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SOLVABILITY FOR SECOND-ORDER BOUNDARY VALUE
PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS
ON AN UNBOUNDED DOMAIN AT RESONANCE

ALJUN YANG ®*, LISHENG WANG? AND WEIGAO GE®

ABSTRACT. This paper deals with the second-order differential equation

(p(t)z’ ()" + g(8)f (¢, 2(t),#'(t)) = 0, a.e. in (0,00)
with the boundary conditions

20) = [ a(s)els)ds, Jim plt)e'(®) =0,

(e o]
where g € L'[0,00) with g(t) > 0 on [0,00) and / g(s)ds =1, f is a g-

0
Carathéodory function. By applying the coincidence degree theory, the existence of
at least one solution is obtained.

1. INTRODUCTION

In this paper, we study the second-order boundary value problem with integral
boundary condition on a half line

(1.1) (p(t)x'(t)) + g(t) f(t,z(t),2'(t)) = 0, a.e. in (0, 00),

(1.2) z(0) = /:o g(s)z(s)ds, tlir&p(t)x'(t) = 0.

Throughout we assume
(A1) p € C[0,00) N C1(0, 00) and p(t) > 0 on [0, c0), 1—15 € L'[0, ),
(A2) g € L'[0,00) with g(t) > 0 on [0, 00) and / g(s)ds = 1.
0
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[o o]
Due to the condition / . g(s)ds = 1, the differential operator —%a‘i—t(p%-) is not

invertible. In the literaturg, BVPs of this type are referred to problems at resonance.

The motivation for the present work stems from both practical and theoretical
aspects. In fact, second-order BVPs on infinite intervals arising from the study
of radially symmetric solutions of nonlinear ellipﬁc equation and models of gas
pressure in a semi-infinite porous medium [1], have received much attention. For an
extensive collection of results on BVPs on unbounded domains, we refer the readers
to a monograph by Agarwal and O’Regan [1]. Other recent results and methods can
be found in [4-13] and the reference therein. In [9], N. Kosmanov considered the

second-order nonlinear differential equation at resonance

()Y (t)) = f(t,u(t),v'(t)), a.e. in (0,00)

with two sets of boundary conditions:

4'(0) =0, Z kiu(T3) = t&r& u(t)

i=1
and
n
u(0) =0, 21 riui(Ti) = lim u(t).
1=
The author established existence theorems by the coincidence degree theorem of

Mawhin.
Lian and Ge [10] studied the following second-order BVPs on a half-line

z'(t) = f(t,z(t),2'(t)), 0 <t < oo,
{ z(0) = z(n), lim 2'(t) =0

and
z(t) = f(t,z(t),z'(t)) + e(t), 0 <t < o0,
2(0) = 2(n), Jim () =0,

By using Mawhin’s continuation theorem, they obtained the existence results.

However, as we all know, for the resonance case, there has no work done for the
boundary value problems with integral boundary conditions on a half-line, such as
the BVP (1.1)-(1.2). The aim of this paper is to fill the gap in the relevant literatures.
In addition, we define a g-Carathéodory function (Def. 2.1) in this paper, this is the
first time that this definition has been introduced.
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2. RELATED LEMMA

For the convenience of readers, we present here some definitions and lemmas.
Definition 2.1. f : [0,00) x R? — R is called a g-Carathéodory function if and
only if

(B1) for each (u,v) € R2, the mapping ¢t — f(t,u,v) is Lebesgue measurable on

[0, 00),
(B2) for a.e. t € [0,00), the mapping (u,v) — f(t,u,v) is continuous on RZ,
(B3) for each [ > 0 and g € L[0, 00), there exists a function ¢; : [0, 00) — [0, 00)
o0
satisfying g(s)di(s)ds < oo such that
0

max{|u|, |v|} < implies. |f(t,u,v)] < ¢(t) for a.e. t € [0,00).

Theorem 2.1 ([2]). Let X andY be two Banach spaces with norms ||-||x and || ||y,
respectively, and 2 C X an open and bounded set. Suppose L : X NdomL — Y is a
Fredholm operator of index zero and N : Q — Y is L-compact. In addition, if

(Cl) Lz # ANz for A € (0,1), = € (domL \ ker L) N 99;

(C2) Nz ¢ ImL for x € ker LN 0%,

(C3) deg{JQN|grkerr ¥ Nker L,0} # 0, where Q : Y — Y is a projection such
that ImL = ker Q and J :Im@Q — ker L is an isomorphism.

Then the abstract equation Lz = Nz has at least one solution in §.

Let AC|0, 00) denotes the space of absolutely continuous function on the interval

[0,00). In this paper, we work in the Banach spaces
X = {x € C[0,0) : z,pz’ € AC[0,00), lim z(t) and lim z'(t) exist,
t--00 t—o00
(pz') € Ll[O,oo)},
o0
v ={v:l0.00) = &: [ g0yl < oo}
0

with the norms ||z||x = max{||z||cc, ||2'llcc}, Where ||z|loc = . sup |z(t)] and
t€[0,00)

[o )
lolly = / g@®)ly()|dt. Let L : domL — Y with
0

domL = {z € X : gz € L'[0,00), z(0) = /oo z(s)g(s)ds, tlim p(t)z'(t) = 0}
0 — 00

be defined by Lz(t) = _Ellﬁ(p(t)m,(t))l'
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Lemma 2.1. L: domL C X — Y is a Fredholm operator of index zero.

Proof. 1t is easy to see that kerL = {z € domL : z(¢) = c on [0,00)}.

Consider the following equation for x € domL,

1 / ’_
—Em(p(t)w () = y(#).

Then y € Y. From (2.1) and (1.2), one gets

(2.1)

(2.2) / s) / y(r)drds + z(0).
Since /00 g(s)ds = 1, it follows from (1.2) that
0
00 t ) 00
(2.3) /; g(t)/O Iﬁ/ g(T)y(r)drdsdt = 0.
Thus,

ImL C {y eY: /Ooo g(t) /Ot 1% /soog('r)y(f)drdsdt = 0}.

Conversely, if (2.3) holds, we take candidate of z € domL as given by (2.2), then
(p(t)x'(t)) + g(t)y(t) = 0 for t € (0,00) and (1.2) is satisfied. In fact, we have

(2.4) ImL = {y eY: /0 / / g(m)y(r)drdsdt = O}.

Define the projection Q : Y — Y by

(25) @) =3 [ o) [ = [ atrtrydraras

where w = / s)/ / (r)drdrds. (2.4) and (2.5) imply that ImL =
ker@. Then codim ImL = d1m Im@ =1 = dim kerZ. As a result, L is a Fredholm

operator of index zero. O

Let P : X — X be a projection defined by (Pz)(t) = z(0) for t € [0,00). Set
Ly = L|gomLnker p and Ky : ImL — domL Nker P denotes the inverse of L,. Define

K(t) = /0 " k(t, 8)g(s)y(s)ds

where

S
/Ldﬂr, 0<s<t<oo,
o p(7)

k(t,s) = 1
: /-—-—dT, 0<t<s < 0.
o P(T)
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Let the nonlinear operator N : X — Y be defined by
Nz(t) = f(t,z(t),2'(t)), t € [0,00).
Then the BVP (1.1)-(1.2) can be written as Lz = Nz, which is equivalent to

z = Pr+ Ky(I - Q)Nz,
JQNz =0,

where J : ImQ) — ker L is an isomorphism.

In order to apply Theorem 2.1, we have to prove that N is L-compact, that is,
QN and K,(I — Q)N are compact on every bounded subset of X. Because the
Arzela-Ascoli theorem fails to apply to noncompact interval case, we will use the

following criterion.

Theorem 2.2 ([1]). Let X be the space of all bounded continuous vector-valued
functions on [0,00) and S C X. Then S is relatively compact if the following

conditions hold:

(D1) S is bounded in X,

(D2) all functions from S are equicontinuous on any compact subinterval of [0, 00),

(D3) all functions from S are equiconvergent at infinity, that is, for any given
€ > 0, there exists a T = T(g) > 0 such that ||¢(t) — d(c0)||rn < € for all
t>Tand € S.

Lemma 2.2. If f is a g-Carathéodory function, then N : X — Y is L-compact.

Proof. Suppose that  C X is a bounded set. Then there exists [ > 0 such that
llz|]|x < lfor z € Q. Since f is an g-Carathéodory function, there exists a function ¢;
satisfying ¢;(¢) > 0 on [0, c0) and f0°° g(s)¢i(s)ds < oo such that for a.e. t € [0,00),
|f(t,z(t))] < di(t) for z € Q. Then for z € Q,

1 oo o 8 1 [o'e) ,
I@Nzlly = ~ /0 gl /0 g(s) /0 o) / g(r)f(r,z(r), 2’ (v))drdrds|dt

1 [ 1 00 ,

5/0 ;)‘(T—)dT/O 9(s)1f(s, 2(s),2'(s))lds

w Jo
1)1
wlip

Ngdullpr =: My < o0,

: / i ;;%dT /Ooo 9(s)¢u(s)ds
o
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which implies that QN is bounded on Q. Noticing that dim ImQ = 1, it follows
that QN is a compact operator. Next, we show that K,(I — Q)N is compact, i.e.,
Kp(I — Q)N maps bounded sets into relatively compact ones. Furthermore, denote
Kpg = Kp(I — Q)(see [9,10]). For z € , one gets

(KeaNa)OI < [ Ik(t,o)a(o)f(s,2(5), /() = (QNa)()lds
<[] [Coistsiato, 2 6Dias + [~ gtol@va)sas

p(T) 0
=: My <o
and
(KpoNz)'(t)] = —-l—/oog(s)[f(s z(s),z'(s)) — (QNz)(s))ds
Q p(t) J; , ,
< L[ [ oosts.ao w60+ [ aloi@neisl
< =l (Ngsullzr +11QNzlly) =: M3 < oo,

o0
that is, KpoN(Q) is uniformly bounded. Meanwhile, for any ty,t; € [0,T] with T
a positive constant and ¢ < ta, we have

/t2 (KpoNz)'(s)ds
t1

Mslta — t1] — 0, uniformly as |ta — ¢1] — 0,

[(KpgNz)(t2) — (KpNz)(t1)| =

IN

|(Kp@Nz)'(t2) - (KpoNa) (t1)|
- lp(t / 8)[f(s,2(s), 2'(s)) — (QNz)(s)}ds

—W/t g(8)[f(s,z(s),2'(s)) — (QNz)(s)]ds

t
/t o()lf (s, 2(5),2'(s)) — (QNz)(s))ds|

" / ~ 9(s)1f(s,2(s), 2'(s)) — (QNz)(s)|ds
[ sntsias+ [ sienzias)

[y

(llgillzr + [|@Nzlly) — 0, uniformly as |t — ¢1] — 0,
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which means that K p.g N(f) is equicontinuous. In addition,we claim that KpoN ()
is equiconvergent at infinity. In fact,

|(KpqNz)(c0) — (KpoNz)(t)]
oo 8
1
[ sidma6)5s,206),2/() - @Na)())ds
t Ji p(r)

/too E)—(IT—)dr(/toog(s)cﬁz(s)ds + /toog(s)l(QNm)(s)lds) -0,

uniformly as t — oo

and
(KpgNz)'(c0) — (KpgNz)'(t)|

1 o0
= |o [ srs.209).0'6) - (@N)o)as
p(t) J
1
p(t)
Hence, Theorem 2.2 implies that K,(I—Q)N(Q) is relatively compact. Furthermore,
since f is a g-Carathéodory function, the continuity of QN and K,(I — Q)N on Q

follows from the Lebesgue dominated convergence theorem. So we can complete the

[/wg(T)@(T)dT + /oo g(T)l(QN(E)(T)ldT] — 0, uniformly as t — oo.
t t

proof. O
3. MAIN RESULTS

In this section, we establish two existence results for the BVP (1.1)-(1.2) by

applying Mawhin’s continuation theorem.

Theorem 3.1. If f is a g—Carathéodory function, suppose
(H1) there ezists a constant A > 0 such that for x € domL\ ker L, if |z(t)| > A for
all t € [0,00), then

(3.1) /Ooo g(s) /Os 1—)—(%_—)— /oo g(r)f(r,z(r), z'(r))drdrds # 0;

(H2) there ezist nonnegative functions a,8,7,p € Y and a constant o € [0,1) such
that for (u,v) € R? and a.e. t € [0,00), one has

(3.2) |f(tu, )| < a(t)|ul + B{E)[v] + ()|l + p(t),

we denote ay = [lally, f1 = [1Blly, m = [lly, o1 = llolly;
(H3) there exists a constant B > 0 such that for b € R with |b| > B, we have either
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o0 L) 1 o0
(3.3) b. / os) / L / g(r)f(rb, 0)drdrds < 0
0 0 p(T) T .
or
(3.4) b~/ s)/ / g(r)f(r,b,0)drdrds > 0.
Then BVP(1.1) has at least one solution provided
1 a3l
(3.5) max {ﬁ1|l-|| ; —-—-p—} <1
p = 1- ﬂl”%”oo

Proof. Let Uy = {z € domL \ ker L : Lz = ANz for some A € (0,1)}. For z € Uy,
ANz =Lz € ImL = ker Q, so QNz = 0, then

/Ooo g(s) /Os p_(lv'—)- /Too g(r) f(r,z(r), z'(r))drdrds = 0.

It follows from (H1) that there exists tg € [0, 00) such that |z(tp)} < A. Then,

t
()] = |(to) + / 2/(s)ds| < A+ ||'lla,
to
that is,
(3.6) lzlloo < A+ fl2'llz1.
Since
2(t) = ;,zlt—) /t ” Ag(s)f(s,x(smf(s))ds,
’ _ 1 < ’
Il = sup )‘——@ / Ag(5)f (s, x(s), ' (s))ds
< H " g()a(s)lals)] + Bs)|2(5)] + v()a(s)|” + pls))ds
<

H;H (atlfzllon + Bl oo + 1llz]1% + p1).
o0

Noticing (3.5), one gets

(aalialloo + mll2lIZ + P11 2]loo
1= Bil1leo

(3.7) ll2"}lo0 <
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, o0
&l = [
o

1 0 ,
m/t Ag(s)f (s, z(s), z'(s))ds|dt

38 < [};l ) / " g(&)la(s)la(s)] + B ()] + 1(5)lz() + p(s)lds
< Hé[ (el + 11T+ el + 1)
In view of (3.6), (3.7) and (3.8), we have
811121l ]
llzlloo < A+ I_? o [a1]|z|oo + W(alllmllw + 71llz]|% + £1)
+yiilzfig + 1]
1” 2 ’71“%”1,1 - PIH%HL‘
T Bl e T Ty Ty Pl (s EyATH. “4)

Due to 0 < ¢ < 1 and (3.5), there exists a constant E; > 0 such that ||z||e < Ej.

Then
a1 By +mE? + p)||2
o'l < SEEMEL H 0Nl
1 ‘ﬁl“;”oo
Hence, ||z}|x € max{E), Ez}, that is, U1 is bounded.
Define U = {z € kerL : Nz € ImL}. For z € Us, then z(t) = c on [0,00) and

Nz e ImL = ker Q. Thus

/ 9(3)/ o) / f(r,c,0)drdrds = 0.

From (H3) we get that ||z||x = |c| < B. So Uy is bounded.
Let Us = {z € kerL : —pz + (1 — p)JQNz =0, p € [0,1}}, where J : ker L —
Im@ is an isomorphism given by J(c) = ¢ for ¢ € R. For ¢y € Us, we obtain

peg = (1 — #)% /oog(s) /3 ;é_—) /oog(r)f(r, co,0)drdrds.

If 4 = 1, then ¢p = 0. Otherwise, for p € [0,1), if |co] > B, in view of (3.3), one gets

0< uc% = cp(l — p);— / 9(s )/ / g(r)f(r, CQ,O)d'I‘deS <0,

which is a contradiction. Thus, Us C {z € ker L : ||z||x < B} is bounded.
Let U be a bounded open subset of X such that U = {zr € X : |lz||x <

max{Ey, Eg, B} + 1}. Clearly, U U; c U. So, the first two conditions in Theo-
i=1
rem 2.1 are satisfied. To this end, it remains to show that condition (C3) holds,
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since L is a Fredholm operator of index zero and N is L-compact from Lemma
2.1-2.2.
Consider the homotopy H : (ker LNU) x [0,1] — X defined by

H(z,p) = —pz + (1 - p)JQNz.
Since H(z, ) # 0 for z € ker LNAU. By the homotopy invariance of degree, we get

deg{JQN |gnyer s U Nker L,0} = deg{H(,0),U NkerL,0}
deg{H(-,1),U Nker L,0}
= deg{~I,UNkerL,0}#0.

Then Theorem2.1 yields that Lz = Nz has at least one solution in domL NTU. The
proof is completed. O

Remark 3.1. When the second part of condition (H3) holds, we choose Us =
{xekerL: pz+ (1 — p)JQNz =0, € [0,1]} and take homomorphism H(z, ) =
pz + (1 — p)JQNz. By a similar argument, we can complete the proof.

Theorem 3.2. If f is a g-Carathéodory function, assume that the conditions (H1),
(H2) and (H3) in Theorem 3.1 hold with (3.2) in (H2) replaced by

(3.9) 1£(t,w, v)| < a@)lul + B(E) ] +v(@)[v]” + o).

Then the BVP (1.1)-(1.2) has at least one solution provided
1
Bl } .

p 1—allln

1

(3.10) max {01[ -

To illustrate our main results, we see the following example.

Example 3.1 Consider

3ef(e'a! (1)) + f(t,2(1), 2'(t)) = 0,
(3.11) o o
z(0) = /0 e *z(s)ds, tl_lfgj 3e'z'(t) = 0.
Corresponding to the BVP (1.1)-(1.2), we have p(t) = 3¢, g(t) = e~*. Obviously,
the conditions (A1) and (A2) are satisfied. Taking f(t,u,v) = te~%, it is easy to
verify that the assumptions (H1)-(H3) hold. Let a(t) = te=%, 8(t) = 0, then oy = §,
51 = 0. Since ||%||oo = %, ||%||1 = %, (3.5) and (3.10) are satisfied.
Thus, thanks to theorems 3.1 and 3.2, the BVP (3.11) has at least one solution.
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