) $((F_{2i}, F_{2i+2}) | (F_{2i+2}, F_{2i+4})) = 3 \text{ for all } j \in \mathbb{Z}_{>0}$
- (d) $((F_{2i+1}, F_{2i+3}) | (F_{2i+3}, F_{2i+5})) = -3 \text{ for all } j \in \mathbb{Z}_{>0}$.

REFERENCES

- 1. G.M, Benkart, S.-J, Kang & K.C. Misra: Graded Lie Algebras of Kac-Moody Type. Adv. in Math. 97 (1993), 154-190.
- 2. A.J. Feingold: A hyperbolic GCM and the Fibonachi numbers. *Proc. Amer. Math. Soc.* 80 (1980), 379-385.
- 3. V.G. Kac: Infinite-Dimensional Lie Algebras. Cambridge University Press, 1990.
- 4. S.-J, Kang: Root multiplicities of Kac-Moody Algrbras $HA_n^{(1)}$. J. Algebra 170 (1994), 277-299.
- S.-J, Kang & D.J. Melville: Rank 2 Symmetric Hyperbolic Kac-Moody Algebras. Nagoya. Math. J. 140 (1995), 41-75.

- 6. Y. Kim, K.C. Misra & S.J. Stizinger: On the degree of nilpotency of certain subalgebras of Kac-Moody Lie algebras. J. Lie Theory 14 (2004), 11-23
- 7. R.V. Moody: Root System of Hyperbolic Type. Adv. in Math. 33 (1979) 144-160.
- 8. _____, A new class of Lie algebras. J. Algebra 10 (1968), 210-230.

DEPARTMENT OF MATHEMATICS, SOONGSIL UNIVERSITY, SEOUL 151, KOREA Email address: yokim@ssu.ac.kr